Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 001F290 ( Pmc/Corpus ); précédent : 001F289; suivant : 001F291 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The proteolytic landscape of the yeast vacuole</title>
<author>
<name sortKey="Hecht, Karen A" sort="Hecht, Karen A" uniqKey="Hecht K" first="Karen A" last="Hecht">Karen A. Hecht</name>
<affiliation>
<nlm:aff id="A1">Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="O Onnell, Allyson F" sort="O Onnell, Allyson F" uniqKey="O Onnell A" first="Allyson F" last="O Onnell">Allyson F. O Onnell</name>
<affiliation>
<nlm:aff id="A2">Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brodsky, Jeffrey L" sort="Brodsky, Jeffrey L" uniqKey="Brodsky J" first="Jeffrey L" last="Brodsky">Jeffrey L. Brodsky</name>
<affiliation>
<nlm:aff id="A1">Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24843828</idno>
<idno type="pmc">4022603</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022603</idno>
<idno type="RBID">PMC:4022603</idno>
<idno type="doi">10.4161/cl.28023</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">001F29</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001F29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The proteolytic landscape of the yeast vacuole</title>
<author>
<name sortKey="Hecht, Karen A" sort="Hecht, Karen A" uniqKey="Hecht K" first="Karen A" last="Hecht">Karen A. Hecht</name>
<affiliation>
<nlm:aff id="A1">Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="O Onnell, Allyson F" sort="O Onnell, Allyson F" uniqKey="O Onnell A" first="Allyson F" last="O Onnell">Allyson F. O Onnell</name>
<affiliation>
<nlm:aff id="A2">Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brodsky, Jeffrey L" sort="Brodsky, Jeffrey L" uniqKey="Brodsky J" first="Jeffrey L" last="Brodsky">Jeffrey L. Brodsky</name>
<affiliation>
<nlm:aff id="A1">Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cellular Logistics</title>
<idno type="ISSN">2159-2780</idno>
<idno type="eISSN">2159-2799</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The vacuole in the yeast
<italic>Saccharomyces cerevisiae</italic>
plays a number of essential roles, and to provide some of these required functions the vacuole harbors at least seven distinct proteases. These proteases exhibit a range of activities and different classifications, and they follow unique paths to arrive at their ultimate, common destination in the cell. This review will first summarize the major functions of the yeast vacuole and delineate how proteins are targeted to this organelle. We will then describe the specific trafficking itineraries and activities of the characterized vacuolar proteases, and outline select features of a new member of this protease ensemble. Finally, we will entertain the question of why so many proteases evolved and reside in the vacuole, and what future research challenges exist in the field.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Sc" uniqKey="Li S">SC Li</name>
</author>
<author>
<name sortKey="Kane, Pm" uniqKey="Kane P">PM Kane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marty, F" uniqKey="Marty F">F Marty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veses, V" uniqKey="Veses V">V Veses</name>
</author>
<author>
<name sortKey="Richards, A" uniqKey="Richards A">A Richards</name>
</author>
<author>
<name sortKey="Gow, Na" uniqKey="Gow N">NA Gow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
<author>
<name sortKey="Herman, Pk" uniqKey="Herman P">PK Herman</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiemken, A" uniqKey="Wiemken A">A Wiemken</name>
</author>
<author>
<name sortKey="Matile, P" uniqKey="Matile P">P Matile</name>
</author>
<author>
<name sortKey="Moor, H" uniqKey="Moor H">H Moor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brett, Cl" uniqKey="Brett C">CL Brett</name>
</author>
<author>
<name sortKey="Kallay, L" uniqKey="Kallay L">L Kallay</name>
</author>
<author>
<name sortKey="Hua, Z" uniqKey="Hua Z">Z Hua</name>
</author>
<author>
<name sortKey="Green, R" uniqKey="Green R">R Green</name>
</author>
<author>
<name sortKey="Chyou, A" uniqKey="Chyou A">A Chyou</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Graham, Tr" uniqKey="Graham T">TR Graham</name>
</author>
<author>
<name sortKey="Donowitz, M" uniqKey="Donowitz M">M Donowitz</name>
</author>
<author>
<name sortKey="Rao, R" uniqKey="Rao R">R Rao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Preston, Ra" uniqKey="Preston R">RA Preston</name>
</author>
<author>
<name sortKey="Murphy, Rf" uniqKey="Murphy R">RF Murphy</name>
</author>
<author>
<name sortKey="Jones, Ew" uniqKey="Jones E">EW Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarry, Je" uniqKey="Sarry J">JE Sarry</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S Chen</name>
</author>
<author>
<name sortKey="Collum, Rp" uniqKey="Collum R">RP Collum</name>
</author>
<author>
<name sortKey="Liang, S" uniqKey="Liang S">S Liang</name>
</author>
<author>
<name sortKey="Peng, M" uniqKey="Peng M">M Peng</name>
</author>
<author>
<name sortKey="Lang, A" uniqKey="Lang A">A Lang</name>
</author>
<author>
<name sortKey="Naumann, B" uniqKey="Naumann B">B Naumann</name>
</author>
<author>
<name sortKey="Dzierszinski, F" uniqKey="Dzierszinski F">F Dzierszinski</name>
</author>
<author>
<name sortKey="Yuan, Cx" uniqKey="Yuan C">CX Yuan</name>
</author>
<author>
<name sortKey="Hippler, M" uniqKey="Hippler M">M Hippler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiederhold, E" uniqKey="Wiederhold E">E Wiederhold</name>
</author>
<author>
<name sortKey="Gandhi, T" uniqKey="Gandhi T">T Gandhi</name>
</author>
<author>
<name sortKey="Permentier, Hp" uniqKey="Permentier H">HP Permentier</name>
</author>
<author>
<name sortKey="Breitling, R" uniqKey="Breitling R">R Breitling</name>
</author>
<author>
<name sortKey="Poolman, B" uniqKey="Poolman B">B Poolman</name>
</author>
<author>
<name sortKey="Slotboom, Dj" uniqKey="Slotboom D">DJ Slotboom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, A" uniqKey="Yan A">A Yan</name>
</author>
<author>
<name sortKey="Lennarz, Wj" uniqKey="Lennarz W">WJ Lennarz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goto, M" uniqKey="Goto M">M Goto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harsay, E" uniqKey="Harsay E">E Harsay</name>
</author>
<author>
<name sortKey="Schekman, R" uniqKey="Schekman R">R Schekman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valdivia, Rh" uniqKey="Valdivia R">RH Valdivia</name>
</author>
<author>
<name sortKey="Baggott, D" uniqKey="Baggott D">D Baggott</name>
</author>
<author>
<name sortKey="Chuang, Js" uniqKey="Chuang J">JS Chuang</name>
</author>
<author>
<name sortKey="Schekman, Rw" uniqKey="Schekman R">RW Schekman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowles, Cr" uniqKey="Cowles C">CR Cowles</name>
</author>
<author>
<name sortKey="Odorizzi, G" uniqKey="Odorizzi G">G Odorizzi</name>
</author>
<author>
<name sortKey="Payne, Gs" uniqKey="Payne G">GS Payne</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stepp, Jd" uniqKey="Stepp J">JD Stepp</name>
</author>
<author>
<name sortKey="Huang, K" uniqKey="Huang K">K Huang</name>
</author>
<author>
<name sortKey="Lemmon, Sk" uniqKey="Lemmon S">SK Lemmon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bowers, K" uniqKey="Bowers K">K Bowers</name>
</author>
<author>
<name sortKey="Stevens, Th" uniqKey="Stevens T">TH Stevens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vida, Ta" uniqKey="Vida T">TA Vida</name>
</author>
<author>
<name sortKey="Graham, Tr" uniqKey="Graham T">TR Graham</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vida, Ta" uniqKey="Vida T">TA Vida</name>
</author>
<author>
<name sortKey="Huyer, G" uniqKey="Huyer G">G Huyer</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bankaitis, Va" uniqKey="Bankaitis V">VA Bankaitis</name>
</author>
<author>
<name sortKey="Johnson, Lm" uniqKey="Johnson L">LM Johnson</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Banta, Lm" uniqKey="Banta L">LM Banta</name>
</author>
<author>
<name sortKey="Robinson, Js" uniqKey="Robinson J">JS Robinson</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raymond, Ck" uniqKey="Raymond C">CK Raymond</name>
</author>
<author>
<name sortKey="Howald Stevenson, I" uniqKey="Howald Stevenson I">I Howald-Stevenson</name>
</author>
<author>
<name sortKey="Vater, Ca" uniqKey="Vater C">CA Vater</name>
</author>
<author>
<name sortKey="Stevens, Th" uniqKey="Stevens T">TH Stevens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rothman, Jh" uniqKey="Rothman J">JH Rothman</name>
</author>
<author>
<name sortKey="Stevens, Th" uniqKey="Stevens T">TH Stevens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abazeed, Me" uniqKey="Abazeed M">ME Abazeed</name>
</author>
<author>
<name sortKey="Fuller, Rs" uniqKey="Fuller R">RS Fuller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonifacino, Js" uniqKey="Bonifacino J">JS Bonifacino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Costaguta, G" uniqKey="Costaguta G">G Costaguta</name>
</author>
<author>
<name sortKey="Duncan, Mc" uniqKey="Duncan M">MC Duncan</name>
</author>
<author>
<name sortKey="Fernandez, Ge" uniqKey="Fernandez G">GE Fernández</name>
</author>
<author>
<name sortKey="Huang, Gh" uniqKey="Huang G">GH Huang</name>
</author>
<author>
<name sortKey="Payne, Gs" uniqKey="Payne G">GS Payne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dell Ngelica, Ec" uniqKey="Dell Ngelica E">EC Dell’Angelica</name>
</author>
<author>
<name sortKey="Puertollano, R" uniqKey="Puertollano R">R Puertollano</name>
</author>
<author>
<name sortKey="Mullins, C" uniqKey="Mullins C">C Mullins</name>
</author>
<author>
<name sortKey="Aguilar, Rc" uniqKey="Aguilar R">RC Aguilar</name>
</author>
<author>
<name sortKey="Vargas, Jd" uniqKey="Vargas J">JD Vargas</name>
</author>
<author>
<name sortKey="Hartnell, Lm" uniqKey="Hartnell L">LM Hartnell</name>
</author>
<author>
<name sortKey="Bonifacino, Js" uniqKey="Bonifacino J">JS Bonifacino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gary, Jd" uniqKey="Gary J">JD Gary</name>
</author>
<author>
<name sortKey="Wurmser, Ae" uniqKey="Wurmser A">AE Wurmser</name>
</author>
<author>
<name sortKey="Bonangelino, Cj" uniqKey="Bonangelino C">CJ Bonangelino</name>
</author>
<author>
<name sortKey="Weisman, Ls" uniqKey="Weisman L">LS Weisman</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Odorizzi, G" uniqKey="Odorizzi G">G Odorizzi</name>
</author>
<author>
<name sortKey="Babst, M" uniqKey="Babst M">M Babst</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Helliwell, Sb" uniqKey="Helliwell S">SB Helliwell</name>
</author>
<author>
<name sortKey="Losko, S" uniqKey="Losko S">S Losko</name>
</author>
<author>
<name sortKey="Kaiser, Ca" uniqKey="Kaiser C">CA Kaiser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reggiori, F" uniqKey="Reggiori F">F Reggiori</name>
</author>
<author>
<name sortKey="Pelham, Hr" uniqKey="Pelham H">HR Pelham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beck, T" uniqKey="Beck T">T Beck</name>
</author>
<author>
<name sortKey="Schmidt, A" uniqKey="Schmidt A">A Schmidt</name>
</author>
<author>
<name sortKey="Hall, Mn" uniqKey="Hall M">MN Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lauwers, E" uniqKey="Lauwers E">E Lauwers</name>
</author>
<author>
<name sortKey="Jacob, C" uniqKey="Jacob C">C Jacob</name>
</author>
<author>
<name sortKey="Andre, B" uniqKey="Andre B">B André</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lauwers, E" uniqKey="Lauwers E">E Lauwers</name>
</author>
<author>
<name sortKey="Erpapazoglou, Z" uniqKey="Erpapazoglou Z">Z Erpapazoglou</name>
</author>
<author>
<name sortKey="Haguenauer Tsapis, R" uniqKey="Haguenauer Tsapis R">R Haguenauer-Tsapis</name>
</author>
<author>
<name sortKey="Andre, B" uniqKey="Andre B">B André</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Babst, M" uniqKey="Babst M">M Babst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balderhaar, Hj" uniqKey="Balderhaar H">HJ Balderhaar</name>
</author>
<author>
<name sortKey="Ungermann, C" uniqKey="Ungermann C">C Ungermann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brocker, C" uniqKey="Brocker C">C Bröcker</name>
</author>
<author>
<name sortKey="Kuhlee, A" uniqKey="Kuhlee A">A Kuhlee</name>
</author>
<author>
<name sortKey="Gatsogiannis, C" uniqKey="Gatsogiannis C">C Gatsogiannis</name>
</author>
<author>
<name sortKey="Balderhaar, Hj" uniqKey="Balderhaar H">HJ Balderhaar</name>
</author>
<author>
<name sortKey="Honscher, C" uniqKey="Honscher C">C Hönscher</name>
</author>
<author>
<name sortKey="Engelbrecht Vandre, S" uniqKey="Engelbrecht Vandre S">S Engelbrecht-Vandré</name>
</author>
<author>
<name sortKey="Ungermann, C" uniqKey="Ungermann C">C Ungermann</name>
</author>
<author>
<name sortKey="Raunser, S" uniqKey="Raunser S">S Raunser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lachmann, J" uniqKey="Lachmann J">J Lachmann</name>
</author>
<author>
<name sortKey="Ungermann, C" uniqKey="Ungermann C">C Ungermann</name>
</author>
<author>
<name sortKey="Engelbrecht Vandre, S" uniqKey="Engelbrecht Vandre S">S Engelbrecht-Vandré</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Angers, Cg" uniqKey="Angers C">CG Angers</name>
</author>
<author>
<name sortKey="Merz, Aj" uniqKey="Merz A">AJ Merz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Den Hazel, Hb" uniqKey="Van Den Hazel H">HB Van Den Hazel</name>
</author>
<author>
<name sortKey="Kielland Brandt, Mc" uniqKey="Kielland Brandt M">MC Kielland-Brandt</name>
</author>
<author>
