Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Delivery of chondroitinase ABC and glial cell line-derived neurotrophic factor from silk fibroin conduits enhances peripheral nerve regeneration.

Identifieur interne : 000002 ( PubMed/Corpus ); précédent : 000001; suivant : 000003

Delivery of chondroitinase ABC and glial cell line-derived neurotrophic factor from silk fibroin conduits enhances peripheral nerve regeneration.

Auteurs : Wesley N. Sivak ; James D. White ; Jacqueline M. Bliley ; Lee W. Tien ; Han Tsung Liao ; David L. Kaplan ; Kacey G. Marra

Source :

RBID : pubmed:25424415

Abstract

Nerve conduits are a proven strategy for guiding axon regrowth following injury. This study compares degradable silk-trehalose films containing chondroitinase ABC (ChABC) and/or glial cell line-derived neurotrophic factor (GDNF) loaded within a silk fibroin-based nerve conduit in a rat sciatic nerve defect model. Four groups of silk conduits were prepared, with the following silk-trehalose films inserted into the conduit: (a) empty; (b) 1 µg GDNF; (3) 2 U ChABC; and (4) 1 µg GDNF/2 U ChABC. Drug release studies demonstrated 20% recovery of GDNF and ChABC at 6 weeks and 24 h, respectively. Six conduits of each type were implanted into 15 mm sciatic nerve defects in Lewis rats; conduits were explanted for histological analysis at 6 weeks. Tissues stained with Schwann cell S-100 antibody demonstrated an increased density of cells in both GDNF- and ChABC-treated groups compared to empty control conduits (p < 0.05). Conduits loaded with GDNF and ChABC also demonstrated higher levels of neuron-specific PGP 9.5 protein when compared to controls (p < 0.05). In this study we demonstrated a method to enhance Schwann cell migration and proliferation and also foster axonal regeneration when repairing peripheral nerve gap defects. Silk fibroin-based nerve conduits possess favourable mechanical and degradative properties and are further enhanced when loaded with ChABC and GDNF. Copyright © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/term.1970
PubMed: 25424415

