Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular simulation and experimental study of CO2 absorption in ionic liquid reverse micelle.

Identifieur interne : 002116 ( PubMed/Checkpoint ); précédent : 002115; suivant : 002117

Molecular simulation and experimental study of CO2 absorption in ionic liquid reverse micelle.

Auteurs : Wei Shi [États-Unis] ; Lei Hong ; Krishnan Damodaran ; Hunaid B. Nulwala ; David R. Luebke

Source :

RBID : pubmed:25382316

Abstract

The structure and dynamics for CO2 absorption in ionic liquid reverse micelle (ILRM) were studied using molecular simulations. The ILRM consisted of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) ionic liquid (IL) as the micelle core, the benzylhexadecyldimethylammonium ([BHD](+)) chloride ([Cl](-)) was the cationic surfactant, and benzene was used as the continuous solvent phase in this study. The diffusivity values of this ILRM system were also experimentally determined. Simulations indicate that there is ion exchange between the IL anion ([BF4](-)) and the surfactant anion ([Cl](-)). It was also found that the [bmim][BF4] IL exhibits small local density at the interface region between the IL core and the [BHD](+) surfactant cation layer, which leads to a smaller density for the [bmim][BF4] IL inside the reverse micelle (RM) compared with the neat IL. These simulation findings are consistent with experimental results. Both our simulations and experimental results show that [bmim][BF4] inside the RM diffuses 5-26 times faster than the neat IL, which is partly due to the fast particle diffusion for the ILRM nanodroplet (IL and surfactant) as a whole in benzene solvent compared with neat [bmim][BF4] diffusion. Additionally, it was found that [bmim][BF4] IL solved in benzene diffuses 2 orders of magnitude faster than the neat IL. Lastly, simulations show that CO2 molecules are absorbed in four different regions of the ILRM system, that is, (I) in the IL inner core, (II) in the [BHD](+) surfactant cation layer, (III) at the interface between the [BHD](+) surfactant cation layer and benzene solvent, and (IV) in the benzene solvent. The CO2 solubility was found to decrease in the order II > III ∼ IV > I, while the CO2 diffusivity and permeability decrease in the following order: IV > III > II > I.