<name sortKey="Winther, Jr" uniqKey="Winther J">JR Winther</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thumm, M" uniqKey="Thumm M">M Thumm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teichert, U" uniqKey="Teichert U">U Teichert</name>
</author>
<author>
<name sortKey="Mechler, B" uniqKey="Mechler B">B Mechler</name>
</author>
<author>
<name sortKey="Muller, H" uniqKey="Muller H">H Müller</name>
</author>
<author>
<name sortKey="Wolf, Dh" uniqKey="Wolf D">DH Wolf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takeshige, K" uniqKey="Takeshige K">K Takeshige</name>
</author>
<author>
<name sortKey="Baba, M" uniqKey="Baba M">M Baba</name>
</author>
<author>
<name sortKey="Tsuboi, S" uniqKey="Tsuboi S">S Tsuboi</name>
</author>
<author>
<name sortKey="Noda, T" uniqKey="Noda T">T Noda</name>
</author>
<author>
<name sortKey="Ohsumi, Y" uniqKey="Ohsumi Y">Y Ohsumi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mari, M" uniqKey="Mari M">M Mari</name>
</author>
<author>
<name sortKey="Tooze, Sa" uniqKey="Tooze S">SA Tooze</name>
</author>
<author>
<name sortKey="Reggiori, F" uniqKey="Reggiori F">F Reggiori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reggiori, F" uniqKey="Reggiori F">F Reggiori</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hopper, Ak" uniqKey="Hopper A">AK Hopper</name>
</author>
<author>
<name sortKey="Magee, Pt" uniqKey="Magee P">PT Magee</name>
</author>
<author>
<name sortKey="Welch, Sk" uniqKey="Welch S">SK Welch</name>
</author>
<author>
<name sortKey="Friedman, M" uniqKey="Friedman M">M Friedman</name>
</author>
<author>
<name sortKey="Hall, Bd" uniqKey="Hall B">BD Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, Z" uniqKey="Xie Z">Z Xie</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khalfan, Wa" uniqKey="Khalfan W">WA Khalfan</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuga, M" uniqKey="Yuga M">M Yuga</name>
</author>
<author>
<name sortKey="Gomi, K" uniqKey="Gomi K">K Gomi</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
<author>
<name sortKey="Shintani, T" uniqKey="Shintani T">T Shintani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scott, Sv" uniqKey="Scott S">SV Scott</name>
</author>
<author>
<name sortKey="Baba, M" uniqKey="Baba M">M Baba</name>
</author>
<author>
<name sortKey="Ohsumi, Y" uniqKey="Ohsumi Y">Y Ohsumi</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baba, M" uniqKey="Baba M">M Baba</name>
</author>
<author>
<name sortKey="Osumi, M" uniqKey="Osumi M">M Osumi</name>
</author>
<author>
<name sortKey="Scott, Sv" uniqKey="Scott S">SV Scott</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
<author>
<name sortKey="Ohsumi, Y" uniqKey="Ohsumi Y">Y Ohsumi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hutchins, Mu" uniqKey="Hutchins M">MU Hutchins</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kraft, C" uniqKey="Kraft C">C Kraft</name>
</author>
<author>
<name sortKey="Reggiori, F" uniqKey="Reggiori F">F Reggiori</name>
</author>
<author>
<name sortKey="Peter, M" uniqKey="Peter M">M Peter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riezman, H" uniqKey="Riezman H">H Riezman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munn, Al" uniqKey="Munn A">AL Munn</name>
</author>
<author>
<name sortKey="Stevenson, Bj" uniqKey="Stevenson B">BJ Stevenson</name>
</author>
<author>
<name sortKey="Geli, Mi" uniqKey="Geli M">MI Geli</name>
</author>
<author>
<name sortKey="Riezman, H" uniqKey="Riezman H">H Riezman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wendland, B" uniqKey="Wendland B">B Wendland</name>
</author>
<author>
<name sortKey="Mccaffery, Jm" uniqKey="Mccaffery J">JM McCaffery</name>
</author>
<author>
<name sortKey="Xiao, Q" uniqKey="Xiao Q">Q Xiao</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raths, S" uniqKey="Raths S">S Raths</name>
</author>
<author>
<name sortKey="Rohrer, J" uniqKey="Rohrer J">J Rohrer</name>
</author>
<author>
<name sortKey="Crausaz, F" uniqKey="Crausaz F">F Crausaz</name>
</author>
<author>
<name sortKey="Riezman, H" uniqKey="Riezman H">H Riezman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaksonen, M" uniqKey="Kaksonen M">M Kaksonen</name>
</author>
<author>
<name sortKey="Toret, Cp" uniqKey="Toret C">CP Toret</name>
</author>
<author>
<name sortKey="Drubin, Dg" uniqKey="Drubin D">DG Drubin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kukulski, W" uniqKey="Kukulski W">W Kukulski</name>
</author>
<author>
<name sortKey="Schorb, M" uniqKey="Schorb M">M Schorb</name>
</author>
<author>
<name sortKey="Kaksonen, M" uniqKey="Kaksonen M">M Kaksonen</name>
</author>
<author>
<name sortKey="Briggs, Ja" uniqKey="Briggs J">JA Briggs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Newpher, Tm" uniqKey="Newpher T">TM Newpher</name>
</author>
<author>
<name sortKey="Smith, Rp" uniqKey="Smith R">RP Smith</name>
</author>
<author>
<name sortKey="Lemmon, V" uniqKey="Lemmon V">V Lemmon</name>
</author>
<author>
<name sortKey="Lemmon, Sk" uniqKey="Lemmon S">SK Lemmon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Idrissi, Fz" uniqKey="Idrissi F">FZ Idrissi</name>
</author>
<author>
<name sortKey="Grotsch, H" uniqKey="Grotsch H">H Grötsch</name>
</author>
<author>
<name sortKey="Fernandez Golbano, Im" uniqKey="Fernandez Golbano I">IM Fernández-Golbano</name>
</author>
<author>
<name sortKey="Presciatto Baschong, C" uniqKey="Presciatto Baschong C">C Presciatto-Baschong</name>
</author>
<author>
<name sortKey="Riezman, H" uniqKey="Riezman H">H Riezman</name>
</author>
<author>
<name sortKey="Geli, Mi" uniqKey="Geli M">MI Geli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boettner, Dr" uniqKey="Boettner D">DR Boettner</name>
</author>
<author>
<name sortKey="Chi, Rj" uniqKey="Chi R">RJ Chi</name>
</author>
<author>
<name sortKey="Lemmon, Sk" uniqKey="Lemmon S">SK Lemmon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Godlee, C" uniqKey="Godlee C">C Godlee</name>
</author>
<author>
<name sortKey="Kaksonen, M" uniqKey="Kaksonen M">M Kaksonen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaksonen, M" uniqKey="Kaksonen M">M Kaksonen</name>
</author>
<author>
<name sortKey="Toret, Cp" uniqKey="Toret C">CP Toret</name>
</author>
<author>
<name sortKey="Drubin, Dg" uniqKey="Drubin D">DG Drubin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weinberg, J" uniqKey="Weinberg J">J Weinberg</name>
</author>
<author>
<name sortKey="Drubin, Dg" uniqKey="Drubin D">DG Drubin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doyon, Jb" uniqKey="Doyon J">JB Doyon</name>
</author>
<author>
<name sortKey="Zeitler, B" uniqKey="Zeitler B">B Zeitler</name>
</author>
<author>
<name sortKey="Cheng, J" uniqKey="Cheng J">J Cheng</name>
</author>
<author>
<name sortKey="Cheng, At" uniqKey="Cheng A">AT Cheng</name>
</author>
<author>
<name sortKey="Cherone, Jm" uniqKey="Cherone J">JM Cherone</name>
</author>
<author>
<name sortKey="Santiago, Y" uniqKey="Santiago Y">Y Santiago</name>
</author>
<author>
<name sortKey="Lee, Ah" uniqKey="Lee A">AH Lee</name>
</author>
<author>
<name sortKey="Vo, Td" uniqKey="Vo T">TD Vo</name>
</author>
<author>
<name sortKey="Doyon, Y" uniqKey="Doyon Y">Y Doyon</name>
</author>
<author>
<name sortKey="Miller, Jc" uniqKey="Miller J">JC Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, Mj" uniqKey="Taylor M">MJ Taylor</name>
</author>
<author>
<name sortKey="Perrais, D" uniqKey="Perrais D">D Perrais</name>
</author>
<author>
<name sortKey="Merrifield, Cj" uniqKey="Merrifield C">CJ Merrifield</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prosser, Dc" uniqKey="Prosser D">DC Prosser</name>
</author>
<author>
<name sortKey="Drivas, Tg" uniqKey="Drivas T">TG Drivas</name>
</author>
<author>
<name sortKey="Maldonado Baez, L" uniqKey="Maldonado Baez L">L Maldonado-Báez</name>
</author>
<author>
<name sortKey="Wendland, B" uniqKey="Wendland B">B Wendland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hicke, L" uniqKey="Hicke L">L Hicke</name>
</author>
<author>
<name sortKey="Riezman, H" uniqKey="Riezman H">H Riezman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galan, Jm" uniqKey="Galan J">JM Galan</name>
</author>
<author>
<name sortKey="Moreau, V" uniqKey="Moreau V">V Moreau</name>
</author>
<author>
<name sortKey="Andre, B" uniqKey="Andre B">B Andre</name>
</author>
<author>
<name sortKey="Volland, C" uniqKey="Volland C">C Volland</name>
</author>
<author>
<name sortKey="Haguenauer Tsapis, R" uniqKey="Haguenauer Tsapis R">R Haguenauer-Tsapis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Springael, Jy" uniqKey="Springael J">JY Springael</name>
</author>
<author>
<name sortKey="Andre, B" uniqKey="Andre B">B André</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dunn, R" uniqKey="Dunn R">R Dunn</name>
</author>
<author>
<name sortKey="Hicke, L" uniqKey="Hicke L">L Hicke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dunn, R" uniqKey="Dunn R">R Dunn</name>
</author>
<author>
<name sortKey="Hicke, L" uniqKey="Hicke L">L Hicke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hein, C" uniqKey="Hein C">C Hein</name>
</author>
<author>
<name sortKey="Springael, Jy" uniqKey="Springael J">JY Springael</name>
</author>
<author>
<name sortKey="Volland, C" uniqKey="Volland C">C Volland</name>
</author>
<author>
<name sortKey="Haguenauer Tsapis, R" uniqKey="Haguenauer Tsapis R">R Haguenauer-Tsapis</name>
</author>
<author>
<name sortKey="Andre, B" uniqKey="Andre B">B André</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, Ch" uniqKey="Lin C">CH Lin</name>
</author>
<author>
<name sortKey="Macgurn, Ja" uniqKey="Macgurn J">JA MacGurn</name>
</author>
<author>
<name sortKey="Chu, T" uniqKey="Chu T">T Chu</name>
</author>
<author>
<name sortKey="Stefan, Cj" uniqKey="Stefan C">CJ Stefan</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nikko, E" uniqKey="Nikko E">E Nikko</name>
</author>
<author>
<name sortKey="Sullivan, Ja" uniqKey="Sullivan J">JA Sullivan</name>
</author>
<author>
<name sortKey="Pelham, Hr" uniqKey="Pelham H">HR Pelham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becuwe, M" uniqKey="Becuwe M">M Becuwe</name>
</author>
<author>
<name sortKey="Vieira, N" uniqKey="Vieira N">N Vieira</name>
</author>
<author>
<name sortKey="Lara, D" uniqKey="Lara D">D Lara</name>
</author>
<author>
<name sortKey="Gomes Rezende, J" uniqKey="Gomes Rezende J">J Gomes-Rezende</name>
</author>
<author>
<name sortKey="Soares Cunha, C" uniqKey="Soares Cunha C">C Soares-Cunha</name>
</author>
<author>
<name sortKey="Casal, M" uniqKey="Casal M">M Casal</name>
</author>
<author>
<name sortKey="Haguenauer Tsapis, R" uniqKey="Haguenauer Tsapis R">R Haguenauer-Tsapis</name>
</author>
<author>
<name sortKey="Vincent, O" uniqKey="Vincent O">O Vincent</name>
</author>
<author>
<name sortKey="Paiva, S" uniqKey="Paiva S">S Paiva</name>
</author>
<author>
<name sortKey="Leon, S" uniqKey="Leon S">S Léon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merhi, A" uniqKey="Merhi A">A Merhi</name>
</author>
<author>
<name sortKey="Andre, B" uniqKey="Andre B">B André</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Onnell, Af" uniqKey="O Onnell A">AF O’Donnell</name>
</author>
<author>
<name sortKey="Huang, L" uniqKey="Huang L">L Huang</name>
</author>
<author>
<name sortKey="Thorner, J" uniqKey="Thorner J">J Thorner</name>
</author>
<author>
<name sortKey="Cyert, Ms" uniqKey="Cyert M">MS Cyert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nikko, E" uniqKey="Nikko E">E Nikko</name>
</author>
<author>
<name sortKey="Marini, Am" uniqKey="Marini A">AM Marini</name>
</author>
<author>
<name sortKey="Andre, B" uniqKey="Andre B">B André</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, Ew" uniqKey="Jones E">EW Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ammerer, G" uniqKey="Ammerer G">G Ammerer</name>
</author>
<author>
<name sortKey="Hunter, Cp" uniqKey="Hunter C">CP Hunter</name>
</author>
<author>
<name sortKey="Rothman, Jh" uniqKey="Rothman J">JH Rothman</name>
</author>
<author>
<name sortKey="Saari, Gc" uniqKey="Saari G">GC Saari</name>
</author>
<author>
<name sortKey="Valls, La" uniqKey="Valls L">LA Valls</name>
</author>
<author>
<name sortKey="Stevens, Th" uniqKey="Stevens T">TH Stevens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berkower, C" uniqKey="Berkower C">C Berkower</name>
</author>
<author>
<name sortKey="Loayza, D" uniqKey="Loayza D">D Loayza</name>
</author>
<author>
<name sortKey="Michaelis, S" uniqKey="Michaelis S">S Michaelis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schandel, Ka" uniqKey="Schandel K">KA Schandel</name>
</author>
<author>
<name sortKey="Jenness, Dd" uniqKey="Jenness D">DD Jenness</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hecht, Ka" uniqKey="Hecht K">KA Hecht</name>
</author>
<author>
<name sortKey="Wytiaz, Va" uniqKey="Wytiaz V">VA Wytiaz</name>
</author>
<author>
<name sortKey="Ast, T" uniqKey="Ast T">T Ast</name>
</author>
<author>
<name sortKey="Schuldiner, M" uniqKey="Schuldiner M">M Schuldiner</name>
</author>
<author>
<name sortKey="Brodsky, Jl" uniqKey="Brodsky J">JL Brodsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rawlings, Nd" uniqKey="Rawlings N">ND Rawlings</name>
</author>
<author>
<name sortKey="Barrett, Aj" uniqKey="Barrett A">AJ Barrett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rawlings, Nd" uniqKey="Rawlings N">ND Rawlings</name>
</author>
<author>
<name sortKey="Barrett, Aj" uniqKey="Barrett A">AJ Barrett</name>
</author>
<author>
<name sortKey="Bateman, A" uniqKey="Bateman A">A Bateman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hedstrom, L" uniqKey="Hedstrom L">L Hedstrom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rawlings, Nd" uniqKey="Rawlings N">ND Rawlings</name>
</author>
<author>
<name sortKey="Barrett, Aj" uniqKey="Barrett A">AJ Barrett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, J" uniqKey="Tang J">J Tang</name>
