Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photoresponsive hydrogel networks using melanin nanoparticle photothermal sensitizers.

Identifieur interne : 001C58 ( PubMed/Checkpoint ); précédent : 001C57; suivant : 001C59

Photoresponsive hydrogel networks using melanin nanoparticle photothermal sensitizers.

Auteurs : Chi Ninh [États-Unis] ; Madeline Cramer [États-Unis] ; Christopher J. Bettinger [États-Unis]

Source :

RBID : pubmed:26828866

Abstract

Photoreconfigurable and photodegradable polymeric networks have broad utility as functional biomaterials for many applications in medicine and biotechnology. The vast majority of these functional polymers are synthesized using chemical moieties that may be cytotoxic in vivo. Materials synthesized from these substituents also pose unknown risk upon implantation and thus will encounter significant regulatory challenges prior to use in vivo. This work describes a strategy to prepare photodegradable hydrogel networks that are composed of well-characterized synthetic polymers and natural melanin pigments found within the human body. Self-assembled networks of poly(l-lactide-co-glycolide)-poly(ethylene glycol) ABA triblock copolymers are doped with melanin nanoparticles to produce reconfigurable networks based on photothermal phase transitions. Self-assembled hydrogel networks with melanin nanoparticles exhibit a storage modulus ranging from 1.5 ± 0.6 kPa to 8.0 ± 7.5 kPa as measured by rheology. The rate of UV-induced photothermal heating was non-monotonic and varied as a function of melanin nanoparticle loading. A maximum steady state temperature increase of 20.5 ± 0.30 °C was measured. Experimental heating rates were in close agreement with predictions based on attenuation of light in melanins via photothermal absorption and Mie scattering. The implications of melanin nanoparticles on hydrogel network formation and light-induced disintegration were also characterized by rheology and dynamic light scattering. Taken together, this class of photoreconfigurable hydrogels represents a potential strategy for photodegradable polymers with increased likelihood for clinical translation.

