Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Divergent targets of Aspergillus fumigatus AcuK and AcuM transcription factors during growth in vitro versus invasive disease.

Identifieur interne : 000504 ( PubMed/Corpus ); précédent : 000503; suivant : 000505

Divergent targets of Aspergillus fumigatus AcuK and AcuM transcription factors during growth in vitro versus invasive disease.

Auteurs : Monsicha Pongpom ; Hong Liu ; Wenjie Xu ; Brendan D. Snarr ; Donald C. Sheppard ; Aaron P. Mitchell ; Scott G. Filler

Source :

RBID : pubmed:25534941

English descriptors

Abstract

In Aspergillus nidulans, the AcuK and AcuM transcription factors form a complex that regulates gluconeogenesis. In Aspergillus fumigatus, AcuM governs gluconeogenesis and iron acquisition in vitro and virulence in immunosuppressed mice. However, the function of AcuK was previously unknown. Through in vitro studies, we found that A. fumigatus ΔacuK single and ΔacuK ΔacuM double mutants had impaired gluconeogenesis and iron acquisition, similar to the ΔacuM mutant. Also, the ΔacuK, ΔacuM, and ΔacuK ΔacuM mutants had similar virulence defects in mice. However, the ΔacuK mutant had a milder defect in extracellular siderophore activity and induction of epithelial cell damage in vitro than did the ΔacuM mutant. Moreover, overexpression of acuM in the ΔacuK mutant altered expression of 3 genes and partially restored growth under iron-limited conditions, suggesting that AcuM can govern some genes independently of AcuK. Although the ΔacuK and ΔacuM mutants had very similar transcriptional profiles in vitro, their transcriptional profiles during murine pulmonary infection differed both from their in vitro profiles and from each other. While AcuK and AcuM governed the expression of only a few iron-responsive genes in vivo, they influenced the expression of other virulence-related genes, such as hexA and dvrA. Therefore, in A. fumigatus, while AcuK and AcuM likely function as part of the same complex, they can also function independently of each other. Furthermore, AcuK and AcuM have different target genes in vivo than in vitro, suggesting that in vivo infection stimulates unique transcriptional regulatory pathways in A. fumigatus.