DOI: 10.1021/jp509282h
PubMed: 25382316


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25382316

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular simulation and experimental study of CO2 absorption in ionic liquid reverse micelle.</title>
<author>
<name sortKey="Shi, Wei" sort="Shi, Wei" uniqKey="Shi W" first="Wei" last="Shi">Wei Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>U.S. Department of Energy , National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15236, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Department of Energy , National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15236</wicri:regionArea>
<wicri:noRegion>Pennsylvania 15236</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hong, Lei" sort="Hong, Lei" uniqKey="Hong L" first="Lei" last="Hong">Lei Hong</name>
</author>
<author>
<name sortKey="Damodaran, Krishnan" sort="Damodaran, Krishnan" uniqKey="Damodaran K" first="Krishnan" last="Damodaran">Krishnan Damodaran</name>
</author>
<author>
<name sortKey="Nulwala, Hunaid B" sort="Nulwala, Hunaid B" uniqKey="Nulwala H" first="Hunaid B" last="Nulwala">Hunaid B. Nulwala</name>
</author>
<author>
<name sortKey="Luebke, David R" sort="Luebke, David R" uniqKey="Luebke D" first="David R" last="Luebke">David R. Luebke</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25382316</idno>
<idno type="pmid">25382316</idno>
<idno type="doi">10.1021/jp509282h</idno>
<idno type="wicri:Area/PubMed/Corpus">000E64</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E64</idno>
<idno type="wicri:Area/PubMed/Curation">000E61</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000E61</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000E61</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000E61</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular simulation and experimental study of CO2 absorption in ionic liquid reverse micelle.</title>
<author>
<name sortKey="Shi, Wei" sort="Shi, Wei" uniqKey="Shi W" first="Wei" last="Shi">Wei Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>U.S. Department of Energy , National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15236, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Department of Energy , National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15236</wicri:regionArea>
<wicri:noRegion>Pennsylvania 15236</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hong, Lei" sort="Hong, Lei" uniqKey="Hong L" first="Lei" last="Hong">Lei Hong</name>
</author>
<author>
<name sortKey="Damodaran, Krishnan" sort="Damodaran, Krishnan" uniqKey="Damodaran K" first="Krishnan" last="Damodaran">Krishnan Damodaran</name>
</author>
<author>
<name sortKey="Nulwala, Hunaid B" sort="Nulwala, Hunaid B" uniqKey="Nulwala H" first="Hunaid B" last="Nulwala">Hunaid B. Nulwala</name>
</author>
<author>
<name sortKey="Luebke, David R" sort="Luebke, David R" uniqKey="Luebke D" first="David R" last="Luebke">David R. Luebke</name>
</author>
</analytic>
<series>
<title level="j">The journal of physical chemistry. B</title>
<idno type="eISSN">1520-5207</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The structure and dynamics for CO2 absorption in ionic liquid reverse micelle (ILRM) were studied using molecular simulations. The ILRM consisted of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) ionic liquid (IL) as the micelle core, the benzylhexadecyldimethylammonium ([BHD](+)) chloride ([Cl](-)) was the cationic surfactant, and benzene was used as the continuous solvent phase in this study. The diffusivity values of this ILRM system were also experimentally determined. Simulations indicate that there is ion exchange between the IL anion ([BF4](-)) and the surfactant anion ([Cl](-)). It was also found that the [bmim][BF4] IL exhibits small local density at the interface region between the IL core and the [BHD](+) surfactant cation layer, which leads to a smaller density for the [bmim][BF4] IL inside the reverse micelle (RM) compared with the neat IL. These simulation findings are consistent with experimental results. Both our simulations and experimental results show that [bmim][BF4] inside the RM diffuses 5-26 times faster than the neat IL, which is partly due to the fast particle diffusion for the ILRM nanodroplet (IL and surfactant) as a whole in benzene solvent compared with neat [bmim][BF4] diffusion. Additionally, it was found that [bmim][BF4] IL solved in benzene diffuses 2 orders of magnitude faster than the neat IL. Lastly, simulations show that CO2 molecules are absorbed in four different regions of the ILRM system, that is, (I) in the IL inner core, (II) in the [BHD](+) surfactant cation layer, (III) at the interface between the [BHD](+) surfactant cation layer and benzene solvent, and (IV) in the benzene solvent. The CO2 solubility was found to decrease in the order II > III ∼ IV > I, while the CO2 diffusivity and permeability decrease in the following order: IV > III > II > I.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25382316</PMID>
<DateCreated>
<Year>2014</Year>
<Month>12</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>05</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5207</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>118</Volume>
<Issue>48</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>The journal of physical chemistry. B</Title>
<ISOAbbreviation>J Phys Chem B</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular simulation and experimental study of CO2 absorption in ionic liquid reverse micelle.</ArticleTitle>
<Pagination>
<MedlinePgn>13870-81</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/jp509282h</ELocationID>
<Abstract>
<AbstractText>The structure and dynamics for CO2 absorption in ionic liquid reverse micelle (ILRM) were studied using molecular simulations. The ILRM consisted of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) ionic liquid (IL) as the micelle core, the benzylhexadecyldimethylammonium ([BHD](+)) chloride ([Cl](-)) was the cationic surfactant, and benzene was used as the continuous solvent phase in this study. The diffusivity values of this ILRM system were also experimentally determined. Simulations indicate that there is ion exchange between the IL anion ([BF4](-)) and the surfactant anion ([Cl](-)). It was also found that the [bmim][BF4] IL exhibits small local density at the interface region between the IL core and the [BHD](+) surfactant cation layer, which leads to a smaller density for the [bmim][BF4] IL inside the reverse micelle (RM) compared with the neat IL. These simulation findings are consistent with experimental results. Both our simulations and experimental results show that [bmim][BF4] inside the RM diffuses 5-26 times faster than the neat IL, which is partly due to the fast particle diffusion for the ILRM nanodroplet (IL and surfactant) as a whole in benzene solvent compared with neat [bmim][BF4] diffusion. Additionally, it was found that [bmim][BF4] IL solved in benzene diffuses 2 orders of magnitude faster than the neat IL. Lastly, simulations show that CO2 molecules are absorbed in four different regions of the ILRM system, that is, (I) in the IL inner core, (II) in the [BHD](+) surfactant cation layer, (III) at the interface between the [BHD](+) surfactant cation layer and benzene solvent, and (IV) in the benzene solvent. The CO2 solubility was found to decrease in the order II > III ∼ IV > I, while the CO2 diffusivity and permeability decrease in the following order: IV > III > II > I.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>U.S. Department of Energy , National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15236, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hong</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Damodaran</LastName>
<ForeName>Krishnan</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nulwala</LastName>
<ForeName>Hunaid B</ForeName>
<Initials>HB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luebke</LastName>
<ForeName>David R</ForeName>
<Initials>DR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Phys Chem B</MedlineTA>
<NlmUniqueID>101157530</NlmUniqueID>
<ISSNLinking>1520-5207</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25382316</ArticleId>
<ArticleId IdType="doi">10.1021/jp509282h</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Damodaran, Krishnan" sort="Damodaran, Krishnan" uniqKey="Damodaran K" first="Krishnan" last="Damodaran">Krishnan Damodaran</name>
<name sortKey="Hong, Lei" sort="Hong, Lei" uniqKey="Hong L" first="Lei" last="Hong">Lei Hong</name>
<name sortKey="Luebke, David R" sort="Luebke, David R" uniqKey="Luebke D" first="David R" last="Luebke">David R. Luebke</name>
<name sortKey="Nulwala, Hunaid B" sort="Nulwala, Hunaid B" uniqKey="Nulwala H" first="Hunaid B" last="Nulwala">Hunaid B. Nulwala</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Shi, Wei" sort="Shi, Wei" uniqKey="Shi W" first="Wei" last="Shi">Wei Shi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002116 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002116 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:25382316
   |texte=   Molecular simulation and experimental study of CO2 absorption in ionic liquid reverse micelle.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:25382316" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021