Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synaptic Pathophysiology and Treatment of Lambert-Eaton Myasthenic Syndrome.

Identifieur interne : 000160 ( PubMed/Corpus ); précédent : 000159; suivant : 000161

Synaptic Pathophysiology and Treatment of Lambert-Eaton Myasthenic Syndrome.

Auteurs : Tyler B. Tarr ; Peter Wipf ; Stephen D. Meriney

Source :

RBID : pubmed:25195700

English descriptors

Abstract

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease that disrupts the normally reliable neurotransmission at the neuromuscular junction (NMJ). This disruption is thought to result from an autoantibody-mediated removal of a subset of the P/Q-type Ca(2+) channels involved with neurotransmitter release. With less neurotransmitter release at the NMJ, LEMS patients experience debilitating muscle weakness. The underlying cause of LEMS in slightly more than half of all patients is small cell lung cancer, and cancer therapy is the priority for these patients. In the remaining cases, the cause of LEMS is unknown, and these patients often rely on symptomatic treatment options, as there is no cure. However, current symptomatic treatment options, such as 3,4-diaminopyridine (3,4-DAP), can have significant dose-limiting side effects; thus, additional treatment approaches would benefit LEMS patients. Recent studies introduced a novel Ca(2+) channel agonist (GV-58) as a potential therapeutic alternative for LEMS. Additionally, this work has shown that GV-58 and 3,4-DAP interact in a supra-additive manner to completely restore the magnitude of neurotransmitter release at the NMJs of a LEMS mouse model. In this review, we discuss synaptic mechanisms for reliability at the NMJ and how these mechanisms are disrupted in LEMS. We then discuss the current treatment options for LEMS patients, while also considering recent work demonstrating the therapeutic potential of GV-58 alone and in combination with 3,4-DAP.