DOI: 10.1128/IAI.02685-14
PubMed: 25534941

Links to Exploration step

pubmed:25534941

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Divergent targets of Aspergillus fumigatus AcuK and AcuM transcription factors during growth in vitro versus invasive disease.</title>
<author>
<name sortKey="Pongpom, Monsicha" sort="Pongpom, Monsicha" uniqKey="Pongpom M" first="Monsicha" last="Pongpom">Monsicha Pongpom</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Hong" sort="Liu, Hong" uniqKey="Liu H" first="Hong" last="Liu">Hong Liu</name>
<affiliation>
<nlm:affiliation>Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Wenjie" sort="Xu, Wenjie" uniqKey="Xu W" first="Wenjie" last="Xu">Wenjie Xu</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Snarr, Brendan D" sort="Snarr, Brendan D" uniqKey="Snarr B" first="Brendan D" last="Snarr">Brendan D. Snarr</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology and Department of Medicine, McGill University, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sheppard, Donald C" sort="Sheppard, Donald C" uniqKey="Sheppard D" first="Donald C" last="Sheppard">Donald C. Sheppard</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology and Department of Medicine, McGill University, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mitchell, Aaron P" sort="Mitchell, Aaron P" uniqKey="Mitchell A" first="Aaron P" last="Mitchell">Aaron P. Mitchell</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Filler, Scott G" sort="Filler, Scott G" uniqKey="Filler S" first="Scott G" last="Filler">Scott G. Filler</name>
<affiliation>
<nlm:affiliation>Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA David Geffen School of Medicine at UCLA, Los Angeles, California, USA sfiller@ucla.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25534941</idno>
<idno type="pmid">25534941</idno>
<idno type="doi">10.1128/IAI.02685-14</idno>
<idno type="wicri:Area/PubMed/Corpus">000504</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000504</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Divergent targets of Aspergillus fumigatus AcuK and AcuM transcription factors during growth in vitro versus invasive disease.</title>
<author>
<name sortKey="Pongpom, Monsicha" sort="Pongpom, Monsicha" uniqKey="Pongpom M" first="Monsicha" last="Pongpom">Monsicha Pongpom</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Hong" sort="Liu, Hong" uniqKey="Liu H" first="Hong" last="Liu">Hong Liu</name>
<affiliation>
<nlm:affiliation>Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Wenjie" sort="Xu, Wenjie" uniqKey="Xu W" first="Wenjie" last="Xu">Wenjie Xu</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Snarr, Brendan D" sort="Snarr, Brendan D" uniqKey="Snarr B" first="Brendan D" last="Snarr">Brendan D. Snarr</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology and Department of Medicine, McGill University, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sheppard, Donald C" sort="Sheppard, Donald C" uniqKey="Sheppard D" first="Donald C" last="Sheppard">Donald C. Sheppard</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology and Department of Medicine, McGill University, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mitchell, Aaron P" sort="Mitchell, Aaron P" uniqKey="Mitchell A" first="Aaron P" last="Mitchell">Aaron P. Mitchell</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Filler, Scott G" sort="Filler, Scott G" uniqKey="Filler S" first="Scott G" last="Filler">Scott G. Filler</name>
<affiliation>
<nlm:affiliation>Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA David Geffen School of Medicine at UCLA, Los Angeles, California, USA sfiller@ucla.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Infection and immunity</title>
<idno type="eISSN">1098-5522</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Aspergillosis (immunology)</term>
<term>Aspergillosis (microbiology)</term>
<term>Aspergillosis (pathology)</term>
<term>Aspergillus fumigatus (genetics)</term>
<term>Aspergillus fumigatus (growth & development)</term>
<term>Aspergillus fumigatus (immunology)</term>
<term>Aspergillus fumigatus (pathogenicity)</term>
<term>Cortisone (administration & dosage)</term>
<term>Cortisone (analogs & derivatives)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Deletion</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Gluconeogenesis (genetics)</term>
<term>Immunocompromised Host</term>
<term>Iron (metabolism)</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Siderophores (metabolism)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription, Genetic</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Cortisone</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Cortisone</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Aspergillus fumigatus</term>
<term>Fungal Proteins</term>
<term>Gluconeogenesis</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Aspergillus fumigatus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Aspergillosis</term>
<term>Aspergillus fumigatus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Iron</term>
<term>Siderophores</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Aspergillosis</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Aspergillus fumigatus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Aspergillosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Deletion</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Immunocompromised Host</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Transcription, Genetic</term>