</author>
<author>
<name sortKey="Wong, Rn" uniqKey="Wong R">RN Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dunn, Bm" uniqKey="Dunn B">BM Dunn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winther, Jr" uniqKey="Winther J">JR Winther</name>
</author>
<author>
<name sortKey="S Rensen, P" uniqKey="S Rensen P">P Sørensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stevens, T" uniqKey="Stevens T">T Stevens</name>
</author>
<author>
<name sortKey="Esmon, B" uniqKey="Esmon B">B Esmon</name>
</author>
<author>
<name sortKey="Schekman, R" uniqKey="Schekman R">R Schekman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zubenko, Gs" uniqKey="Zubenko G">GS Zubenko</name>
</author>
<author>
<name sortKey="Park, Fj" uniqKey="Park F">FJ Park</name>
</author>
<author>
<name sortKey="Jones, Ew" uniqKey="Jones E">EW Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonangelino, Cj" uniqKey="Bonangelino C">CJ Bonangelino</name>
</author>
<author>
<name sortKey="Chavez, Em" uniqKey="Chavez E">EM Chavez</name>
</author>
<author>
<name sortKey="Bonifacino, Js" uniqKey="Bonifacino J">JS Bonifacino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robinson, Js" uniqKey="Robinson J">JS Robinson</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
<author>
<name sortKey="Banta, Lm" uniqKey="Banta L">LM Banta</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rothman, Jh" uniqKey="Rothman J">JH Rothman</name>
</author>
<author>
<name sortKey="Howald, I" uniqKey="Howald I">I Howald</name>
</author>
<author>
<name sortKey="Stevens, Th" uniqKey="Stevens T">TH Stevens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marcusson, Eg" uniqKey="Marcusson E">EG Marcusson</name>
</author>
<author>
<name sortKey="Horazdovsky, Bf" uniqKey="Horazdovsky B">BF Horazdovsky</name>
</author>
<author>
<name sortKey="Cereghino, Jl" uniqKey="Cereghino J">JL Cereghino</name>
</author>
<author>
<name sortKey="Gharakhanian, E" uniqKey="Gharakhanian E">E Gharakhanian</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whyte, Jr" uniqKey="Whyte J">JR Whyte</name>
</author>
<author>
<name sortKey="Munro, S" uniqKey="Munro S">S Munro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spormann, Do" uniqKey="Spormann D">DO Spormann</name>
</author>
<author>
<name sortKey="Heim, J" uniqKey="Heim J">J Heim</name>
</author>
<author>
<name sortKey="Wolf, Dh" uniqKey="Wolf D">DH Wolf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katzmann, Dj" uniqKey="Katzmann D">DJ Katzmann</name>
</author>
<author>
<name sortKey="Babst, M" uniqKey="Babst M">M Babst</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katzmann, Dj" uniqKey="Katzmann D">DJ Katzmann</name>
</author>
<author>
<name sortKey="Sarkar, S" uniqKey="Sarkar S">S Sarkar</name>
</author>
<author>
<name sortKey="Chu, T" uniqKey="Chu T">T Chu</name>
</author>
<author>
<name sortKey="Audhya, A" uniqKey="Audhya A">A Audhya</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hettema, Eh" uniqKey="Hettema E">EH Hettema</name>
</author>
<author>
<name sortKey="Valdez Taubas, J" uniqKey="Valdez Taubas J">J Valdez-Taubas</name>
</author>
<author>
<name sortKey="Pelham, Hr" uniqKey="Pelham H">HR Pelham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reggiori, F" uniqKey="Reggiori F">F Reggiori</name>
</author>
<author>
<name sortKey="Pelham, Hr" uniqKey="Pelham H">HR Pelham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
<author>
<name sortKey="Cueva, R" uniqKey="Cueva R">R Cueva</name>
</author>
<author>
<name sortKey="Yaver, Ds" uniqKey="Yaver D">DS Yaver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hasilik, A" uniqKey="Hasilik A">A Hasilik</name>
</author>
<author>
<name sortKey="Tanner, W" uniqKey="Tanner W">W Tanner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trumbly, Rj" uniqKey="Trumbly R">RJ Trumbly</name>
</author>
<author>
<name sortKey="Bradley, G" uniqKey="Bradley G">G Bradley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harding, Tm" uniqKey="Harding T">TM Harding</name>
</author>
<author>
<name sortKey="Hefner Gravink, A" uniqKey="Hefner Gravink A">A Hefner-Gravink</name>
</author>
<author>
<name sortKey="Thumm, M" uniqKey="Thumm M">M Thumm</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scott, Sv" uniqKey="Scott S">SV Scott</name>
</author>
<author>
<name sortKey="Hefner Gravink, A" uniqKey="Hefner Gravink A">A Hefner-Gravink</name>
</author>
<author>
<name sortKey="Morano, Ka" uniqKey="Morano K">KA Morano</name>
</author>
<author>
<name sortKey="Noda, T" uniqKey="Noda T">T Noda</name>
</author>
<author>
<name sortKey="Ohsumi, Y" uniqKey="Ohsumi Y">Y Ohsumi</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Westphal, V" uniqKey="Westphal V">V Westphal</name>
</author>
<author>
<name sortKey="Marcusson, Eg" uniqKey="Marcusson E">EG Marcusson</name>
</author>
<author>
<name sortKey="Winther, Jr" uniqKey="Winther J">JR Winther</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
<author>
<name sortKey="Van Den Hazel, Hb" uniqKey="Van Den Hazel H">HB van den Hazel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Den Hazel, Hb" uniqKey="Van Den Hazel H">HB van den Hazel</name>
</author>
<author>
<name sortKey="Kielland Brandt, Mc" uniqKey="Kielland Brandt M">MC Kielland-Brandt</name>
</author>
<author>
<name sortKey="Winther, Jr" uniqKey="Winther J">JR Winther</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mechler, B" uniqKey="Mechler B">B Mechler</name>
</author>
<author>
<name sortKey="Muller, M" uniqKey="Muller M">M Müller</name>
</author>
<author>
<name sortKey="Muller, H" uniqKey="Muller H">H Müller</name>
</author>
<author>
<name sortKey="Meussdoerffer, F" uniqKey="Meussdoerffer F">F Meussdoerffer</name>
</author>
<author>
<name sortKey="Wolf, Dh" uniqKey="Wolf D">DH Wolf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parr, Cl" uniqKey="Parr C">CL Parr</name>
</author>
<author>
<name sortKey="Keates, Ra" uniqKey="Keates R">RA Keates</name>
</author>
<author>
<name sortKey="Bryksa, Bc" uniqKey="Bryksa B">BC Bryksa</name>
</author>
<author>
<name sortKey="Ogawa, M" uniqKey="Ogawa M">M Ogawa</name>
</author>
<author>
<name sortKey="Yada, Ry" uniqKey="Yada R">RY Yada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="J Rgensen, Mu" uniqKey="J Rgensen M">MU Jørgensen</name>
</author>
<author>
<name sortKey="Emr, Sd" uniqKey="Emr S">SD Emr</name>
</author>
<author>
<name sortKey="Winther, Jr" uniqKey="Winther J">JR Winther</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rupp, S" uniqKey="Rupp S">S Rupp</name>
</author>
<author>
<name sortKey="Hirsch, Hh" uniqKey="Hirsch H">HH Hirsch</name>
</author>
<author>
<name sortKey="Wolf, Dh" uniqKey="Wolf D">DH Wolf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kondo, H" uniqKey="Kondo H">H Kondo</name>
</author>
<author>
<name sortKey="Shibano, Y" uniqKey="Shibano Y">Y Shibano</name>
</author>
<author>
<name sortKey="Amachi, T" uniqKey="Amachi T">T Amachi</name>
</author>
<author>
<name sortKey="Cronin, N" uniqKey="Cronin N">N Cronin</name>
</author>
<author>
<name sortKey="Oda, K" uniqKey="Oda K">K Oda</name>
</author>
<author>
<name sortKey="Dunn, Bm" uniqKey="Dunn B">BM Dunn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dreyer, T" uniqKey="Dreyer T">T Dreyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moehle, Cm" uniqKey="Moehle C">CM Moehle</name>
</author>
<author>
<name sortKey="Dixon, Ck" uniqKey="Dixon C">CK Dixon</name>
</author>
<author>
<name sortKey="Jones, Ew" uniqKey="Jones E">EW Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nebes, Vl" uniqKey="Nebes V">VL Nebes</name>
</author>
<author>
<name sortKey="Jones, Ew" uniqKey="Jones E">EW Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Subramanian, S" uniqKey="Subramanian S">S Subramanian</name>
</author>
<author>
<name sortKey="Woolford, Ca" uniqKey="Woolford C">CA Woolford</name>
</author>
<author>
<name sortKey="Drill, E" uniqKey="Drill E">E Drill</name>
</author>
<author>
<name sortKey="Lu, M" uniqKey="Lu M">M Lu</name>
</author>
<author>
<name sortKey="Jones, Ew" uniqKey="Jones E">EW Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naik, Rr" uniqKey="Naik R">RR Naik</name>
</author>
<author>
<name sortKey="Jones, Ew" uniqKey="Jones E">EW Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farley, Pc" uniqKey="Farley P">PC Farley</name>
</author>
<author>
<name sortKey="Shepherd, Mg" uniqKey="Shepherd M">MG Shepherd</name>
</author>
<author>
<name sortKey="Sullivan, Pa" uniqKey="Sullivan P">PA Sullivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kominami, E" uniqKey="Kominami E">E Kominami</name>
</author>
<author>
<name sortKey="Hoffschulte, H" uniqKey="Hoffschulte H">H Hoffschulte</name>
</author>
<author>
<name sortKey="Leuschel, L" uniqKey="Leuschel L">L Leuschel</name>
</author>
<author>
<name sortKey="Maier, K" uniqKey="Maier K">K Maier</name>
</author>
<author>
<name sortKey="Holzer, H" uniqKey="Holzer H">H Holzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, G" uniqKey="Jung G">G Jung</name>
</author>
<author>
<name sortKey="Ueno, H" uniqKey="Ueno H">H Ueno</name>
</author>
<author>
<name sortKey="Hayashi, R" uniqKey="Hayashi R">R Hayashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, B" uniqKey="Tang B">B Tang</name>
</author>
<author>
<name sortKey="Nirasawa, S" uniqKey="Nirasawa S">S Nirasawa</name>
</author>
<author>
<name sortKey="Kitaoka, M" uniqKey="Kitaoka M">M Kitaoka</name>
</author>
<author>
<name sortKey="Hayashi, K" uniqKey="Hayashi K">K Hayashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spormann, Do" uniqKey="Spormann D">DO Spormann</name>
</author>
<author>
<name sortKey="Heim, J" uniqKey="Heim J">J Heim</name>
</author>
<author>
<name sortKey="Wolf, Dh" uniqKey="Wolf D">DH Wolf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolf, Dh" uniqKey="Wolf D">DH Wolf</name>
</author>
<author>
<name sortKey="Ehmann, C" uniqKey="Ehmann C">C Ehmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J Kim</name>
</author>
<author>
<name sortKey="Scott, Sv" uniqKey="Scott S">SV Scott</name>
</author>
<author>
<name sortKey="Oda, Mn" uniqKey="Oda M">MN Oda</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adachi, W" uniqKey="Adachi W">W Adachi</name>
</author>
<author>
<name sortKey="Suzuki, Nn" uniqKey="Suzuki N">NN Suzuki</name>
</author>
<author>
<name sortKey="Fujioka, Y" uniqKey="Fujioka Y">Y Fujioka</name>
</author>
<author>
<name sortKey="Suzuki, K" uniqKey="Suzuki K">K Suzuki</name>
</author>
<author>
<name sortKey="Ohsumi, Y" uniqKey="Ohsumi Y">Y Ohsumi</name>
</author>
<author>
<name sortKey="Inagaki, F" uniqKey="Inagaki F">F Inagaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morales Quinones, M" uniqKey="Morales Quinones M">M Morales Quinones</name>
</author>
<author>
<name sortKey="Winston, Jt" uniqKey="Winston J">JT Winston</name>
</author>
<author>
<name sortKey="Stromhaug, Pe" uniqKey="Stromhaug P">PE Stromhaug</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schu, P" uniqKey="Schu P">P Schu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adamis, Pd" uniqKey="Adamis P">PD Adamis</name>
</author>
<author>
<name sortKey="Mannarino, Sc" uniqKey="Mannarino S">SC Mannarino</name>
</author>
<author>
<name sortKey="Riger, Cj" uniqKey="Riger C">CJ Riger</name>
</author>
<author>
<name sortKey="Duarte, G" uniqKey="Duarte G">G Duarte</name>
</author>
<author>
<name sortKey="Cruz, A" uniqKey="Cruz A">A Cruz</name>
</author>
<author>
<name sortKey="Pereira, Md" uniqKey="Pereira M">MD Pereira</name>
</author>
<author>
<name sortKey="Eleutherio, Ec" uniqKey="Eleutherio E">EC Eleutherio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ganguli, D" uniqKey="Ganguli D">D Ganguli</name>
</author>
<author>
<name sortKey="Kumar, C" uniqKey="Kumar C">C Kumar</name>
</author>
<author>
<name sortKey="Bachhawat, Ak" uniqKey="Bachhawat A">AK Bachhawat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Myers, Ew" uniqKey="Myers E">EW Myers</name>
</author>
<author>
<name sortKey="Miller, W" uniqKey="Miller W">W Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishizawa, M" uniqKey="Nishizawa M">M Nishizawa</name>
</author>
<author>
<name sortKey="Yasuhara, T" uniqKey="Yasuhara T">T Yasuhara</name>
</author>
<author>
<name sortKey="Nakai, T" uniqKey="Nakai T">T Nakai</name>
</author>
<author>
<name sortKey="Fujiki, Y" uniqKey="Fujiki Y">Y Fujiki</name>
</author>
<author>
<name sortKey="Ohashi, A" uniqKey="Ohashi A">A Ohashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yasuhara, T" uniqKey="Yasuhara T">T Yasuhara</name>
</author>
<author>
<name sortKey="Nakai, T" uniqKey="Nakai T">T Nakai</name>
</author>
<author>
<name sortKey="Ohashi, A" uniqKey="Ohashi A">A Ohashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roberts, Cj" uniqKey="Roberts C">CJ Roberts</name>
</author>
<author>
<name sortKey="Pohlig, G" uniqKey="Pohlig G">G Pohlig</name>
</author>
<author>
<name sortKey="Rothman, Jh" uniqKey="Rothman J">JH Rothman</name>
</author>
<author>
<name sortKey="Stevens, Th" uniqKey="Stevens T">TH Stevens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Julius, D" uniqKey="Julius D">D Julius</name>
</author>
<author>
<name sortKey="Blair, L" uniqKey="Blair L">L Blair</name>
</author>
<author>
<name sortKey="Brake, A" uniqKey="Brake A">A Brake</name>
</author>
<author>
<name sortKey="Sprague, G" uniqKey="Sprague G">G Sprague</name>
</author>
<author>
<name sortKey="Thorner, J" uniqKey="Thorner J">J Thorner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Rudaz, C" uniqKey="Garcia Rudaz C">C Garcia-Rudaz</name>
</author>
<author>
<name sortKey="Luna, F" uniqKey="Luna F">F Luna</name>
</author>
<author>
<name sortKey="Tapia, V" uniqKey="Tapia V">V Tapia</name>