DOI: 10.1007/s12035-014-8887-2
PubMed: 25195700

Links to Exploration step

pubmed:25195700

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synaptic Pathophysiology and Treatment of Lambert-Eaton Myasthenic Syndrome.</title>
<author>
<name sortKey="Tarr, Tyler B" sort="Tarr, Tyler B" uniqKey="Tarr T" first="Tyler B" last="Tarr">Tyler B. Tarr</name>
<affiliation>
<nlm:affiliation>Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wipf, Peter" sort="Wipf, Peter" uniqKey="Wipf P" first="Peter" last="Wipf">Peter Wipf</name>
</author>
<author>
<name sortKey="Meriney, Stephen D" sort="Meriney, Stephen D" uniqKey="Meriney S" first="Stephen D" last="Meriney">Stephen D. Meriney</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25195700</idno>
<idno type="pmid">25195700</idno>
<idno type="doi">10.1007/s12035-014-8887-2</idno>
<idno type="wicri:Area/PubMed/Corpus">000160</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000160</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Synaptic Pathophysiology and Treatment of Lambert-Eaton Myasthenic Syndrome.</title>
<author>
<name sortKey="Tarr, Tyler B" sort="Tarr, Tyler B" uniqKey="Tarr T" first="Tyler B" last="Tarr">Tyler B. Tarr</name>
<affiliation>
<nlm:affiliation>Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wipf, Peter" sort="Wipf, Peter" uniqKey="Wipf P" first="Peter" last="Wipf">Peter Wipf</name>
</author>
<author>
<name sortKey="Meriney, Stephen D" sort="Meriney, Stephen D" uniqKey="Meriney S" first="Stephen D" last="Meriney">Stephen D. Meriney</name>
</author>
</analytic>
<series>
<title level="j">Molecular neurobiology</title>
<idno type="eISSN">1559-1182</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Lambert-Eaton Myasthenic Syndrome (drug therapy)</term>
<term>Lambert-Eaton Myasthenic Syndrome (physiopathology)</term>
<term>Lambert-Eaton Myasthenic Syndrome (therapy)</term>
<term>Neuromuscular Junction (drug effects)</term>
<term>Neuromuscular Junction (physiopathology)</term>
<term>Neuroprotective Agents (pharmacology)</term>
<term>Neuroprotective Agents (therapeutic use)</term>
<term>Synapses (drug effects)</term>
<term>Synapses (pathology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Neuroprotective Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Neuromuscular Junction</term>
<term>Synapses</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Lambert-Eaton Myasthenic Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Synapses</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Lambert-Eaton Myasthenic Syndrome</term>
<term>Neuromuscular Junction</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Neuroprotective Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Lambert-Eaton Myasthenic Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease that disrupts the normally reliable neurotransmission at the neuromuscular junction (NMJ). This disruption is thought to result from an autoantibody-mediated removal of a subset of the P/Q-type Ca(2+) channels involved with neurotransmitter release. With less neurotransmitter release at the NMJ, LEMS patients experience debilitating muscle weakness. The underlying cause of LEMS in slightly more than half of all patients is small cell lung cancer, and cancer therapy is the priority for these patients. In the remaining cases, the cause of LEMS is unknown, and these patients often rely on symptomatic treatment options, as there is no cure. However, current symptomatic treatment options, such as 3,4-diaminopyridine (3,4-DAP), can have significant dose-limiting side effects; thus, additional treatment approaches would benefit LEMS patients. Recent studies introduced a novel Ca(2+) channel agonist (GV-58) as a potential therapeutic alternative for LEMS. Additionally, this work has shown that GV-58 and 3,4-DAP interact in a supra-additive manner to completely restore the magnitude of neurotransmitter release at the NMJs of a LEMS mouse model. In this review, we discuss synaptic mechanisms for reliability at the NMJ and how these mechanisms are disrupted in LEMS. We then discuss the current treatment options for LEMS patients, while also considering recent work demonstrating the therapeutic potential of GV-58 alone and in combination with 3,4-DAP.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25195700</PMID>
<DateCreated>
<Year>2015</Year>
<Month>07</Month>
<Day>22</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1559-1182</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>52</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Molecular neurobiology</Title>
<ISOAbbreviation>Mol. Neurobiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Synaptic Pathophysiology and Treatment of Lambert-Eaton Myasthenic Syndrome.</ArticleTitle>
<Pagination>
<MedlinePgn>456-63</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12035-014-8887-2</ELocationID>
<Abstract>