<term>Virulence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In Aspergillus nidulans, the AcuK and AcuM transcription factors form a complex that regulates gluconeogenesis. In Aspergillus fumigatus, AcuM governs gluconeogenesis and iron acquisition in vitro and virulence in immunosuppressed mice. However, the function of AcuK was previously unknown. Through in vitro studies, we found that A. fumigatus ΔacuK single and ΔacuK ΔacuM double mutants had impaired gluconeogenesis and iron acquisition, similar to the ΔacuM mutant. Also, the ΔacuK, ΔacuM, and ΔacuK ΔacuM mutants had similar virulence defects in mice. However, the ΔacuK mutant had a milder defect in extracellular siderophore activity and induction of epithelial cell damage in vitro than did the ΔacuM mutant. Moreover, overexpression of acuM in the ΔacuK mutant altered expression of 3 genes and partially restored growth under iron-limited conditions, suggesting that AcuM can govern some genes independently of AcuK. Although the ΔacuK and ΔacuM mutants had very similar transcriptional profiles in vitro, their transcriptional profiles during murine pulmonary infection differed both from their in vitro profiles and from each other. While AcuK and AcuM governed the expression of only a few iron-responsive genes in vivo, they influenced the expression of other virulence-related genes, such as hexA and dvrA. Therefore, in A. fumigatus, while AcuK and AcuM likely function as part of the same complex, they can also function independently of each other. Furthermore, AcuK and AcuM have different target genes in vivo than in vitro, suggesting that in vivo infection stimulates unique transcriptional regulatory pathways in A. fumigatus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25534941</PMID>
<DateCreated>
<Year>2015</Year>
<Month>02</Month>
<Day>14</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5522</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>83</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Infection and immunity</Title>
<ISOAbbreviation>Infect. Immun.</ISOAbbreviation>
</Journal>
<ArticleTitle>Divergent targets of Aspergillus fumigatus AcuK and AcuM transcription factors during growth in vitro versus invasive disease.</ArticleTitle>
<Pagination>
<MedlinePgn>923-33</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/IAI.02685-14</ELocationID>
<Abstract>
<AbstractText>In Aspergillus nidulans, the AcuK and AcuM transcription factors form a complex that regulates gluconeogenesis. In Aspergillus fumigatus, AcuM governs gluconeogenesis and iron acquisition in vitro and virulence in immunosuppressed mice. However, the function of AcuK was previously unknown. Through in vitro studies, we found that A. fumigatus ΔacuK single and ΔacuK ΔacuM double mutants had impaired gluconeogenesis and iron acquisition, similar to the ΔacuM mutant. Also, the ΔacuK, ΔacuM, and ΔacuK ΔacuM mutants had similar virulence defects in mice. However, the ΔacuK mutant had a milder defect in extracellular siderophore activity and induction of epithelial cell damage in vitro than did the ΔacuM mutant. Moreover, overexpression of acuM in the ΔacuK mutant altered expression of 3 genes and partially restored growth under iron-limited conditions, suggesting that AcuM can govern some genes independently of AcuK. Although the ΔacuK and ΔacuM mutants had very similar transcriptional profiles in vitro, their transcriptional profiles during murine pulmonary infection differed both from their in vitro profiles and from each other. While AcuK and AcuM governed the expression of only a few iron-responsive genes in vivo, they influenced the expression of other virulence-related genes, such as hexA and dvrA. Therefore, in A. fumigatus, while AcuK and AcuM likely function as part of the same complex, they can also function independently of each other. Furthermore, AcuK and AcuM have different target genes in vivo than in vitro, suggesting that in vivo infection stimulates unique transcriptional regulatory pathways in A. fumigatus.</AbstractText>
<CopyrightInformation>Copyright © 2015, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pongpom</LastName>
<ForeName>Monsicha</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Wenjie</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Snarr</LastName>
<ForeName>Brendan D</ForeName>
<Initials>BD</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology and Department of Medicine, McGill University, Montreal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sheppard</LastName>
<ForeName>Donald C</ForeName>
<Initials>DC</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology and Department of Medicine, McGill University, Montreal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mitchell</LastName>
<ForeName>Aaron P</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Filler</LastName>
<ForeName>Scott G</ForeName>
<Initials>SG</Initials>
<AffiliationInfo>
<Affiliation>Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA David Geffen School of Medicine at UCLA, Los Angeles, California, USA sfiller@ucla.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>N01AI30041</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R56AI111836</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01AI073829</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R56 AI111836</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI073829</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Infect Immun</MedlineTA>
<NlmUniqueID>0246127</NlmUniqueID>
<ISSNLinking>0019-9567</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017262">Siderophores</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>883WKN7W8X</RegistryNumber>
<NameOfSubstance UI="C015087">cortisone acetate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>V27W9254FZ</RegistryNumber>
<NameOfSubstance UI="D003348">Cortisone</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Infect Dis. 2013;13:29</RefSource>
<PMID Version="1">23343366</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Biochem. 1987 Jan;160(1):47-56</RefSource>
<PMID Version="1">2952030</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Microbiol. 2010 Nov;78(4):1038-54</RefSource>