Links to Exploration step

pubmed:25424415

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Delivery of chondroitinase ABC and glial cell line-derived neurotrophic factor from silk fibroin conduits enhances peripheral nerve regeneration.</title>
<author>
<name sortKey="Sivak, Wesley N" sort="Sivak, Wesley N" uniqKey="Sivak W" first="Wesley N" last="Sivak">Wesley N. Sivak</name>
<affiliation>
<nlm:affiliation>Department of Plastic Surgery, University of Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="White, James D" sort="White, James D" uniqKey="White J" first="James D" last="White">James D. White</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Tufts University, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bliley, Jacqueline M" sort="Bliley, Jacqueline M" uniqKey="Bliley J" first="Jacqueline M" last="Bliley">Jacqueline M. Bliley</name>
<affiliation>
<nlm:affiliation>Department of Plastic Surgery, University of Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tien, Lee W" sort="Tien, Lee W" uniqKey="Tien L" first="Lee W" last="Tien">Lee W. Tien</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Tufts University, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liao, Han Tsung" sort="Liao, Han Tsung" uniqKey="Liao H" first="Han Tsung" last="Liao">Han Tsung Liao</name>
<affiliation>
<nlm:affiliation>Department of Plastic Surgery, University of Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaplan, David L" sort="Kaplan, David L" uniqKey="Kaplan D" first="David L" last="Kaplan">David L. Kaplan</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Tufts University, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marra, Kacey G" sort="Marra, Kacey G" uniqKey="Marra K" first="Kacey G" last="Marra">Kacey G. Marra</name>
<affiliation>
<nlm:affiliation>Department of Plastic Surgery, University of Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:25424415</idno>
<idno type="pmid">25424415</idno>
<idno type="doi">10.1002/term.1970</idno>
<idno type="wicri:Area/PubMed/Corpus">000002</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000002</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Delivery of chondroitinase ABC and glial cell line-derived neurotrophic factor from silk fibroin conduits enhances peripheral nerve regeneration.</title>
<author>
<name sortKey="Sivak, Wesley N" sort="Sivak, Wesley N" uniqKey="Sivak W" first="Wesley N" last="Sivak">Wesley N. Sivak</name>
<affiliation>
<nlm:affiliation>Department of Plastic Surgery, University of Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="White, James D" sort="White, James D" uniqKey="White J" first="James D" last="White">James D. White</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Tufts University, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bliley, Jacqueline M" sort="Bliley, Jacqueline M" uniqKey="Bliley J" first="Jacqueline M" last="Bliley">Jacqueline M. Bliley</name>
<affiliation>
<nlm:affiliation>Department of Plastic Surgery, University of Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tien, Lee W" sort="Tien, Lee W" uniqKey="Tien L" first="Lee W" last="Tien">Lee W. Tien</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Tufts University, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liao, Han Tsung" sort="Liao, Han Tsung" uniqKey="Liao H" first="Han Tsung" last="Liao">Han Tsung Liao</name>
<affiliation>
<nlm:affiliation>Department of Plastic Surgery, University of Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaplan, David L" sort="Kaplan, David L" uniqKey="Kaplan D" first="David L" last="Kaplan">David L. Kaplan</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Tufts University, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marra, Kacey G" sort="Marra, Kacey G" uniqKey="Marra K" first="Kacey G" last="Marra">Kacey G. Marra</name>
<affiliation>
<nlm:affiliation>Department of Plastic Surgery, University of Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of tissue engineering and regenerative medicine</title>
<idno type="eISSN">1932-7005</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nerve conduits are a proven strategy for guiding axon regrowth following injury. This study compares degradable silk-trehalose films containing chondroitinase ABC (ChABC) and/or glial cell line-derived neurotrophic factor (GDNF) loaded within a silk fibroin-based nerve conduit in a rat sciatic nerve defect model. Four groups of silk conduits were prepared, with the following silk-trehalose films inserted into the conduit: (a) empty; (b) 1 µg GDNF; (3) 2 U ChABC; and (4) 1 µg GDNF/2 U ChABC. Drug release studies demonstrated 20% recovery of GDNF and ChABC at 6 weeks and 24 h, respectively. Six conduits of each type were implanted into 15 mm sciatic nerve defects in Lewis rats; conduits were explanted for histological analysis at 6 weeks. Tissues stained with Schwann cell S-100 antibody demonstrated an increased density of cells in both GDNF- and ChABC-treated groups compared to empty control conduits (p < 0.05). Conduits loaded with GDNF and ChABC also demonstrated higher levels of neuron-specific PGP 9.5 protein when compared to controls (p < 0.05). In this study we demonstrated a method to enhance Schwann cell migration and proliferation and also foster axonal regeneration when repairing peripheral nerve gap defects. Silk fibroin-based nerve conduits possess favourable mechanical and degradative properties and are further enhanced when loaded with ChABC and GDNF. Copyright © 2014 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">25424415</PMID>
<DateCreated>
<Year>2014</Year>
<Month>11</Month>
<Day>26</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>03</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-7005</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2017</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of tissue engineering and regenerative medicine</Title>
<ISOAbbreviation>J Tissue Eng Regen Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Delivery of chondroitinase ABC and glial cell line-derived neurotrophic factor from silk fibroin conduits enhances peripheral nerve regeneration.</ArticleTitle>
<Pagination>
<MedlinePgn>733-742</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/term.1970</ELocationID>
<Abstract>
<AbstractText>Nerve conduits are a proven strategy for guiding axon regrowth following injury. This study compares degradable silk-trehalose films containing chondroitinase ABC (ChABC) and/or glial cell line-derived neurotrophic factor (GDNF) loaded within a silk fibroin-based nerve conduit in a rat sciatic nerve defect model. Four groups of silk conduits were prepared, with the following silk-trehalose films inserted into the conduit: (a) empty; (b) 1 µg GDNF; (3) 2 U ChABC; and (4) 1 µg GDNF/2 U ChABC. Drug release studies demonstrated 20% recovery of GDNF and ChABC at 6 weeks and 24 h, respectively. Six conduits of each type were implanted into 15 mm sciatic nerve defects in Lewis rats; conduits were explanted for histological analysis at 6 weeks. Tissues stained with Schwann cell S-100 antibody demonstrated an increased density of cells in both GDNF- and ChABC-treated groups compared to empty control conduits (p < 0.05). Conduits loaded with GDNF and ChABC also demonstrated higher levels of neuron-specific PGP 9.5 protein when compared to controls (p < 0.05). In this study we demonstrated a method to enhance Schwann cell migration and proliferation and also foster axonal regeneration when repairing peripheral nerve gap defects. Silk fibroin-based nerve conduits possess favourable mechanical and degradative properties and are further enhanced when loaded with ChABC and GDNF. Copyright © 2014 John Wiley & Sons, Ltd.</AbstractText>
<CopyrightInformation>Copyright © 2014 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sivak</LastName>
<ForeName>Wesley N</ForeName>
<Initials>WN</Initials>
<AffiliationInfo>
<Affiliation>Department of Plastic Surgery, University of Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>White</LastName>
<ForeName>James D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Tufts University, Boston, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bliley</LastName>
<ForeName>Jacqueline M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Plastic Surgery, University of Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tien</LastName>
<ForeName>Lee W</ForeName>
<Initials>LW</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Tufts University, Boston, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liao</LastName>
<ForeName>Han Tsung</ForeName>
<Initials>HT</Initials>
<AffiliationInfo>
<Affiliation>Department of Plastic Surgery, University of Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plastic and Reconstructive Surgery, Craniofacial Research Centre, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kaplan</LastName>
<ForeName>David L</ForeName>
<Initials>DL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Tufts University, Boston, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marra</LastName>
<ForeName>Kacey G</ForeName>
<Initials>KG</Initials>
<AffiliationInfo>
<Affiliation>Department of Plastic Surgery, University of Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Bioengineering, University of Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Tissue Eng Regen Med</MedlineTA>
<NlmUniqueID>101308490</NlmUniqueID>
<ISSNLinking>1932-6254</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">GDNF</Keyword>
<Keyword MajorTopicYN="N">chondroitinase ABC</Keyword>
<Keyword MajorTopicYN="N">drug delivery</Keyword>
<Keyword MajorTopicYN="N">nerve conduit</Keyword>
<Keyword MajorTopicYN="N">peripheral nerve</Keyword>
<Keyword MajorTopicYN="N">silk fibroin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>09</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25424415</ArticleId>
<ArticleId IdType="doi">10.1002/term.1970</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000002 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000002 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25424415
   |texte=   Delivery of chondroitinase ABC and glial cell line-derived neurotrophic factor from silk fibroin conduits enhances peripheral nerve regeneration.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25424415" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021