<AbstractText>Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease that disrupts the normally reliable neurotransmission at the neuromuscular junction (NMJ). This disruption is thought to result from an autoantibody-mediated removal of a subset of the P/Q-type Ca(2+) channels involved with neurotransmitter release. With less neurotransmitter release at the NMJ, LEMS patients experience debilitating muscle weakness. The underlying cause of LEMS in slightly more than half of all patients is small cell lung cancer, and cancer therapy is the priority for these patients. In the remaining cases, the cause of LEMS is unknown, and these patients often rely on symptomatic treatment options, as there is no cure. However, current symptomatic treatment options, such as 3,4-diaminopyridine (3,4-DAP), can have significant dose-limiting side effects; thus, additional treatment approaches would benefit LEMS patients. Recent studies introduced a novel Ca(2+) channel agonist (GV-58) as a potential therapeutic alternative for LEMS. Additionally, this work has shown that GV-58 and 3,4-DAP interact in a supra-additive manner to completely restore the magnitude of neurotransmitter release at the NMJs of a LEMS mouse model. In this review, we discuss synaptic mechanisms for reliability at the NMJ and how these mechanisms are disrupted in LEMS. We then discuss the current treatment options for LEMS patients, while also considering recent work demonstrating the therapeutic potential of GV-58 alone and in combination with 3,4-DAP.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tarr</LastName>
<ForeName>Tyler B</ForeName>
<Initials>TB</Initials>
<AffiliationInfo>
<Affiliation>Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wipf</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meriney</LastName>
<ForeName>Stephen D</ForeName>
<Initials>SD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P50 GM067082</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM067082</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>09</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Neurobiol</MedlineTA>
<NlmUniqueID>8900963</NlmUniqueID>
<ISSNLinking>0893-7648</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018696">Neuroprotective Agents</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Oncol. 2011 Mar 1;29(7):902-8</RefSource>
<PMID Version="1">21245427</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Muscle Nerve. 2005 Oct;32(4):515-20</RefSource>
<PMID Version="1">16003742</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1988 Jun;111 ( Pt 3):577-96</RefSource>
<PMID Version="1">2838124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2001 Jul;64(4):393-429</RefSource>
<PMID Version="1">11275359</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1997 Aug;120 ( Pt 8):1279-300</RefSource>
<PMID Version="1">9278623</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Neurosurg Psychiatry. 2001 Feb;70(2):212-7</RefSource>
<PMID Version="1">11160470</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2002 May 1;540(Pt 3):761-70</RefSource>
<PMID Version="1">11986366</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1992 Jul;42(7):1422-3</RefSource>
<PMID Version="1">1620360</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Sci. 1997 Mar 20;147(1):35-42</RefSource>
<PMID Version="1">9094058</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroimmunol. 2008 Sep 15;201-202:145-52</RefSource>
<PMID Version="1">18653248</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 1998 May 13;841:823-6</RefSource>
<PMID Version="1">9668336</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2013 Jul 1;591(13):3159-65</RefSource>
<PMID Version="1">23613535</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2013 Jan;36(1):14-22</RefSource>
<PMID Version="1">23102681</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1991 May;436:283-92</RefSource>
<PMID Version="1">1648130</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Expert Opin Pharmacother. 2006 Jul;7(10):1323-36</RefSource>
<PMID Version="1">16805718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Muscle Nerve. 1997 Jun;20(6):674-8</RefSource>
<PMID Version="1">9149073</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1984 Apr;34(4):480-5</RefSource>
<PMID Version="1">6322050</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2000 Jun 13;54(11):2176-8</RefSource>
<PMID Version="1">10851390</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol. 2003 Jun;250(6):698-701</RefSource>
<PMID Version="1">12796832</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2006 Apr;23(8):2048-56</RefSource>
<PMID Version="1">16630052</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ACS Med Chem Lett. 2012 Oct 01;3(12):985-90</RefSource>
<PMID Version="1">24936234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2014 Aug 15;592(16):3687-96</RefSource>
<PMID Version="1">25015919</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2012 Jul;15(7):998-1006</RefSource>
<PMID Version="1">22683682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Aug 29;32(35):12192-203</RefSource>
<PMID Version="1">22933801</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2012 Feb 1;520(2):434-52</RefSource>
<PMID Version="1">21935939</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1995 Aug 15;487(1):115-23</RefSource>
<PMID Version="1">7473242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1996 Nov;40(5):739-49</RefSource>
<PMID Version="1">8957015</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cochrane Database Syst Rev. 2011;(2):CD003279</RefSource>
<PMID Version="1">21328260</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2000 Feb 8;54(3):603-7</RefSource>
<PMID Version="1">10680790</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1996 Sep;47(3):678-83</RefSource>
<PMID Version="1">8797464</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Pharmacol Ther. 2009 Jul;86(1):44-8</RefSource>
<PMID Version="1">19357643</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 1978 Jun;22(3):507-12</RefSource>
<PMID Version="1">667299</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 1995 Jun 1;332(22):1467-74</RefSource>
<PMID Version="1">7739683</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Treat Options Neurol. 2013 Apr;15(2):224-39</RefSource>