<PMID Version="1">21062375</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eukaryot Cell. 2007 Dec;6(12):2437-47</RefSource>
<PMID Version="1">17921348</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Cell. 2005 Dec;16(12):5866-79</RefSource>
<PMID Version="1">16207816</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Infect Dis. 2009 Feb 1;48(3):265-73</RefSource>
<PMID Version="1">19115967</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2014 Nov;10(11):e1004487</RefSource>
<PMID Version="1">25375670</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eukaryot Cell. 2012 Jul;11(7):896-904</RefSource>
<PMID Version="1">22544909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2005 Dec 22;438(7071):1151-6</RefSource>
<PMID Version="1">16372009</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2008 Nov;4(11):e1000200</RefSource>
<PMID Version="1">18989462</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Immunol. 2009 Feb;21(1):63-7</RefSource>
<PMID Version="1">19231148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Microbiol. 2012 Jun;84(5):942-64</RefSource>
<PMID Version="1">22500966</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Microbiol. 2013 Sep;89(5):857-71</RefSource>
<PMID Version="1">23869404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Microbiol. 2009 Apr;72(1):155-69</RefSource>
<PMID Version="1">19220748</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Infect Dis. 2010 Apr 15;50(8):1101-11</RefSource>
<PMID Version="1">20218876</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2008;4(9):e1000154</RefSource>
<PMID Version="1">18787699</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Microbiol Lett. 2003 Sep 12;226(1):159-67</RefSource>
<PMID Version="1">13129622</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2009 Jul;1790(7):600-5</RefSource>
<PMID Version="1">18675317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Genet Genomics. 2001 Dec;266(4):591-7</RefSource>
<PMID Version="1">11810230</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechniques. 2003 Feb;34(2):374-8</RefSource>
<PMID Version="1">12613259</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Med. 2004 Nov 1;200(9):1213-9</RefSource>
<PMID Version="1">15504822</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 1987;56(1):117-24</RefSource>
<PMID Version="1">2824287</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2007 May;176(1):139-50</RefSource>
<PMID Version="1">17339216</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mycol Res. 2008 Feb;112(Pt 2):170-83</RefSource>
<PMID Version="1">18280720</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Infect Dis. 2013 Nov 1;208(9):1529-37</RefSource>
<PMID Version="1">24006479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2013;9(8):e1003575</RefSource>
<PMID Version="1">23990787</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Microbiol. 2003 Jul;49(2):359-75</RefSource>
<PMID Version="1">12828635</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eukaryot Cell. 2007 Nov;6(11):1953-63</RefSource>
<PMID Version="1">17890370</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Microbiol Lett. 2004 Jun 1;235(1):169-76</RefSource>
<PMID Version="1">15158278</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Microbiol. 2011 Aug;14(4):400-5</RefSource>
<PMID Version="1">21724450</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Microbiol. 2010 Apr 1;12(4):473-88</RefSource>
<PMID Version="1">19889083</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2014 Feb;34(4):673-84</RefSource>
<PMID Version="1">24324006</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Infect Immun. 2005 Sep;73(9):5493-503</RefSource>
<PMID Version="1">16113265</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eukaryot Cell. 2010 Oct;9(10):1432-40</RefSource>
<PMID Version="1">20675576</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Antimicrob Agents Chemother. 2011 Dec;55(12):5732-9</RefSource>
<PMID Version="1">21930891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Antimicrob Agents Chemother. 2004 May;48(5):1908-11</RefSource>
<PMID Version="1">15105158</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2007 Sep 28;3(9):1195-207</RefSource>
<PMID Version="1">17845073</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Microbiol. 2012 Feb 06;3:28</RefSource>
<PMID Version="1">22347220</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Genet. 1998 May;33(5):378-85</RefSource>
<PMID Version="1">9618589</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Microbiol Rev. 1999 Apr;12(2):310-50</RefSource>
<PMID Version="1">10194462</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001228" MajorTopicYN="N">Aspergillosis</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001232" MajorTopicYN="N">Aspergillus fumigatus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003348" MajorTopicYN="N">Cortisone</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005943" MajorTopicYN="N">Gluconeogenesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016867" MajorTopicYN="Y">Immunocompromised Host</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017262" MajorTopicYN="N">Siderophores</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4333448</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25534941</ArticleId>
<ArticleId IdType="pii">IAI.02685-14</ArticleId>
<ArticleId IdType="doi">10.1128/IAI.02685-14</ArticleId>
<ArticleId IdType="pmc">PMC4333448</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000504 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000504 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25534941
   |texte=   Divergent targets of Aspergillus fumigatus AcuK and AcuM transcription factors during growth in vitro versus invasive disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25534941" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021