Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Insights into copper coordination in the EcoRI-DNA complex by ESR spectroscopy.

Identifieur interne : 000D29 ( PubMed/Corpus ); précédent : 000D28; suivant : 000D30

Insights into copper coordination in the EcoRI-DNA complex by ESR spectroscopy.

Auteurs : Ming Ji ; Likun Tan ; Linda Jen-Jacobson ; Sunil Saxena

Source :

RBID : pubmed:25750461

Abstract

The EcoRI restriction endonuclease requires one divalent metal ion in each of two symmetrical and identical catalytic sites to catalyse double-strand DNA cleavage. Recently, we showed that Cu(2+) binds outside the catalytic sites to a pair of new sites at H114 in each sub-unit, and inhibits Mg(2+) -catalysed DNA cleavage. In order to provide more detailed structural information on this new metal ion binding site, we performed W-band (~94 GHz) and X-band (~9.5 GHz) electron spin resonance spectroscopic measurements on the EcoRI-DNA-(Cu(2+) )2 complex. Cu(2+) binding results in two distinct components with different gzz and Azz values. X-band electron spin echo envelope modulation results indicate that both components arise from a Cu(2+) coordinated to histidine. This observation is further confirmed by the hyperfine sub-level correlation results. W-band electron nuclear double resonance spectra provide evidence for equatorial coordination of water molecules to the Cu(2+) ions.