</author>
<author>
<name sortKey="Kerr, B" uniqKey="Kerr B">B Kerr</name>
</author>
<author>
<name sortKey="Colgin, L" uniqKey="Colgin L">L Colgin</name>
</author>
<author>
<name sortKey="Galimi, F" uniqKey="Galimi F">F Galimi</name>
</author>
<author>
<name sortKey="Dissen, Ga" uniqKey="Dissen G">GA Dissen</name>
</author>
<author>
<name sortKey="Rawlings, Nd" uniqKey="Rawlings N">ND Rawlings</name>
</author>
<author>
<name sortKey="Ojeda, Sr" uniqKey="Ojeda S">SR Ojeda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larkin, Ma" uniqKey="Larkin M">MA Larkin</name>
</author>
<author>
<name sortKey="Blackshields, G" uniqKey="Blackshields G">G Blackshields</name>
</author>
<author>
<name sortKey="Brown, Np" uniqKey="Brown N">NP Brown</name>
</author>
<author>
<name sortKey="Chenna, R" uniqKey="Chenna R">R Chenna</name>
</author>
<author>
<name sortKey="Mcgettigan, Pa" uniqKey="Mcgettigan P">PA McGettigan</name>
</author>
<author>
<name sortKey="Mcwilliam, H" uniqKey="Mcwilliam H">H McWilliam</name>
</author>
<author>
<name sortKey="Valentin, F" uniqKey="Valentin F">F Valentin</name>
</author>
<author>
<name sortKey="Wallace, Im" uniqKey="Wallace I">IM Wallace</name>
</author>
<author>
<name sortKey="Wilm, A" uniqKey="Wilm A">A Wilm</name>
</author>
<author>
<name sortKey="Lopez, R" uniqKey="Lopez R">R Lopez</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cell Logist</journal-id>
<journal-id journal-id-type="iso-abbrev">Cell Logist</journal-id>
<journal-id journal-id-type="publisher-id">CL</journal-id>
<journal-title-group>
<journal-title>Cellular Logistics</journal-title>
</journal-title-group>
<issn pub-type="ppub">2159-2780</issn>
<issn pub-type="epub">2159-2799</issn>
<publisher>
<publisher-name>Landes Bioscience</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24843828</article-id>
<article-id pub-id-type="pmc">4022603</article-id>
<article-id pub-id-type="publisher-id">2013CELLULARLOG0012R1</article-id>
<article-id pub-id-type="doi">10.4161/cl.28023</article-id>
<article-id pub-id-type="pii">28023</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The proteolytic landscape of the yeast vacuole</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Hecht</surname>
<given-names>Karen A</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="afn0">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>O’Donnell</surname>
<given-names>Allyson F</given-names>
</name>
<xref ref-type="aff" rid="A2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Brodsky</surname>
<given-names>Jeffrey L</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<aff id="A1">
<label>1</label>
Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA</aff>
<aff id="A2">
<label>2</label>
Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA</aff>
</contrib-group>
<author-notes>
<fn id="afn0">
<label></label>
<p>Current affiliation: Marine Biotechnology; Pacific Northwest National Laboratory; Sequim, WA USA</p>
</fn>
<corresp id="cor1">
<label>*</label>
Correspondence to: Jeffrey L Brodsky, Email:
<email xlink:href="jbrodsky@pitt.edu">jbrodsky@pitt.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>12</day>
<month>2</month>
<year>2014</year>
</pub-date>
<volume>4</volume>
<elocation-id>e28023</elocation-id>
<history>
<date date-type="received">
<day>12</day>
<month>11</month>
<year>2013</year>
</date>
<date date-type="rev-recd">
<day>27</day>
<month>1</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>28</day>
<month>1</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014 Landes Bioscience</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc/3.0/">
<license-p>This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>The vacuole in the yeast
<italic>Saccharomyces cerevisiae</italic>
plays a number of essential roles, and to provide some of these required functions the vacuole harbors at least seven distinct proteases. These proteases exhibit a range of activities and different classifications, and they follow unique paths to arrive at their ultimate, common destination in the cell. This review will first summarize the major functions of the yeast vacuole and delineate how proteins are targeted to this organelle. We will then describe the specific trafficking itineraries and activities of the characterized vacuolar proteases, and outline select features of a new member of this protease ensemble. Finally, we will entertain the question of why so many proteases evolved and reside in the vacuole, and what future research challenges exist in the field.</p>
</abstract>
<kwd-group kwd-group-type="author">
<title>Keywords: </title>
<kwd>protease</kwd>
<kwd>
<italic>S. cerevisiae</italic>
</kwd>
<kwd>hydrolysis</kwd>
<kwd>autophagy</kwd>
<kwd>endocytosis</kwd>
<kwd>metalloprotease</kwd>
<kwd>Vps10</kwd>
<kwd>CPY</kwd>
<kwd>secretory pathway</kwd>
<kwd>Pff1</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>Structure, Function, and Protein Trafficking Itineraries Associated with the Vacuole in the Yeast
<italic>Saccharomyces cerevisiae</italic>
</title>
<p>The vacuole in most yeasts can occupy ~20% of cell volume. It is functionally similar to the plant vacuole and the lysosome in higher eukaryotes, with an important role in the degradation of macromolecules, nutrient storage, protein homeostasis, and detoxification.
<xref rid="R1" ref-type="bibr">
<sup>1</sup>
</xref>
<sup>,</sup>
<xref rid="R2" ref-type="bibr">
<sup>2</sup>
</xref>
This organelle was first described in the 1930s from light microscopy images of plant cells showing large “empty” (
<italic>vacuus</italic>
, in Latin) structures within the cytosol.
<xref rid="R3" ref-type="bibr">
<sup>3</sup>
</xref>
The vacuole in yeast is host to numerous proteases, lipases, nucleases, and transporters,
<xref rid="R1" ref-type="bibr">
<sup>1</sup>
</xref>
<sup>,</sup>
<xref rid="R4" ref-type="bibr">
<sup>4</sup>
</xref>
<sup>,</sup>
<xref rid="R5" ref-type="bibr">
<sup>5</sup>
</xref>
and is a dynamic organelle that undergoes fusion and fission events in response to the cell cycle and environmental cues. Logarithmically growing cells have a multi-lobed vacuole, while in stationary phase cells, or cells starved of a carbon source, these lobes fuse to produce a single spherical vacuolar structure.
<xref rid="R6" ref-type="bibr">
<sup>6</sup>
</xref>
The vacuole is also a slightly acidic environment (pH ~6.2) compared with the cytosol (pH ~7.2) in logarithmically growing yeast.
<xref rid="R7" ref-type="bibr">
<sup>7</sup>
</xref>
<sup>,</sup>
<xref rid="R8" ref-type="bibr">
<sup>8</sup>
</xref>
In the remainder of this review, we will refer to “yeast” to indicate the organism
<italic>Saccharomyces cerevisiae</italic>
, unless otherwise indicated.</p>
<p>A host of proteins define the function of this organelle. Approximately 200 of the 6,000 yeast genes are annotated as encoding proteins having vacuolar localization, and 27% of those are described as having transporter function.
<xref rid="R2" ref-type="bibr">
<sup>2</sup>
</xref>
The remaining proteins possess functions associated with macromolecular hydrolysis, membrane fusion, protein sorting and targeting to the vacuole, and acidification.
<xref rid="R9" ref-type="bibr">
<sup>9</sup>
</xref>
<sup>,</sup>
<xref rid="R10" ref-type="bibr">
<sup>10</sup>
</xref>
Most of these proteins are targeted to the vacuole via the secretory pathway, and by definition the proteins are first translocated into the endoplasmic reticulum (ER). COPII vesicles then ferry the vacuole-targeted proteins to the Golgi apparatus. In the Golgi, the carbohydrate residues of secretory proteins are modified and extended.
<xref rid="R11" ref-type="bibr">
<sup>11</sup>
</xref>
<sup>,</sup>
<xref rid="R12" ref-type="bibr">
<sup>12</sup>
</xref>
It is at this point that cargo proteins reach a crossroad in the secretory pathway; they can be retained in the Golgi, targeted to the plasma membrane, or trafficked to the vacuole. Cargo traffics from the Golgi to the cell surface either directly or indirectly via an endosomal intermediate,
<xref rid="R13" ref-type="bibr">
<sup>13</sup>
</xref>
and for the latter trafficking pathway the adaptor protein complex 1 (AP-1) plays an important role.
<xref rid="R14" ref-type="bibr">
<sup>14</sup>
</xref>
Similarly, Golgi-to-vacuolar trafficking can be direct, requiring adaptor protein complex 3 (AP-3)
<xref rid="R15" ref-type="bibr">
<sup>15</sup>
</xref>
<sup>,</sup>
<xref rid="R16" ref-type="bibr">
<sup>16</sup>
</xref>
or indirect through a multivesicular body (MVB) intermediate.
<xref rid="R17" ref-type="bibr">
<sup>17</sup>
</xref>
<sup>-</sup>
<xref rid="R19" ref-type="bibr">
<sup>19</sup>
</xref>
These two trafficking intervals, referred to as the alkaline phosphatase (ALP) and carboxypeptidase Y (CPY) pathways, respectively, are named for model cargos used in their characterization. Genetic screens that monitor CPY maturation and trafficking have been instrumental in identifying proteins required for vacuolar protein sorting and maintenance of vacuolar morphology (i.e., the
<italic>VPS</italic>
genes).
<xref rid="R20" ref-type="bibr">
<sup>20</sup>
</xref>
<sup>-</sup>
<xref rid="R23" ref-type="bibr">
<sup>23</sup>
</xref>
</p>
<p>In the initial stages of the CPY pathway, cargo proteins such as carboxypeptidase S (CPS), Kex2, and the CPY-Vps10 complex exit the Golgi in vesicles associated with clathrin and the adaptor proteins Gga1 and Gga2.
<xref rid="R24" ref-type="bibr">
<sup>24</sup>
</xref>
<sup>-</sup>
<xref rid="R27" ref-type="bibr">
<sup>27</sup>
</xref>
Efficient cargo sorting into the MVB and vacuolar lumen is partially dependent on the phosphatidylinositol 3,5-bisphosphate composition of endosomal and vacuolar membranes.
<xref rid="R28" ref-type="bibr">
<sup>28</sup>
</xref>
<sup>,</sup>
<xref rid="R29" ref-type="bibr">
<sup>29</sup>
</xref>
In addition, for cargos such as CPS, MVB sorting is controlled by protein ubiquitination.
<xref rid="R30" ref-type="bibr">
<sup>30</sup>
</xref>
<sup>-</sup>
<xref rid="R33" ref-type="bibr">
<sup>33</sup>
</xref>
Specifically, the ubiquitin ligase Rsp5 appends K63-linked polyubiquitin chains on protein cargo, which promotes MVB trafficking.
<xref rid="R30" ref-type="bibr">
<sup>30</sup>
</xref>
<sup>,</sup>
<xref rid="R31" ref-type="bibr">
<sup>31</sup>
</xref>
<sup>,</sup>
<xref rid="R33" ref-type="bibr">
<sup>33</sup>
</xref>
<sup>,</sup>
<xref rid="R34" ref-type="bibr">
<sup>34</sup>
</xref>
The endosomal sorting complex required for transport 0 (ESCRT 0) recognizes ubiquitinated cargo, and together with ESCRTs 1–3, drives cargo incorporation into and formation of intralumenal vesicles.
<xref rid="R29" ref-type="bibr">
<sup>29</sup>
</xref>
<sup>,</sup>
<xref rid="R35" ref-type="bibr">
<sup>35</sup>
</xref>
To deliver intralumenal vesicles, the MVB docks and fuses with the vacuole, an event that requires the homotypic fusion and vacuole protein sorting (HOPS) complex, Rab family GTPase, Ypt7, and SNARE proteins.
<xref rid="R36" ref-type="bibr">
<sup>36</sup>
</xref>
<sup>-</sup>
<xref rid="R38" ref-type="bibr">
<sup>38</sup>
</xref>
The HOPS complex is also needed for vesicles bearing AP-3 to dock and fuse to the vacuole in the ALP pathway, which does not require clathrin and bypasses the MVB completely.
<xref rid="R39" ref-type="bibr">
<sup>39</sup>
</xref>
These vacuolar trafficking pathways are summarized in
<xref ref-type="fig" rid="F1">Figure 1</xref>
.</p>
<fig id="F1" fig-type="figure" orientation="portrait" position="float">
<caption>
<p>
<bold>Figure 1.</bold>
Protein trafficking and vacuolar sorting pathways. Cellular compartments are labeled in black and secretory pathways discussed in this review are highlighted and color-coded. Of particular note are the vacuolar sorting pathways: the CPY pathway, shown in light blue; the ALP pathway, shown in green; and the Cvt pathway, shown in brown (see text for details). This image was adapted from Bowers et al. 2005.
<xref rid="R17" ref-type="bibr">
<sup>17</sup>
</xref>
</p>
</caption>
<graphic xlink:href="cl-4-e28023-g1"></graphic>
</fig>
</sec>
<sec>
<title>The Yeast Vacuole as a Site of Protein Degradation</title>
<p>The vacuole is host to numerous exopeptidases and endopeptidases that contribute to what is often considered the vacuole’s principle function, protein degradation.
<xref rid="R40" ref-type="bibr">
<sup>40</sup>
</xref>
The vacuole maintains protein homeostasis under physiological conditions by degrading senescent, superfluous, and damaged proteins and organelles. Vacuole function is also vital under conditions of nutrient stress, when cell growth and proliferation are downregulated and proteins must be broken down so that their constituent amino acids can be recycled.
<xref rid="R41" ref-type="bibr">
<sup>41</sup>
</xref>
Impressively, degradation of up to ~85% of the cell’s intracellular protein content has been observed during nutrient starvation.
<xref rid="R42" ref-type="bibr">
<sup>42</sup>
</xref>
Nutrient stress is encountered when yeast reach stationary phase, or when they undergo sporulation. Some of the cues known to trigger nutrient stress include carbon and nitrogen starvation, and to a lesser extent when there is a lack of essential amino acids, nucleotides, and sulfates.
<xref rid="R43" ref-type="bibr">
<sup>43</sup>
</xref>
<sup>,</sup>
<xref rid="R44" ref-type="bibr">
<sup>44</sup>
</xref>
This next section summarizes the various degradation functions attributed to the vacuole, and the distinct routes that deliver proteins to this organelle for degradation.</p>
<sec>
<title>Autophagy</title>
<p>Autophagy, also known as macroautophagy, is a process whereby bulk cytoplasmic material and organelles are isolated in a double-membrane vesicle known as an autophagosome.