DOI: 10.1039/c3bm60321k
PubMed: 26828866


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26828866

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photoresponsive hydrogel networks using melanin nanoparticle photothermal sensitizers.</title>
<author>
<name sortKey="Ninh, Chi" sort="Ninh, Chi" uniqKey="Ninh C" first="Chi" last="Ninh">Chi Ninh</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cramer, Madeline" sort="Cramer, Madeline" uniqKey="Cramer M" first="Madeline" last="Cramer">Madeline Cramer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bettinger, Christopher J" sort="Bettinger, Christopher J" uniqKey="Bettinger C" first="Christopher J" last="Bettinger">Christopher J. Bettinger</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA. cbetting@andrew.cmu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:26828866</idno>
<idno type="pmid">26828866</idno>
<idno type="doi">10.1039/c3bm60321k</idno>
<idno type="wicri:Area/PubMed/Corpus">003398</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003398</idno>
<idno type="wicri:Area/PubMed/Curation">003375</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003375</idno>
<idno type="wicri:Area/PubMed/Checkpoint">003375</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">003375</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Photoresponsive hydrogel networks using melanin nanoparticle photothermal sensitizers.</title>
<author>
<name sortKey="Ninh, Chi" sort="Ninh, Chi" uniqKey="Ninh C" first="Chi" last="Ninh">Chi Ninh</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cramer, Madeline" sort="Cramer, Madeline" uniqKey="Cramer M" first="Madeline" last="Cramer">Madeline Cramer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bettinger, Christopher J" sort="Bettinger, Christopher J" uniqKey="Bettinger C" first="Christopher J" last="Bettinger">Christopher J. Bettinger</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA. cbetting@andrew.cmu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biomaterials science</title>
<idno type="eISSN">2047-4849</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Photoreconfigurable and photodegradable polymeric networks have broad utility as functional biomaterials for many applications in medicine and biotechnology. The vast majority of these functional polymers are synthesized using chemical moieties that may be cytotoxic in vivo. Materials synthesized from these substituents also pose unknown risk upon implantation and thus will encounter significant regulatory challenges prior to use in vivo. This work describes a strategy to prepare photodegradable hydrogel networks that are composed of well-characterized synthetic polymers and natural melanin pigments found within the human body. Self-assembled networks of poly(l-lactide-co-glycolide)-poly(ethylene glycol) ABA triblock copolymers are doped with melanin nanoparticles to produce reconfigurable networks based on photothermal phase transitions. Self-assembled hydrogel networks with melanin nanoparticles exhibit a storage modulus ranging from 1.5 ± 0.6 kPa to 8.0 ± 7.5 kPa as measured by rheology. The rate of UV-induced photothermal heating was non-monotonic and varied as a function of melanin nanoparticle loading. A maximum steady state temperature increase of 20.5 ± 0.30 °C was measured. Experimental heating rates were in close agreement with predictions based on attenuation of light in melanins via photothermal absorption and Mie scattering. The implications of melanin nanoparticles on hydrogel network formation and light-induced disintegration were also characterized by rheology and dynamic light scattering. Taken together, this class of photoreconfigurable hydrogels represents a potential strategy for photodegradable polymers with increased likelihood for clinical translation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">26828866</PMID>
<DateCreated>
<Year>2016</Year>
<Month>02</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>02</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">2047-4849</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Biomaterials science</Title>
<ISOAbbreviation>Biomater Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Photoresponsive hydrogel networks using melanin nanoparticle photothermal sensitizers.</ArticleTitle>
<Pagination>
<MedlinePgn>766-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c3bm60321k</ELocationID>
<Abstract>
<AbstractText>Photoreconfigurable and photodegradable polymeric networks have broad utility as functional biomaterials for many applications in medicine and biotechnology. The vast majority of these functional polymers are synthesized using chemical moieties that may be cytotoxic in vivo. Materials synthesized from these substituents also pose unknown risk upon implantation and thus will encounter significant regulatory challenges prior to use in vivo. This work describes a strategy to prepare photodegradable hydrogel networks that are composed of well-characterized synthetic polymers and natural melanin pigments found within the human body. Self-assembled networks of poly(l-lactide-co-glycolide)-poly(ethylene glycol) ABA triblock copolymers are doped with melanin nanoparticles to produce reconfigurable networks based on photothermal phase transitions. Self-assembled hydrogel networks with melanin nanoparticles exhibit a storage modulus ranging from 1.5 ± 0.6 kPa to 8.0 ± 7.5 kPa as measured by rheology. The rate of UV-induced photothermal heating was non-monotonic and varied as a function of melanin nanoparticle loading. A maximum steady state temperature increase of 20.5 ± 0.30 °C was measured. Experimental heating rates were in close agreement with predictions based on attenuation of light in melanins via photothermal absorption and Mie scattering. The implications of melanin nanoparticles on hydrogel network formation and light-induced disintegration were also characterized by rheology and dynamic light scattering. Taken together, this class of photoreconfigurable hydrogels represents a potential strategy for photodegradable polymers with increased likelihood for clinical translation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ninh</LastName>
<ForeName>Chi</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cramer</LastName>
<ForeName>Madeline</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bettinger</LastName>
<ForeName>Christopher J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA. cbetting@andrew.cmu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biomater Sci</MedlineTA>
<NlmUniqueID>101593571</NlmUniqueID>
<ISSNLinking>2047-4830</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>2</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26828866</ArticleId>
<ArticleId IdType="doi">10.1039/c3bm60321k</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>Pittsburgh</li>
</settlement>
<orgName>
<li>Université Carnegie-Mellon</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Ninh, Chi" sort="Ninh, Chi" uniqKey="Ninh C" first="Chi" last="Ninh">Chi Ninh</name>
</region>
<name sortKey="Bettinger, Christopher J" sort="Bettinger, Christopher J" uniqKey="Bettinger C" first="Christopher J" last="Bettinger">Christopher J. Bettinger</name>
<name sortKey="Cramer, Madeline" sort="Cramer, Madeline" uniqKey="Cramer M" first="Madeline" last="Cramer">Madeline Cramer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C58 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001C58 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:26828866
   |texte=   Photoresponsive hydrogel networks using melanin nanoparticle photothermal sensitizers.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:26828866" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021