DOI: 10.1080/00268976.2014.934313
PubMed: 25750461

Links to Exploration step

pubmed:25750461

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Insights into copper coordination in the EcoRI-DNA complex by ESR spectroscopy.</title>
<author>
<name sortKey="Ji, Ming" sort="Ji, Ming" uniqKey="Ji M" first="Ming" last="Ji">Ming Ji</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tan, Likun" sort="Tan, Likun" uniqKey="Tan L" first="Likun" last="Tan">Likun Tan</name>
<affiliation>
<nlm:affiliation>Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jen Jacobson, Linda" sort="Jen Jacobson, Linda" uniqKey="Jen Jacobson L" first="Linda" last="Jen-Jacobson">Linda Jen-Jacobson</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Saxena, Sunil" sort="Saxena, Sunil" uniqKey="Saxena S" first="Sunil" last="Saxena">Sunil Saxena</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25750461</idno>
<idno type="pmid">25750461</idno>
<idno type="doi">10.1080/00268976.2014.934313</idno>
<idno type="wicri:Area/PubMed/Corpus">000D29</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000D29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Insights into copper coordination in the EcoRI-DNA complex by ESR spectroscopy.</title>
<author>
<name sortKey="Ji, Ming" sort="Ji, Ming" uniqKey="Ji M" first="Ming" last="Ji">Ming Ji</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tan, Likun" sort="Tan, Likun" uniqKey="Tan L" first="Likun" last="Tan">Likun Tan</name>
<affiliation>
<nlm:affiliation>Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jen Jacobson, Linda" sort="Jen Jacobson, Linda" uniqKey="Jen Jacobson L" first="Linda" last="Jen-Jacobson">Linda Jen-Jacobson</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Saxena, Sunil" sort="Saxena, Sunil" uniqKey="Saxena S" first="Sunil" last="Saxena">Sunil Saxena</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular physics</title>
<idno type="ISSN">0026-8976</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The EcoRI restriction endonuclease requires one divalent metal ion in each of two symmetrical and identical catalytic sites to catalyse double-strand DNA cleavage. Recently, we showed that Cu(2+) binds outside the catalytic sites to a pair of new sites at H114 in each sub-unit, and inhibits Mg(2+) -catalysed DNA cleavage. In order to provide more detailed structural information on this new metal ion binding site, we performed W-band (~94 GHz) and X-band (~9.5 GHz) electron spin resonance spectroscopic measurements on the EcoRI-DNA-(Cu(2+) )2 complex. Cu(2+) binding results in two distinct components with different gzz and Azz values. X-band electron spin echo envelope modulation results indicate that both components arise from a Cu(2+) coordinated to histidine. This observation is further confirmed by the hyperfine sub-level correlation results. W-band electron nuclear double resonance spectra provide evidence for equatorial coordination of water molecules to the Cu(2+) ions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">25750461</PMID>
<DateCreated>
<Year>2015</Year>
<Month>03</Month>
<Day>09</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0026-8976</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>112</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Molecular physics</Title>
<ISOAbbreviation>Mol Phys</ISOAbbreviation>
</Journal>
<ArticleTitle>Insights into copper coordination in the EcoRI-DNA complex by ESR spectroscopy.</ArticleTitle>
<Pagination>
<MedlinePgn>3173-3182</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The EcoRI restriction endonuclease requires one divalent metal ion in each of two symmetrical and identical catalytic sites to catalyse double-strand DNA cleavage. Recently, we showed that Cu(2+) binds outside the catalytic sites to a pair of new sites at H114 in each sub-unit, and inhibits Mg(2+) -catalysed DNA cleavage. In order to provide more detailed structural information on this new metal ion binding site, we performed W-band (~94 GHz) and X-band (~9.5 GHz) electron spin resonance spectroscopic measurements on the EcoRI-DNA-(Cu(2+) )2 complex. Cu(2+) binding results in two distinct components with different gzz and Azz values. X-band electron spin echo envelope modulation results indicate that both components arise from a Cu(2+) coordinated to histidine. This observation is further confirmed by the hyperfine sub-level correlation results. W-band electron nuclear double resonance spectra provide evidence for equatorial coordination of water molecules to the Cu(2+) ions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ji</LastName>
<ForeName>Ming</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Likun</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jen-Jacobson</LastName>
<ForeName>Linda</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Saxena</LastName>
<ForeName>Sunil</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R37 GM029207</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 RR028701</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Phys</MedlineTA>
<NlmUniqueID>9876329</NlmUniqueID>
<ISSNLinking>0026-8976</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7919-24</RefSource>
<PMID Version="1">18535143</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2004 Sep 22;126(37):11733-45</RefSource>
<PMID Version="1">15366921</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Chem Chem Phys. 2007 Sep 7;9(33):4620-38</RefSource>
<PMID Version="1">17700864</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 2005 Mar;62(6):685-707</RefSource>
<PMID Version="1">15770420</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1995 Jan 17;34(2):697-704</RefSource>
<PMID Version="1">7819265</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Magn Reson. 2006 Jan;178(1):42-55</RefSource>
<PMID Version="1">16188474</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2005 Apr 29;348(2):307-24</RefSource>
<PMID Version="1">15811370</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2002 Jul 10;124(27):8152-62</RefSource>
<PMID Version="1">12095361</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):E993-1000</RefSource>
<PMID Version="1">22493217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Biochem Biophys. 1974 Dec;165(2):691-708</RefSource>
<PMID Version="1">4374138</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Inorg Chem. 2001 Feb 12;40(4):781-7</RefSource>
<PMID Version="1">11225123</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Structure. 2004 Oct;12 (10 ):1775-88</RefSource>
<PMID Version="1">15458627</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2014 Jan 9;426(1):84-104</RefSource>
<PMID Version="1">24041571</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2013 May 23;117(20):6227-30</RefSource>
<PMID Version="1">23631829</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2000 Jan 25;39(3):584-91</RefSource>
<PMID Version="1">10642183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2002 Mar 26;41(12):3991-4001</RefSource>
<PMID Version="1">11900542</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2012 Aug 23;116(33):10113-24</RefSource>
<PMID Version="1">22861489</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1990 Nov 9;250(4982):776-86</RefSource>
<PMID Version="1">2237428</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2005 Nov 22;44(46):15193-202</RefSource>
<PMID Version="1">16285722</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Magn Reson. 1999 Sep;140(1):91-107</RefSource>
<PMID Version="1">10479552</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2013 Jan 21;52(4):1139-42</RefSource>
<PMID Version="1">23208892</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1995 Feb 7;34(5):1513-23</RefSource>
<PMID Version="1">7849010</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Chem. 2009 Dec 15;81(24):10049-54</RefSource>
<PMID Version="1">19908852</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2010 Oct 20;99(8):2497-506</RefSource>
<PMID Version="1">20959090</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2000 Nov 14;39(45):13760-71</RefSource>
<PMID Version="1">11076515</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cu2+ inhibition</Keyword>
<Keyword MajorTopicYN="N">ESEEM</Keyword>
<Keyword MajorTopicYN="N">W-band ENDOR</Keyword>
<Keyword MajorTopicYN="N">metal ion coordination</Keyword>
<Keyword MajorTopicYN="N">restriction endonuclease</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25750461</ArticleId>
<ArticleId IdType="doi">10.1080/00268976.2014.934313</ArticleId>
<ArticleId IdType="pmc">PMC4350447</ArticleId>
<ArticleId IdType="mid">NIHMS667213</ArticleId>
</ArticleIdList>
<pmc-dir>nihms</pmc-dir>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D29 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000D29 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25750461
   |texte=   Insights into copper coordination in the EcoRI-DNA complex by ESR spectroscopy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25750461" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021