<xref rid="R45" ref-type="bibr">
<sup>45</sup>
</xref>
The autophagosome fuses with the vacuole, where its contents are degraded and the constituent components are recycled. This mechanism is conserved throughout eukaryotes, and is used to maintain cellular homeostasis under physiological conditions by eliminating long-lived proteins and damaged organelles. Autophagy can also be induced under conditions of nutrient stress and during specific stages in the cell cycle, such as in stationary phase or during sporulation.
<xref rid="R46" ref-type="bibr">
<sup>46</sup>
</xref>
<sup>,</sup>
<xref rid="R47" ref-type="bibr">
<sup>47</sup>
</xref>
Autophagy is mediated by over 30 autophagy-related proteins, known as the Atg proteins.
<xref rid="R48" ref-type="bibr">
<sup>48</sup>
</xref>
The Atg proteins act during a series of sequential steps: induction of autophagy, cargo recognition, vesicle nucleation, expansion and completion of the autophagosome, Atg protein recycling, fusion of the autophagosome with the vacuole, vesicle breakdown, and macromolecular recycling.</p>
<p>A notable type of selective autophagy is known as the cytoplasm-to-vacuole targeting (Cvt) pathway. In contrast to macroautophagy, the Cvt pathway occurs during nutrient-rich conditions and is a constitutive process.
<xref rid="R49" ref-type="bibr">
<sup>49</sup>
</xref>
The Cvt pathway controls the selective transport of homooligomeric vacuolar proteins. Only three substrates in yeast are known to be targeted to the vacuole by this pathway: aminopeptidase 1 (Ape1), α-mannosidase 1 (Ams1), and aminopeptidase 4 (Ape4). Ape1 and Ams1 are resident vacuolar proteins, whereas Ape4 is cytosolic under physiological conditions, but targeted to the vacuole in a Cvt-dependent manner during nutrient starvation conditions.
<xref rid="R50" ref-type="bibr">
<sup>50</sup>
</xref>
These substrates are synthesized in the cytoplasm, where they homooligomerize and bind to Atg19. Atg19 acts as a receptor for Cvt substrates.
<xref rid="R50" ref-type="bibr">
<sup>50</sup>
</xref>
<sup>-</sup>
<xref rid="R53" ref-type="bibr">
<sup>53</sup>
</xref>
The autophagosomes associated with the Cvt pathway are smaller, and take approximately 10 times longer to form than those associated with autophagy.
<xref rid="R52" ref-type="bibr">
<sup>52</sup>
</xref>
<sup>,</sup>
<xref rid="R54" ref-type="bibr">
<sup>54</sup>
</xref>
</p>
<p>The Cvt pathway may be an important alternative trafficking mechanism to target vacuolar resident proteins that are otherwise damaging to secretory pathway residents. Alternatively, the Cvt pathway may facilitate transport of stable oligomeric proteins that are too large to traverse the vacuolar membrane via transporters. Finally, the Cvt pathway may facilitate vacuolar localization of membrane-associated proteins, such as Ams1, which lack a signal sequence to direct their translocation into the secretory pathway (
<xref ref-type="fig" rid="F1">Fig. 1</xref>
).
<xref rid="R53" ref-type="bibr">
<sup>53</sup>
</xref>
</p>
</sec>
<sec>
<title>Endocytosis</title>
<p>Protein composition at the cell surface is carefully regulated. Proteins that become damaged or that may be detrimental are removed by endocytosis and often traffic to the vacuole, where they are degraded. Plasma membrane-to-vacuole trafficking was first observed in yeast by monitoring lucifer yellow, a fluorescent dye that initially localizes to the cell surface but gradually accumulates in the vacuole after endocytosis.
<xref rid="R55" ref-type="bibr">
<sup>55</sup>
</xref>
Subsequent genetic screens were instrumental in identifying components of the endocytic machinery,
<xref rid="R56" ref-type="bibr">
<sup>56</sup>
</xref>
<sup>-</sup>
<xref rid="R58" ref-type="bibr">
<sup>58</sup>
</xref>
and more recently, cutting edge microscopy has generated a detailed temporal and spatial map of clathrin-mediated endocytosis (CME).
<xref rid="R59" ref-type="bibr">
<sup>59</sup>
</xref>
<sup>-</sup>
<xref rid="R62" ref-type="bibr">
<sup>62</sup>
</xref>
CME is by far the best characterized endocytic pathway, requiring the orchestration of > 50 proteins in yeast. The details of CME are the focus of many excellent recent reviews,
<xref rid="R63" ref-type="bibr">
<sup>63</sup>
</xref>
<sup>-</sup>
<xref rid="R66" ref-type="bibr">
<sup>66</sup>
</xref>
but in brief this process is characterized by: 1) arrival of early endocytic and coat proteins, including Ede1, Syp1 and clathrin; 2) cargo recruitment, and the arrival of actin nucleation promoting factors, such as Pan1 and Las17, which is the WASP homolog; 3) regulated branched actin assembly by Arp2/3 and association of additional actin nucleation regulators, including Myo3 and Myo5; 4) membrane invagination, which is driven by actin polymerization and allows for recruitment of the amphiphysins Rvs161 and Rvs167 that aid in constricting the neck of the tubule; and 5) vesicle scission, which may involve the dynamin related protein Vps1, vesicle uncoating, and actin disassembly.
<xref rid="R59" ref-type="bibr">
<sup>59</sup>
</xref>
<sup>-</sup>
<xref rid="R61" ref-type="bibr">
<sup>61</sup>
</xref>
It is important to note that the organization and timing of endocytic events described in yeast is now thought to be largely conserved in mammalian cells.
<xref rid="R67" ref-type="bibr">
<sup>67</sup>
</xref>
<sup>,</sup>
<xref rid="R68" ref-type="bibr">
<sup>68</sup>
</xref>
In addition to the well-characterized CME pathway, a clathrin-independent endoctyic pathway (CIE), analogous to the RhoA CIE pathway in mammals, was also recently identified in yeast.
<xref rid="R69" ref-type="bibr">
<sup>69</sup>
</xref>
</p>
<p>Endocytosis and vacuolar sorting of cell surface proteins requires cargo ubiquitination. Pioneering studies of the yeast G-protein coupled receptors and nutrient permeases showed that ligand- or nutrient-induced ubiquitination precedes protein endocytosis.
<xref rid="R70" ref-type="bibr">
<sup>70</sup>
</xref>
<sup>-</sup>
<xref rid="R72" ref-type="bibr">
<sup>72</sup>
</xref>
The ubiquitin ligase Rsp5 is required for ubiquitination,
<xref rid="R72" ref-type="bibr">
<sup>72</sup>
</xref>
<sup>-</sup>
<xref rid="R75" ref-type="bibr">
<sup>75</sup>
</xref>
but most membrane cargos do not bind the ligase directly. Instead, adaptor proteins, such as the α-arrestins, recruit Rsp5 to specific membrane cargo, often in a signal-induced fashion and stimulate endocytosis.
<xref rid="R76" ref-type="bibr">
<sup>76</sup>
</xref>
<sup>-</sup>
<xref rid="R80" ref-type="bibr">
<sup>80</sup>
</xref>
Ubiquitinated cargo proteins, once removed from the cell surface, are sorted to endosomes and enter the MVB in an ESCRT-dependent manner.
<xref rid="R29" ref-type="bibr">
<sup>29</sup>
</xref>
<sup>,</sup>
<xref rid="R35" ref-type="bibr">
<sup>35</sup>
</xref>
<sup>,</sup>
<xref rid="R81" ref-type="bibr">
<sup>81</sup>
</xref>
Thus, there is convergence of the endocytic route to the vacuole with the Golgi-to-vacuolar sorting pathway, described above. Many studies have examined protein stability in cells harboring deletions of the Pep4 protease, which prevents maturation of the vacuolar proteases (see below).
<xref rid="R82" ref-type="bibr">
<sup>82</sup>
</xref>
<sup>,</sup>
<xref rid="R83" ref-type="bibr">
<sup>83</sup>
</xref>
These efforts have helped determine the vacuolar trafficking itineraries for specific cargo.
<xref rid="R71" ref-type="bibr">
<sup>71</sup>
</xref>
<sup>,</sup>
<xref rid="R72" ref-type="bibr">
<sup>72</sup>
</xref>
<sup>,</sup>
<xref rid="R84" ref-type="bibr">
<sup>84</sup>
</xref>
<sup>,</sup>
<xref rid="R85" ref-type="bibr">
<sup>85</sup>
</xref>
</p>
</sec>
</sec>
<sec>
<title>The Vacuolar Proteases</title>
<p>The yeast vacuole contains seven characterized vacuolar proteases, one of which is a transmembrane protease. Among all of these, three are metalloproteases, three are serine proteases, and one is an aspartyl protease. The vacuolar proteases include three aminopeptidases, two carboxypeptidases, and two endopeptidases. This section describes the known characteristics and function of these proteases, which are summarized in
<xref ref-type="table" rid="T1">Table 1</xref>
. Quite recently, we reported on an eighth vacuolar protease, which is a transmembrane metalloprotease and is the product of the
<italic>YBR074w</italic>
gene (Pff1) (also see below).
<xref rid="R86" ref-type="bibr">
<sup>86</sup>
</xref>
However, its protease activity has yet to be demonstrated.</p>
<table-wrap id="T1" orientation="portrait" position="float">
<caption>
<title>
<bold>Table 1.</bold>
<italic>Saccharomyces cerevisiae</italic>
vacuolar proteases. Only those vacuolar resident proteases are shown whose activities and functions have been established experimentally (see text for details)</title>
</caption>
<pmc-comment>OASIS TABLE HERE</pmc-comment>
<table frame="hsides" rules="groups">
<colgroup>
<col width="24.67%"></col>
<col width="8.23%"></col>
<col width="17.57%"></col>
<col width="15.62%"></col>
<col width="12.24%"></col>
<col width="12.58%"></col>
<col width="9.09%"></col>
</colgroup>
<thead>
<tr>
<th align="left" valign="top">          Protease</th>
<th align="center" valign="top">          eGene</th>
<th align="center" valign="top">          Activity</th>
<th align="center" valign="top">          Proteolytically activated by</th>
<th align="center" valign="top">          Trafficking pathway</th>
<th align="center" valign="top">          Function</th>
<th align="center" valign="top">          Known P1 site amino acids</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" valign="top">          Proteinase A</td>
<td align="left" valign="top">          
<italic>PEP4</italic>
</td>
<td align="left" valign="top">          aspartyl endoprotease</td>
<td align="left" valign="top">          Pep4 and Prb1</td>
<td align="left" valign="top">          secretory</td>
<td align="left" valign="top">          Initiator of protease activation cascade; protein degredation</td>
<td align="left" valign="top">          Phe, Leu, Tyr, Trp, Thr, Asn, Gln, Glu, Lys, Ala, Ile</td>
</tr>
<tr>
<td align="left" valign="top">          Proteinase B</td>
<td align="left" valign="top">          
<italic>PRB1</italic>
</td>
<td align="left" valign="top">          serine endoprotease</td>
<td align="left" valign="top">          Pep4 and Prb1</td>
<td align="left" valign="top">          secretory</td>
<td align="left" valign="top">          protease activation; protease degredation</td>
<td align="left" valign="top">          Leu, Arg, Phe, Tyr, Gln, Lys</td>
</tr>
<tr>
<td align="left" valign="top">          Carboxypeptidase Y</td>
<td align="left" valign="top">          
<italic>PRC1</italic>
</td>
<td align="left" valign="top">          serine carboxypeptidase</td>
<td align="left" valign="top">          Pep4 and Prb1</td>
<td align="left" valign="top">          CPY pathway</td>
<td align="left" valign="top">          peptide degredation</td>
<td align="left" valign="top">          Ala, Gly, Val, Leu, Ile, Met, Phe</td>
</tr>
<tr>
<td align="left" valign="top">          Carboxypeptidase S</td>
<td align="left" valign="top">          
<italic>CPS1</italic>
</td>
<td align="left" valign="top">          Zinc metalloprotease</td>
<td align="left" valign="top">          Prb1</td>
<td align="left" valign="top">          CPY pathway</td>
<td align="left" valign="top">          peptide degredation</td>
<td align="left" valign="top">          Gly, Leu</td>
</tr>
<tr>
<td align="left" valign="top">          Aminopeptidase I</td>
<td align="left" valign="top">          
<italic>APE1</italic>
</td>
<td align="left" valign="top">          Zinc metalloprotease</td>
<td align="left" valign="top">          Prb1</td>
<td align="left" valign="top">          Cvt pathway</td>
<td align="left" valign="top">          glutathione degredation</td>
<td align="left" valign="top">          Leu, Cys/Gly</td>
</tr>
<tr>
<td align="left" valign="top">          Aminopeptidase Y</td>
<td align="left" valign="top">          
<italic>APE3</italic>
</td>
<td align="left" valign="top">          metalloprotease</td>
<td align="left" valign="top">          Prb1</td>
<td align="left" valign="top">          secretory</td>
<td align="left" valign="top">          unknown</td>
<td align="left" valign="top">          Pro, Ala, Leu, Met, Phe, Tyr, Ser, Lys, Arg</td>
</tr>
<tr>
<td align="left" valign="top">          Dipeptidylaminopeptidase B</td>
<td align="left" valign="top">          
<italic>DAP2</italic>
</td>
<td align="left" valign="top">          serine dipeptidase</td>
<td align="left" valign="top">          none</td>
<td align="left" valign="top">          CPY pathway</td>
<td align="left" valign="top">          unknown</td>
<td align="left" valign="top">          Xaa-Ala, Xaa-Pro</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>The MEROPS peptidase database (
<ext-link ext-link-type="uri" xlink:href="http://merops.sanger.ac.uk">http://merops.sanger.ac.uk</ext-link>
) classifies known proteases into evolutionarily related groups, which will be referenced in the following discussion. A protease clan refers to proteases derived from a single common ancestor, and clans are subdivided into families. A protease family refers to a sub-group of proteases that share sequence similarity, either throughout the entire protein sequence or only within the catalytic domain.
<xref rid="R87" ref-type="bibr">
<sup>87</sup>
</xref>
Protease families are assigned a letter referring to the catalytic mechanism of the protease: M for metalloprotease, S for serine protease, and A for aspartyl protease. The catalytic designation is followed by a numerical family identifier.
<xref rid="R88" ref-type="bibr">
<sup>88</sup>
</xref>
Another important aspect of nomenclature refers to the site of cleavage of the substrate. The amino acid on the N-terminal side of the hydrolyzed peptide bond is referred to as P1, whereas the amino acid on the C-terminal side is referred to as P1’. Similarly, the site on the proteolytic enzyme known to bind to the P1 residue is referred to as S1, and the site recognizing the P1’ residue is referred to as S1’.</p>
<p>In brief, serine proteases comprise a large family whose enzymatic activity is mediated by a characteristic catalytic triad consisting of Asp, His, and Ser. The members, substrates and catalytic mechanism of the serine type proteases is reviewed in Hedstrom et al.
<xref rid="R89" ref-type="bibr">
<sup>89</sup>
</xref>
In contrast, metalloproteases depend on metal ions, especially Zn
<sup>2+</sup>
, for their catalytic function.