<PMID Version="1">23263888</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1998 Jun;50(6):1778-83</RefSource>
<PMID Version="1">9633727</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1983 Dec;80(24):7636-40</RefSource>
<PMID Version="1">6584877</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1998 Apr 13;789(2):239-44</RefSource>
<PMID Version="1">9573375</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2009 Apr 10;513(5):457-68</RefSource>
<PMID Version="1">19226520</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Jan 21;29(3):842-51</RefSource>
<PMID Version="1">19158308</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2010 May 19;167(3):838-49</RefSource>
<PMID Version="1">20188151</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1985 Oct 24-30;317(6039):737-9</RefSource>
<PMID Version="1">2414666</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2002 Dec 10;59(11):1773-5</RefSource>
<PMID Version="1">12473768</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2013 Jun 19;33(25):10559-67</RefSource>
<PMID Version="1">23785168</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Muscle Nerve. 1994 Sep;17(9):1073-5</RefSource>
<PMID Version="1">8065398</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1998 Jan;50(1):88-93</RefSource>
<PMID Version="1">9443463</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2008;1132:129-34</RefSource>
<PMID Version="1">18567862</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Muscle Nerve. 2001 Sep;24(9):1239-47</RefSource>
<PMID Version="1">11494281</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2004 Dec 2;432(7017):580-7</RefSource>
<PMID Version="1">15577901</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Lung Cancer. 2006 Jan;7(4):282-4</RefSource>
<PMID Version="1">16512985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Muscle Nerve. 2009 Nov;40(5):795-800</RefSource>
<PMID Version="1">19722254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2013 Dec 11;33(50):19590-8</RefSource>
<PMID Version="1">24336723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3491-6</RefSource>
<PMID Version="1">12624181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2012 Jul;15(7):988-97</RefSource>
<PMID Version="1">22683683</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2012 Dec;1275:78-84</RefSource>
<PMID Version="1">23278581</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2013 Oct 30;80(3):675-90</RefSource>
<PMID Version="1">24183019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1985 Mar 14-20;314(6007):164-6</RefSource>
<PMID Version="1">3974720</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1989 Dec;12(12):496-502</RefSource>
<PMID Version="1">2480664</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiology (Bethesda). 2004 Oct;19:262-70</RefSource>
<PMID Version="1">15381754</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Muscle Nerve. 2007 Feb;35(2):178-83</RefSource>
<PMID Version="1">17058271</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2002 Sep 1;543(Pt 2):567-76</RefSource>
<PMID Version="1">12205190</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Jan 12;31(2):512-25</RefSource>
<PMID Version="1">21228161</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1994 Feb;44(2):334-8</RefSource>
<PMID Version="1">8309586</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Aug 3;31(31):11268-81</RefSource>
<PMID Version="1">21813687</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Pharmacol Exp Ther. 1983 Oct;227(1):260-5</RefSource>
<PMID Version="1">6137556</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Treat Options Neurol. 2013 Apr;15(2):210-23</RefSource>
<PMID Version="1">23307613</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neuropharmacol. 2012 Jul-Aug;35(4):191-200</RefSource>
<PMID Version="1">22805230</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Feb 9;31(6):2000-8</RefSource>
<PMID Version="1">21307238</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychiatr Dis Treat. 2011;7:341-9</RefSource>
<PMID Version="1">21822385</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1997 Aug;42(2):147-56</RefSource>
<PMID Version="1">9266723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2011 Dec;10(12):1098-107</RefSource>
<PMID Version="1">22094130</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015624" MajorTopicYN="N">Lambert-Eaton Myasthenic Syndrome</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="Y">physiopathology</QualifierName>
<QualifierName UI="Q000628" MajorTopicYN="Y">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009469" MajorTopicYN="N">Neuromuscular Junction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018696" MajorTopicYN="N">Neuroprotective Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013569" MajorTopicYN="N">Synapses</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS626661</OtherID>
<OtherID Source="NLM">PMC4362862</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25195700</ArticleId>
<ArticleId IdType="doi">10.1007/s12035-014-8887-2</ArticleId>
<ArticleId IdType="pii">10.1007/s12035-014-8887-2</ArticleId>
<ArticleId IdType="pmc">PMC4362862</ArticleId>
<ArticleId IdType="mid">NIHMS626661</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000160 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000160 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25195700
   |texte=   Synaptic Pathophysiology and Treatment of Lambert-Eaton Myasthenic Syndrome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25195700" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021