<xref rid="R90" ref-type="bibr">
<sup>90</sup>
</xref>
The aspartyl proteases are characterized instead by two catalytic Asp residues mediating an acid-base hydrolysis reaction.
<xref rid="R91" ref-type="bibr">
<sup>91</sup>
</xref>
The structure and function of aspartyl proteases was reviewed by Dunn.
<xref rid="R92" ref-type="bibr">
<sup>92</sup>
</xref>
</p>
<p>It is important to highlight the fact that early studies of vacuolar proteases led to seminal discoveries in cell biology. First, many vacuolar proteases, including CPY, CPS, and Ape1, are translated as precursors that are proteolytically cleaved to become mature, active proteases in the vacuole. In addition to proteolysis, CPY and CPS are glycosylated in the secretory pathway, altering their molecular weight. Thus, progressive protease maturation is a marker that can pinpoint protease location during vacuolar transit.
<xref rid="R40" ref-type="bibr">
<sup>40</sup>
</xref>
<sup>,</sup>
<xref rid="R82" ref-type="bibr">
<sup>82</sup>
</xref>
(The reader is referred to figure 2 in ref.
<xref rid="R40" ref-type="bibr">
<sup>40</sup>
</xref>
for a cartoon outlining the maturation events associated with the vacuolar proteases.)</p>
<p>Perhaps the best-characterized example of a protease that follows these events is CPY. The CPY signal sequence targets the nascent protein to the ER and is then removed. ER lumenal CPY has a propeptide, which blocks protease activity and aids in CPY folding and glycosylation to generate p1-CPY.
<xref rid="R93" ref-type="bibr">
<sup>93</sup>
</xref>
<sup>,</sup>
<xref rid="R94" ref-type="bibr">
<sup>94</sup>
</xref>
Further glycosylation in the Golgi forms the higher molecular weight p2-CPY species. Finally, in the vacuole Pep4 cleaves the CPY propeptide to produce the lower molecular weight, mature CPY enzyme.
<xref rid="R95" ref-type="bibr">
<sup>95</sup>
</xref>
Defects in CPY processing were instrumental in identifying proteins involved in protein quality control, glycosylation, and trafficking pathways between the ER and vacuole. When Golgi-to-vacuolar trafficking is impaired, CPY is secreted into the periplasmic space, and several genetic screens cleverly exploited this feature to identify proteins required for this trafficking interval.
<xref rid="R20" ref-type="bibr">
<sup>20</sup>
</xref>
<sup>,</sup>
<xref rid="R22" ref-type="bibr">
<sup>22</sup>
</xref>
<sup>,</sup>
<xref rid="R23" ref-type="bibr">
<sup>23</sup>
</xref>
<sup>,</sup>
<xref rid="R96" ref-type="bibr">
<sup>96</sup>
</xref>
<sup>-</sup>
<xref rid="R98" ref-type="bibr">
<sup>98</sup>
</xref>
For example, the CPY sorting receptor, Vps10, which is required for Golgi-to-MVB trafficking, was first identified in one such screen, and additional sorting receptors have since been characterized.
<xref rid="R99" ref-type="bibr">
<sup>99</sup>
</xref>
<sup>,</sup>
<xref rid="R100" ref-type="bibr">
<sup>100</sup>
</xref>
</p>
<p>Unlike CPY, which requires the Vps10 receptor for Golgi-to-MVB trafficking, carboxypeptidase S (CPS) is produced as a precursor (pCPS) that is a type-II membrane protein.
<xref rid="R40" ref-type="bibr">
<sup>40</sup>
</xref>
<sup>,</sup>
<xref rid="R101" ref-type="bibr">
<sup>101</sup>
</xref>
Once pCPS reaches the vacuole Pep4 or Prb1 cleave the transmembrane anchor to generate mature CPS (mCPS), which is a soluble peptidase in the vacuolar lumen.
<xref rid="R101" ref-type="bibr">
<sup>101</sup>
</xref>
Therefore, CPS maturation can also be tracked by monitoring changes in the protein’s molecular weight.
<xref rid="R101" ref-type="bibr">
<sup>101</sup>
</xref>
<sup>,</sup>
<xref rid="R102" ref-type="bibr">
<sup>102</sup>
</xref>
Studies using CPS demonstrated that Rsp5-mediated ubiquitination of cargos and recognition of the ubiquitinated species by the ESCRTs drives sorting to the vacuolar lumen.
<xref rid="R29" ref-type="bibr">
<sup>29</sup>
</xref>
<sup>,</sup>
<xref rid="R31" ref-type="bibr">
<sup>31</sup>
</xref>
<sup>,</sup>
<xref rid="R102" ref-type="bibr">
<sup>102</sup>
</xref>
<sup>,</sup>
<xref rid="R103" ref-type="bibr">
<sup>103</sup>
</xref>
Efficient ubiquitination and segregation of CPS to the vacuolar lumen also requires adaptor proteins Tul1 and Bsd2, each of which contain
<sup>L</sup>
/
<sub>P</sub>
PxY motifs that recruit the Rsp5 ubiquitin ligase to CPS.
<xref rid="R104" ref-type="bibr">
<sup>104</sup>
</xref>
<sup>,</sup>
<xref rid="R105" ref-type="bibr">
<sup>105</sup>
</xref>
This paradigm of ubiquitin ligase recruitment to substrates in the secretory pathway by adaptors is broadly conserved.
<xref rid="R34" ref-type="bibr">
<sup>34</sup>
</xref>
</p>
<p>In stark contrast to CPY and CPS, aminopeptidase 1 (referred to as Ape1 or API) does not enter the secretory pathway and lacks a signal sequence motif.
<xref rid="R106" ref-type="bibr">
<sup>106</sup>
</xref>
While CPY and CPS transit to the vacuole in ~6 min, Ape1 requires over 40 min to mature.
<xref rid="R106" ref-type="bibr">
<sup>106</sup>
</xref>
<sup>,</sup>
<xref rid="R107" ref-type="bibr">
<sup>107</sup>
</xref>
As noted above, Ape1 uses the Cvt pathway.
<xref rid="R52" ref-type="bibr">
<sup>52</sup>
</xref>
<sup>,</sup>
<xref rid="R106" ref-type="bibr">
<sup>106</sup>
</xref>
<sup>,</sup>
<xref rid="R108" ref-type="bibr">
<sup>108</sup>
</xref>
The Cvt pathway requires similar machinery to the autophagy pathway and represents a de novo mechanism for vesicle formation in the cytoplasm.
<xref rid="R109" ref-type="bibr">
<sup>109</sup>
</xref>
<sup>,</sup>
<xref rid="R110" ref-type="bibr">
<sup>110</sup>
</xref>
</p>
<sec>
<title>Soluble vacuolar proteases</title>
<p>Proteinase A (PrA), encoded by the
<italic>PEP4</italic>
gene, is a monomeric 42 kDa aspartyl endoprotease of the A1 family of proteases. PrA is targeted to the vacuole via the secretory pathway and is a key enzyme in the vacuolar protease activation cascade.
<xref rid="R1" ref-type="bibr">
<sup>1</sup>
</xref>
<sup>,</sup>
<xref rid="R40" ref-type="bibr">
<sup>40</sup>
</xref>
<sup>,</sup>
<xref rid="R111" ref-type="bibr">
<sup>111</sup>
</xref>
Many vacuolar hydrolases, including PrA, are initially produced as inactive precursor forms, known as zymogens.
<xref rid="R112" ref-type="bibr">
<sup>112</sup>
</xref>
Zymogens are not activated until they have been delivered to the vacuole, where an inhibitory propeptide is removed by proteolysis. This allows hydrolase activity to be sequestered within the vacuole, thereby protecting residents of the secretory pathway from proteolytic damage. The vacuolar proteases, proteinase B (PrB), carboxypeptidase Y (CPY), and aminopeptidase I (API), which are discussed below, each depend on PrA for proteolytic activation. Therefore, PrA mutant strains are deficient in the activity of these proteases as well.
<xref rid="R40" ref-type="bibr">
<sup>40</sup>
</xref>
</p>
<p>PrA is initially synthesized as an inactive precursor referred to as preproPrA. PreproPrA is 405 amino acids in length and has a molecular mass of 52 kDa. PreproPrA has a hydrophobic 22 amino acid signal sequence that directs its translocation into the ER, where it is modified by N-linked glycans at Asn67 and Asn266.
<xref rid="R113" ref-type="bibr">
<sup>113</sup>
</xref>
<sup>,</sup>
<xref rid="R114" ref-type="bibr">
<sup>114</sup>
</xref>
The signal peptide is cleaved by the signal peptidase to produce proPrA, which is then transported to the Golgi. The carbohydrate residues of proPrA are extended by mannosylation in the Golgi. ProPrA is then recognized by the vacuolar protein sorting receptor, Vps10, which targets it to the vacuole.
<xref rid="R115" ref-type="bibr">
<sup>115</sup>
</xref>
Either within the transport vesicle or the vacuole, proPrA undergoes autocatalytic activation, whereby a 54 amino acid propeptide is removed to produce active PrA.
<xref rid="R116" ref-type="bibr">
<sup>116</sup>
</xref>
Active PrA was shown in early work to preferentially cleave substrates between two hydrophobic amino acids, with Phe, Leu, and Glu at the P1 site and Phe, Ile, Leu, and Ala at the P1’ site.
<xref rid="R117" ref-type="bibr">
<sup>117</sup>
</xref>
<sup>,</sup>
<xref rid="R118" ref-type="bibr">
<sup>118</sup>
</xref>
PrA activity extending to polar and charged residues has also been observed, suggesting that PrA may be a more general protease.
<xref rid="R119" ref-type="bibr">
<sup>119</sup>
</xref>
</p>
<p>Proteinase B (PrB) is a serine endoprotease of the S8 family and is encoded by
<italic>PRB1</italic>
. The zymogen preproPrB is initially synthesized as a 76 kDa polypeptide that is translocated into the ER where its 20 amino acid signal peptide is removed and the resulting polypeptide is modified by a single N-linked glycan.
<xref rid="R120" ref-type="bibr">
<sup>120</sup>
</xref>
PreproPrB undergoes autocatalytic cleavage in the ER, removing an N-terminal 260 amino acid propeptide.
<xref rid="R121" ref-type="bibr">
<sup>121</sup>
</xref>
To facilitate the proper folding of proPrB, the ER-resident protein, Pbn1, acts as a chaperone during this process,
<xref rid="R122" ref-type="bibr">
<sup>122</sup>
</xref>
<sup>,</sup>
<xref rid="R123" ref-type="bibr">
<sup>123</sup>
</xref>
and proPrB is further modified by O-linked glycans in the Golgi.
<xref rid="R120" ref-type="bibr">
<sup>120</sup>
</xref>
The N-terminal propeptide is thought to remain non-covalently associated with proPrB, partially inhibiting its enzymatic activity until proPrB is targeted to the vacuole. Here, the N-terminal propeptide is degraded by PrA, which activates the enzyme.
<xref rid="R123" ref-type="bibr">
<sup>123</sup>
</xref>
In the vacuole a C-terminal propeptide (~30 amino acids) of proPrB is also cleaved by PrA to produce a 37 kDa PrB species. The final cleavage event is mediated autocatalytically by PrB, removing a C-terminal peptide modified by a single N-linked glycan, and yielding the mature 31 kDa PrB.
<xref rid="R120" ref-type="bibr">
<sup>120</sup>
</xref>
Intriguingly, while disrupting PrA activity leads to accumulation of proPrB and the N-terminal propeptide, proPrB retains residual catalytic activity.
<xref rid="R40" ref-type="bibr">
<sup>40</sup>
</xref>
</p>
<p>Information on the substrate specificity of PrB comes from studies of PrB isolated from both
<italic>S. cerevisiae</italic>
and
<italic>C. albicans</italic>
. Both artificial peptides and non-yeast proteins, such as insulin, were used to test PrB substrate specificity in these studies.
<xref rid="R124" ref-type="bibr">
<sup>124</sup>
</xref>
<sup>,</sup>
<xref rid="R125" ref-type="bibr">
<sup>125</sup>
</xref>
Based on these studies, PrB has broad substrate specificity that depends on amino acid context. The protease cleaves substrates at Arg, Leu, Tyr, Phe, Lys, or Asp in the P1 site, and Phe, Tyr, Val, Gly, Leu, Glu, or His in the P1’ site.
<xref rid="R124" ref-type="bibr">
<sup>124</sup>
</xref>
<sup>,</sup>
<xref rid="R125" ref-type="bibr">
<sup>125</sup>
</xref>
</p>
<p>Carboxypeptidase Y (CPY) is a serine carboxypeptidase of the S10 family, and is encoded by
<italic>PRC1</italic>
in yeast. As outlined above, CPY is initially synthesized as a ~60 kDa precursor that is 532 amino acids in length. The protein is translocated into the ER where a 20 amino acid signal peptide is removed by signal peptidase and four N-linked glycan residues are appended to produce a 67 kDa form called p1-CPY.
<xref rid="R126" ref-type="bibr">
<sup>126</sup>
</xref>
CPY protein folding in the ER involves the formation of five disulfide bonds and is facilitated by a 91 amino acid propeptide, which acts as an intramolecular chaperone.
<xref rid="R127" ref-type="bibr">
<sup>127</sup>
</xref>
The p1-CPY protein is delivered to the Golgi where glycan residues are extended to produce the 69 kDa species, referred to as p2-CPY. In the Golgi, p2-CPY is recognized by Vps10 for delivery to the MVB via a Gln-Arg-Pro-Leu recognition sequence in the propeptide region.
<xref rid="R40" ref-type="bibr">
<sup>40</sup>
</xref>
<sup>,</sup>
<xref rid="R99" ref-type="bibr">
<sup>99</sup>
</xref>
<sup>,</sup>
<xref rid="R126" ref-type="bibr">
<sup>126</sup>
</xref>
In the vacuole, the propeptide of CPY is removed by the sequential action of PrA and PrB to produce active CPY.
<xref rid="R1" ref-type="bibr">
<sup>1</sup>
</xref>
<sup>,</sup>
<xref rid="R126" ref-type="bibr">
<sup>126</sup>
</xref>
</p>
<p>CPY contains a catalytic triad characteristic of serine proteases, which is comprised of Ser146, His397, and Asp338.
<xref rid="R126" ref-type="bibr">
<sup>126</sup>
</xref>
The enzyme is active at low pH and high salt concentrations, which are characteristic of the vacuolar environment. Substrates of CPY are recognized via their C-terminal carboxyl group, which associates with CPY by hydrogen bonding near the S1’ binding pocket. The S1’ subsite in the substrate binding pocket is relatively large and can recognize both hydrophobic and hydrophilic residues. However, the hydrophobic S1 subsite exhibits greater specificity toward hydrophobic amino acids by virtue of being lined with bulky Tyr residues and having a Leu at the bottom of the binding pocket.
<xref rid="R126" ref-type="bibr">
<sup>126</sup>
</xref>
</p>
<p>Carboxypeptidase S (CPS) is a zinc-dependent metallo-carboxypeptidase of the M20 family, and is encoded by
<italic>CPS1</italic>
. As introduced above, CPS is synthesized as a ~64 kDa precursor containing a membrane sequence spanning amino acids 20 through 40 that is inserted into the ER membrane such that CPS is oriented with its C-terminus facing the lumen.
<xref rid="R128" ref-type="bibr">
<sup>128</sup>
</xref>
The CPS membrane-bound precursor is glycosylated and transits through the Golgi before being targeted to the vacuole via the CPY pathway.
<xref rid="R33" ref-type="bibr">
<sup>33</sup>
</xref>
Once in the vacuole, CPS is processed by PrB and is released into the vacuolar lumen. Both 74 kDa and 77 kDa mature forms of CPS are observed, representing CPS modified by 2 or 3 N-linked glycans, respectively. It is interesting to note that the membrane-bound form of CPS also exhibits proteolytic activity.
<xref rid="R101" ref-type="bibr">
<sup>101</sup>
</xref>
</p>
<p>CPS has partially overlapping substrate specificity with CPY, contributing ~60% of the enzymatic activity required to hydrolyze the synthetic dipeptide Cbz-Gly-Leu, where Cbz is the amino protecting group benzyloxycarbonyl.
<xref rid="R129" ref-type="bibr">
<sup>129</sup>
</xref>
In a
<italic>prc1Δ</italic>
strain, CPS is required for growth on media when Cbz-Gly-Leu is the sole source of nitrogen and Leu.
<xref rid="R128" ref-type="bibr">
<sup>128</sup>
</xref>
CPS has been found to play a role in sporulation efficiency. Specifically, disrupting PrB activity produces a partial defect in sporulation, but when PrB activity is disrupted together with CPY and CPS activity yeast are unable to sporulate.
<xref rid="R129" ref-type="bibr">
<sup>129</sup>
</xref>
</p>
<p>Aminopeptidase I (Ape1) is a zinc-dependent metallo-aminopeptidase of the M18 family, encoded by the
<italic>APE1</italic>
gene in yeast. Ape1 is synthesized as 61 kDa precursor known as preApe1, which contains a 45 amino acid N-terminal helix-loop-helix domain that is required for vacuolar localization. PreApe1 homooligomerizes in the cytoplasm, forming a dodecamer with a molecular mass of 372 kDa that then utilizes the Cvt pathway.
<xref rid="R130" ref-type="bibr">
<sup>130</sup>
</xref>
<sup>,</sup>
<xref rid="R131" ref-type="bibr">
<sup>131</sup>
</xref>
The preApe1 complex is recognized by its receptor, Atg19, which interacts with Atg11 to tether preApe1 complex to the site of autophagosome formation, known as the Phagophore Assembly Site (PAS).
<xref rid="R132" ref-type="bibr">
<sup>132</sup>
</xref>
Next, the preApe1 complex is encapsulated into the Cvt vesicle that fuses with the vacuole. Exposure to the acidic pH of the vacuolar lumen results in disassembly of the preApe1 complex to preApe1 dodecamers.
<xref rid="R131" ref-type="bibr">
<sup>131</sup>
</xref>
Finally, PrB cleaves the N-terminal propeptide in preApe1 to produce the active 50 kDa enzyme.
<xref rid="R132" ref-type="bibr">
<sup>132</sup>
</xref>
<sup>,</sup>
<xref rid="R133" ref-type="bibr">
<sup>133</sup>
</xref>
</p>
<p>ApeI is also known as Lap4 because it was initially characterized as a Leu aminopeptidase in a screen for yeast mutants defective for the ability to hydrolyze the synthetic substrate Leu β-naphthylamide.
<xref rid="R108" ref-type="bibr">
<sup>108</sup>
</xref>
Ape1 was also shown to mediate resistance to Cd
<sup>2+</sup>
, which is otherwise toxic and induces oxidative stress.
<xref rid="R134" ref-type="bibr">
<sup>134</sup>
</xref>
Yeast sequester Cd
<sup>2+</sup>
in the vacuole as a glutathione (GSH) S-conjugate. The GSH is recycled from the vacuole by the action of gamma-glutamyltranspeptidase (Ecm38), which hydrolyzes Glu, leaving a Cys-Gly dipeptide, which is thought to be further degraded by Ape1.
<xref rid="R134" ref-type="bibr">
<sup>134</sup>
</xref>
Thus, Ape1 is required for GSH homeostasis, and defects in this process lead to Cd
<sup>2+</sup>
sensitivity. However, more recent work has identified an alternative GSH degradation pathway involving the cytosolic dipeptidase Dug1, which is a member of the M20 family of metalloproteases. This study demonstrated that Ape1 was not required for growth of a
<italic>met15Δ</italic>
strain on media in which GSH was the only source of sulfur.
<xref rid="R135" ref-type="bibr">
<sup>135</sup>
</xref>
</p>
<p>Aminopeptidase Y (Ape3), encoded by the gene
<italic>APE3</italic>
, is a metallo-aminopeptidase of the same M28 family of proteases as the recently discovered, putative vacuolar protease, Ybr074w (see below). Like
<italic>YBR074w</italic>
, the
<italic>APE3</italic>
locus is found on chromosome II. Global pairwise sequence alignment of Ape3 and Ybr074w, shown in
<xref ref-type="fig" rid="F2">Figure 2</xref>
, reveals 5.7% amino acid sequence identity, while comparison of the M28 protease domains indicates ~22% sequence identity including conservation of catalytic residues.
<xref rid="R136" ref-type="bibr">
<sup>136</sup>
</xref>
Ape3 is synthesized as a 60 kDa precursor bearing a 21 amino acid signal sequence directing its translocation into the ER.
<xref rid="R137" ref-type="bibr">
<sup>137</sup>
</xref>
The signal sequence is cleaved in the ER, and the Ape3 precursor is targeted to the Golgi, where—as evident with several of the other enzymes discussed above—it is recognized by Vps10 for vacuole targeting.
<xref rid="R115" ref-type="bibr">
<sup>115</sup>
</xref>
Also similar to some of the other proteases, a 35 amino acid N-terminal propeptide is cleaved by PrB in the vacuole, producing mature Ape3.
<xref rid="R138" ref-type="bibr">
<sup>138</sup>
</xref>
The mature Ape3 protein exists in both a 70 kDa and 75 kDa form that differ in the extent of glycan modification, as Ape3 has eight acceptor sites for N-linked glycans but only 5–7 sites are used.
<xref rid="R138" ref-type="bibr">
<sup>138</sup>
</xref>
</p>
<fig id="F2" fig-type="figure" orientation="portrait" position="float">
<caption>
<p>
<bold>Figure 2.</bold>
(
<bold>A</bold>
) Sequence alignment of Ape3 (MEROPS accession: MER001288) and Pff1 (MEROPS accession: MER001911), two vacuole-resident yeast metalloproteases. A global sequence alignment was performed using ClustalW default parameters.
<xref rid="R142" ref-type="bibr">
<sup>142</sup>
</xref>
Only the M28 domains of Ape3 and Ybr074 are shown according to the MEROPS defined protease domain boundaries. (
<bold>B</bold>
) Active site of the M28 metalloprotease, AM-1 Aminopeptidase, from
<italic>Aneurinibacillus sp.</italic>
strain AM-1 (MEROPS accession: MER100667; protease domain: Gly173-Arg436). Of the M28 metalloproteases whose crystal structures have been solved, the protease domain amino acid sequence of AM-1 Aminopeptidase is most similar to that of the yeast Pff1 (MEROPS accession: MER001911; protease domain: Asn96-Ala341). The MEROPS defined protease domain boundaries of AM-1 and Pff1 show 19.2% identity when compared by global sequence alignment using ClustalW default parameters.
<xref rid="R142" ref-type="bibr">
<sup>142</sup>
</xref>
Catalytic residues are labeled in blue and metal coordinating residues are labeled in red in both this panel and in part (
<bold>A</bold>
). Zinc ions are depicted as red spheres. This image was captured from PDB ID: 2EK9 using 3D Molecule Viewer of Vector NTI Advance, Version 11.5.2 (Life Technologies).</p>
</caption>
<graphic xlink:href="cl-4-e28023-g2"></graphic>
</fig>
<p>The enzymatic activity of Ape3 was characterized by Yasuhara et al. using synthetic peptides with a C-terminal 4-methylcoumaryl-7-amide (MCA) protecting group.
<xref rid="R138" ref-type="bibr">
<sup>138</sup>
</xref>
Ape3 exhibits a preference for cleaving the basic residue Lys. However, it also cleaves N-terminal Pro, Ala, Leu, Met, Ser, Phe, and Tyr.
<xref rid="R138" ref-type="bibr">
<sup>138</sup>
</xref>
Interestingly, the hydrolysis of amino acid-MCAs and dipeptides was enhanced in the presence of Co
<sup>2+</sup>
, while that of dipeptidyl-MCAs and larger unmodified peptides was inhibited. Although M28 family metalloproteases commonly bind two catalytic zinc ions, the authors suggested that zinc is inhibitory to Ape3 proteolytic activity.
<xref rid="R138" ref-type="bibr">
<sup>138</sup>
</xref>
</p>
</sec>
<sec>
<title>Membrane-bound vacuolar proteases</title>
<p>Dipeptidylaminopeptidase B (Dap2) is serine protease in the S9 family. Dap2 has a hydrophobic transmembrane segment positioned 30 amino acids from the N-terminus, which serves both as an ER-targeting sequence and membrane anchor. Dap2 is a type II membrane protein, having a cytosolic N-terminus and a prominent lumenal C-terminus. The protein is initially synthesized as a 93 kDa protein, 818 amino acids in length, and is modified in the ER with between 5 and 8 N-linked glycans, which undergo minimal extension in the Golgi. This results in a final ~120 kDa product. Unlike other vacuolar proteases, Dap2 is not proteolytically processed in the vacuole.
<xref rid="R40" ref-type="bibr">
<sup>40</sup>
</xref>
<sup>,</sup>
<xref rid="R139" ref-type="bibr">
<sup>139</sup>
</xref>
Although the substrate specificity of Dap2 is unknown, a Golgi-resident homolog, dipeptidylaminopeptidase A (Ste13) processes repeating X-Ala dipeptides from the yeast α factor mating pheromone.
<xref rid="R140" ref-type="bibr">
<sup>140</sup>
</xref>
Disrupting Ste13 function prevents maturation of α factor and results in sterile
<italic>MATα</italic>
cells. This defect in mating was partially restored when Dap2 was overexpressed ~10-fold in a
<italic>MATα ste13</italic>
mutant strain.
<xref rid="R140" ref-type="bibr">
<sup>140</sup>
</xref>
</p>
<p>Finally, we recently identified Protease in FXNA-related Family 1 (Pff1) as a vacuolar membrane protein that is predicted to possess nine transmembrane segments.
<xref rid="R86" ref-type="bibr">
<sup>86</sup>
</xref>
Pff1 harbors a conserved M28 protease domain (
<xref ref-type="fig" rid="F2">Fig. 2</xref>
) that faces the vacuolar lumen, as determined based on the accessibility of this domain when exogenously added protease was added to a crude vesicle preparation. The vacuolar residence of Pff1 was evidenced by the analysis of several different tagged forms of the protein,
<xref rid="R86" ref-type="bibr">
<sup>86</sup>
</xref>
and because the native protein was identified when highly enriched vacuolar membranes were subjected to mass spectrometry analysis.
<xref rid="R10" ref-type="bibr">
<sup>10</sup>
</xref>
Although the specific function and substrate-specificity of Pff1 has yet to be elucidated, a whole genomic analysis of proteins that respond to the absence of the
<italic>PFF1</italic>
(
<italic>YBR074w</italic>
) gene product is consistent with the protein playing a role in vacuolar function. Interestingly, a putative mammalian homolog of Pff1 exists.
<xref rid="R141" ref-type="bibr">
<sup>141</sup>
</xref>
However, the mammalian protein was instead found to reside in the ER and appears to be involved in ovarian development. In the future, it will be exciting to determine whether the mammalian enzyme acts on select substrates that traffic through the secretory pathway, and whether Pff1 in yeast exhibits substrate specificity in the vacuole.</p>
</sec>
</sec>
<sec sec-type="conclusions">
<title>Conclusions</title>
<p>While the substrate specificities of many of the vacuolar proteases have been defined using synthetic substrates, significantly less information is available on the action of these proteases on endogenous,
<italic>bona fide</italic>
substrates. In principle, substrates might be identified through yeast genetic screens using mutant forms of the corresponding protease. But, because the absence of a protease is often masked by the activity of a functionally redundant enzyme, many of the proteases described in this review were instead obtained by analyzing activities for defined, synthetic substrates, or simply by virtue of sequence gazing. One view is that vacuolar proteases are indiscriminant enzymes because their major requirement in this organelle is to simply process full-length proteins to short peptides and amino acids, which can serve as precursors for ongoing protein synthesis and/or for metabolic, energy-generating processes. If this is the case, one might posit that the proteases evolved to ensure the efficient degradation of any protein substrate that enters the vacuole. Nevertheless, it remains possible that select proteases do exhibit substrate specificity. If so, do these proteases respond to certain physiological conditions requiring vacuole-dependent degradation or processing of distinct substrates? Are there functional characteristics that differentiate soluble vacuolar proteases from membrane-bound vacuolar proteases? Perhaps membrane-bound proteases associate more readily with membrane-bound substrates, but even this question has not been addressed. Given the growing appreciation that proteases can dictate so many critical cellular “decisions,” and combined with the development of genomic and proteomic tools that permit a better understanding of cellular protein networks, it is likely that much remains to be learned about the myriad proteases that provide house-keeping functions in the vacuole.</p>
</sec>
</body>
<back>
<ack>
<title>Disclosure of Potential Conflicts of Interest</title>
<p>No potential conflicts of interest were disclosed.</p>
</ack>
<ack>
<title>Acknowledgments</title>
<p>This work was supported by development funds from the Department of Cell Biology (University of Pittsburgh) and grant DA014204–11 (awarded to A. Sorkin, University of Pittsburgh) from the National Institutes of Health for A.F.O, and by grant GM75061 and DK79307 (The Pittsburgh Center for Kidney Research) from the National Institutes of Health to J.L.B.</p>
</ack>
<fn-group>
<fn fn-type="other">
<p>Previously published online:
<ext-link ext-link-type="uri" xlink:href="http://www.landesbioscience.com/journals/cellularlogistics/article/28023/">www.landesbioscience.com/journals/cellularlogistics/article/28023</ext-link>
</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="R1">
<label>1</label>
<mixed-citation publication-type="book">Broach JR, Pringle JR, Jones EW. The Molecular and cellular biology of the yeast Saccharomyces. Cold Spring Harbor, N.Y.: Cole Spring Harbor Laboratory Press, 1991.</mixed-citation>
</ref>
<ref id="R2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Kane</surname>
<given-names>PM</given-names>
</name>
</person-group>
<article-title>The yeast lysosome-like vacuole: endpoint and crossroads</article-title>
<source>Biochim Biophys Acta</source>
<year>2009</year>
<volume>1793</volume>
<fpage>650</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamcr.2008.08.003</pub-id>
<pub-id pub-id-type="pmid">18786576</pub-id>
</element-citation>
</ref>
<ref id="R3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marty</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Plant vacuoles</article-title>
<source>Plant Cell</source>
<year>1999</year>
<volume>11</volume>
<fpage>587</fpage>
<lpage>600</lpage>
<pub-id pub-id-type="pmid">10213780</pub-id>
</element-citation>
</ref>
<ref id="R4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Veses</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Richards</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gow</surname>
<given-names>NA</given-names>
</name>
</person-group>
<article-title>Vacuoles and fungal biology</article-title>
<source>Curr Opin Microbiol</source>
<year>2008</year>
<volume>11</volume>
<fpage>503</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1016/j.mib.2008.09.017</pub-id>
<pub-id pub-id-type="pmid">18935977</pub-id>
</element-citation>
</ref>
<ref id="R5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Herman</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>The fungal vacuole: composition, function, and biogenesis</article-title>
<source>Microbiol Rev</source>
<year>1990</year>
<volume>54</volume>
<fpage>266</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="pmid">2215422</pub-id>
</element-citation>
</ref>
<ref id="R6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiemken</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Matile</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Moor</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Vacuolar dynamics in synchronously budding yeast</article-title>
<source>Arch Mikrobiol</source>
<year>1970</year>
<volume>70</volume>
<fpage>89</fpage>
<lpage>103</lpage>
<pub-id pub-id-type="doi">10.1007/BF00412200</pub-id>
<pub-id pub-id-type="pmid">4914043</pub-id>
</element-citation>
</ref>
<ref id="R7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brett</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Kallay</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hua</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chyou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Donowitz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae</article-title>
<source>PLoS One</source>
<year>2011</year>
<volume>6</volume>
<fpage>e17619</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0017619</pub-id>
<pub-id pub-id-type="pmid">21423800</pub-id>
</element-citation>
</ref>
<ref id="R8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Preston</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>EW</given-names>
</name>
</person-group>
<article-title>Assay of vacuolar pH in yeast and identification of acidification-defective mutants</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>1989</year>
<volume>86</volume>
<fpage>7027</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.86.18.7027</pub-id>
<pub-id pub-id-type="pmid">2674942</pub-id>
</element-citation>
</ref>
<ref id="R9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sarry</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Collum</surname>
<given-names>RP</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Naumann</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Dzierszinski</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>CX</given-names>
</name>
<name>
<surname>Hippler</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Analysis of the vacuolar luminal proteome of Saccharomyces cerevisiae</article-title>
<source>FEBS J</source>
<year>2007</year>
<volume>274</volume>
<fpage>4287</fpage>
<lpage>305</lpage>
<pub-id pub-id-type="doi">10.1111/j.1742-4658.2007.05959.x</pub-id>
<pub-id pub-id-type="pmid">17651441</pub-id>
</element-citation>
</ref>
<ref id="R10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiederhold</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gandhi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Permentier</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Breitling</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Poolman</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Slotboom</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>The yeast vacuolar membrane proteome</article-title>
<source>Mol Cell Proteomics</source>
<year>2009</year>
<volume>8</volume>
<fpage>380</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="doi">10.1074/mcp.M800372-MCP200</pub-id>
<pub-id pub-id-type="pmid">19001347</pub-id>
</element-citation>
</ref>
<ref id="R11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lennarz</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<article-title>Unraveling the mechanism of protein N-glycosylation</article-title>
<source>J Biol Chem</source>
<year>2005</year>
<volume>280</volume>
<fpage>3121</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.R400036200</pub-id>
<pub-id pub-id-type="pmid">15590627</pub-id>
</element-citation>
</ref>
<ref id="R12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goto</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Protein O-glycosylation in fungi: diverse structures and multiple functions</article-title>
<source>Biosci Biotechnol Biochem</source>
<year>2007</year>
<volume>71</volume>
<fpage>1415</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="doi">10.1271/bbb.70080</pub-id>
<pub-id pub-id-type="pmid">17587671</pub-id>
</element-citation>
</ref>
<ref id="R13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harsay</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Schekman</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>A subset of yeast vacuolar protein sorting mutants is blocked in one branch of the exocytic pathway</article-title>
<source>J Cell Biol</source>
<year>2002</year>
<volume>156</volume>
<fpage>271</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.200109077</pub-id>
<pub-id pub-id-type="pmid">11807092</pub-id>
</element-citation>
</ref>
<ref id="R14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valdivia</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Baggott</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Chuang</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Schekman</surname>
<given-names>RW</given-names>
</name>
</person-group>
<article-title>The yeast clathrin adaptor protein complex 1 is required for the efficient retention of a subset of late Golgi membrane proteins</article-title>
<source>Dev Cell</source>
<year>2002</year>
<volume>2</volume>
<fpage>283</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="doi">10.1016/S1534-5807(02)00127-2</pub-id>
<pub-id pub-id-type="pmid">11879634</pub-id>
</element-citation>
</ref>
<ref id="R15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cowles</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Odorizzi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Payne</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole</article-title>
<source>Cell</source>
<year>1997</year>
<volume>91</volume>
<fpage>109</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1016/S0092-8674(01)80013-1</pub-id>
<pub-id pub-id-type="pmid">9335339</pub-id>
</element-citation>
</ref>
<ref id="R16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stepp</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lemmon</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>The yeast adaptor protein complex, AP-3, is essential for the efficient delivery of alkaline phosphatase by the alternate pathway to the vacuole</article-title>
<source>J Cell Biol</source>
<year>1997</year>
<volume>139</volume>
<fpage>1761</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.139.7.1761</pub-id>
<pub-id pub-id-type="pmid">9412470</pub-id>
</element-citation>
</ref>
<ref id="R17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bowers</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>TH</given-names>
</name>
</person-group>
<article-title>Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae</article-title>
<source>Biochim Biophys Acta</source>
<year>2005</year>
<volume>1744</volume>
<fpage>438</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamcr.2005.04.004</pub-id>
<pub-id pub-id-type="pmid">15913810</pub-id>
</element-citation>
</ref>
<ref id="R18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vida</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>In vitro reconstitution of intercompartmental protein transport to the yeast vacuole</article-title>
<source>J Cell Biol</source>
<year>1990</year>
<volume>111</volume>
<fpage>2871</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.111.6.2871</pub-id>
<pub-id pub-id-type="pmid">2269659</pub-id>
</element-citation>
</ref>
<ref id="R19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vida</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Huyer</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar endosome-like compartment</article-title>
<source>J Cell Biol</source>
<year>1993</year>
<volume>121</volume>
<fpage>1245</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.121.6.1245</pub-id>
<pub-id pub-id-type="pmid">8509446</pub-id>
</element-citation>
</ref>
<ref id="R20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bankaitis</surname>
<given-names>VA</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>Isolation of yeast mutants defective in protein targeting to the vacuole</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>1986</year>
<volume>83</volume>
<fpage>9075</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.83.23.9075</pub-id>
<pub-id pub-id-type="pmid">3538017</pub-id>
</element-citation>
</ref>
<ref id="R21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Banta</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting</article-title>
<source>J Cell Biol</source>
<year>1988</year>
<volume>107</volume>
<fpage>1369</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.107.4.1369</pub-id>
<pub-id pub-id-type="pmid">3049619</pub-id>
</element-citation>
</ref>
<ref id="R22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raymond</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Howald-Stevenson</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Vater</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>TH</given-names>
</name>
</person-group>
<article-title>Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants</article-title>
<source>Mol Biol Cell</source>
<year>1992</year>
<volume>3</volume>
<fpage>1389</fpage>
<lpage>402</lpage>
<pub-id pub-id-type="doi">10.1091/mbc.3.12.1389</pub-id>
<pub-id pub-id-type="pmid">1493335</pub-id>
</element-citation>
</ref>
<ref id="R23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rothman</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>TH</given-names>
</name>
</person-group>
<article-title>Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway</article-title>
<source>Cell</source>
<year>1986</year>
<volume>47</volume>
<fpage>1041</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(86)90819-6</pub-id>
<pub-id pub-id-type="pmid">3536126</pub-id>
</element-citation>
</ref>
<ref id="R24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abazeed</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Fuller</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>Yeast Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins are but adaptor protein-1 is not required for cell-free transport of membrane proteins from the trans-Golgi network to the prevacuolar compartment</article-title>
<source>Mol Biol Cell</source>
<year>2008</year>
<volume>19</volume>
<fpage>4826</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="doi">10.1091/mbc.E07-05-0442</pub-id>
<pub-id pub-id-type="pmid">18784256</pub-id>
</element-citation>
</ref>
<ref id="R25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bonifacino</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>The GGA proteins: adaptors on the move</article-title>
<source>Nat Rev Mol Cell Biol</source>
<year>2004</year>
<volume>5</volume>
<fpage>23</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1038/nrm1279</pub-id>
<pub-id pub-id-type="pmid">14708007</pub-id>
</element-citation>
</ref>
<ref id="R26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Costaguta</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Fernández</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>GH</given-names>
</name>
<name>
<surname>Payne</surname>
<given-names>GS</given-names>
</name>
</person-group>
<article-title>Distinct roles for TGN/endosome epsin-like adaptors Ent3p and Ent5p</article-title>
<source>Mol Biol Cell</source>
<year>2006</year>
<volume>17</volume>
<fpage>3907</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.1091/mbc.E06-05-0410</pub-id>
<pub-id pub-id-type="pmid">16790491</pub-id>
</element-citation>
</ref>
<ref id="R27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dell’Angelica</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Puertollano</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mullins</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Aguilar</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Vargas</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Hartnell</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Bonifacino</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex</article-title>
<source>J Cell Biol</source>
<year>2000</year>
<volume>149</volume>
<fpage>81</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.149.1.81</pub-id>
<pub-id pub-id-type="pmid">10747089</pub-id>
</element-citation>
</ref>
<ref id="R28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gary</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Wurmser</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Bonangelino</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Weisman</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis</article-title>
<source>J Cell Biol</source>
<year>1998</year>
<volume>143</volume>
<fpage>65</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.143.1.65</pub-id>
<pub-id pub-id-type="pmid">9763421</pub-id>
</element-citation>
</ref>
<ref id="R29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Odorizzi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Babst</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body</article-title>
<source>Cell</source>
<year>1998</year>
<volume>95</volume>
<fpage>847</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="doi">10.1016/S0092-8674(00)81707-9</pub-id>
<pub-id pub-id-type="pmid">9865702</pub-id>
</element-citation>
</ref>
<ref id="R30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Helliwell</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Losko</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kaiser</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease</article-title>
<source>J Cell Biol</source>
<year>2001</year>
<volume>153</volume>
<fpage>649</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.153.4.649</pub-id>
<pub-id pub-id-type="pmid">11352928</pub-id>
</element-citation>
</ref>
<ref id="R31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reggiori</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Pelham</surname>
<given-names>HR</given-names>
</name>
</person-group>
<article-title>Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting</article-title>
<source>EMBO J</source>
<year>2001</year>
<volume>20</volume>
<fpage>5176</fpage>
<lpage>86</lpage>
<pub-id pub-id-type="doi">10.1093/emboj/20.18.5176</pub-id>
<pub-id pub-id-type="pmid">11566881</pub-id>
</element-citation>
</ref>
<ref id="R32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beck</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>MN</given-names>
</name>
</person-group>
<article-title>Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast</article-title>
<source>J Cell Biol</source>
<year>1999</year>
<volume>146</volume>
<fpage>1227</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.146.6.1227</pub-id>
<pub-id pub-id-type="pmid">10491387</pub-id>
</element-citation>
</ref>
<ref id="R33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lauwers</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Jacob</surname>
<given-names>C</given-names>
</name>
<name>
<surname>André</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway</article-title>
<source>J Cell Biol</source>
<year>2009</year>
<volume>185</volume>
<fpage>493</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.200810114</pub-id>
<pub-id pub-id-type="pmid">19398763</pub-id>
</element-citation>
</ref>
<ref id="R34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lauwers</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Erpapazoglou</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Haguenauer-Tsapis</surname>
<given-names>R</given-names>
</name>
<name>
<surname>André</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>The ubiquitin code of yeast permease trafficking</article-title>
<source>Trends Cell Biol</source>
<year>2010</year>
<volume>20</volume>
<fpage>196</fpage>
<lpage>204</lpage>
<pub-id pub-id-type="doi">10.1016/j.tcb.2010.01.004</pub-id>
<pub-id pub-id-type="pmid">20138522</pub-id>
</element-citation>
</ref>
<ref id="R35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Babst</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>A protein’s final ESCRT</article-title>
<source>Traffic</source>
<year>2005</year>
<volume>6</volume>
<fpage>2</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1111/j.1600-0854.2004.00246.x</pub-id>
<pub-id pub-id-type="pmid">15569240</pub-id>
</element-citation>
</ref>
<ref id="R36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balderhaar</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Ungermann</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion</article-title>
<source>J Cell Sci</source>
<year>2013</year>
<volume>126</volume>
<fpage>1307</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1242/jcs.107805</pub-id>
<pub-id pub-id-type="pmid">23645161</pub-id>
</element-citation>
</ref>
<ref id="R37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bröcker</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kuhlee</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gatsogiannis</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Balderhaar</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Hönscher</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Engelbrecht-Vandré</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ungermann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Raunser</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2012</year>
<volume>109</volume>
<fpage>1991</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1117797109</pub-id>
<pub-id pub-id-type="pmid">22308417</pub-id>
</element-citation>
</ref>
<ref id="R38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lachmann</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ungermann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Engelbrecht-Vandré</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Rab GTPases and tethering in the yeast endocytic pathway</article-title>
<source>Small GTPases</source>
<year>2011</year>
<volume>2</volume>
<fpage>182</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.4161/sgtp.2.3.16701</pub-id>
<pub-id pub-id-type="pmid">21776422</pub-id>
</element-citation>
</ref>
<ref id="R39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Angers</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Merz</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>HOPS interacts with Apl5 at the vacuole membrane and is required for consumption of AP-3 transport vesicles</article-title>
<source>Mol Biol Cell</source>
<year>2009</year>
<volume>20</volume>
<fpage>4563</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.1091/mbc.E09-04-0272</pub-id>
<pub-id pub-id-type="pmid">19741093</pub-id>
</element-citation>
</ref>
<ref id="R40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Den Hazel</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>Kielland-Brandt</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Winther</surname>
<given-names>JR</given-names>
</name>
</person-group>
<article-title>Review: biosynthesis and function of yeast vacuolar proteases</article-title>
<source>Yeast</source>
<year>1996</year>
<volume>12</volume>
<fpage>1</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1097-0061(199601)12:1<1::AID-YEA902>3.0.CO;2-N</pub-id>
<pub-id pub-id-type="pmid">8789256</pub-id>
</element-citation>
</ref>
<ref id="R41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thumm</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Structure and function of the yeast vacuole and its role in autophagy</article-title>
<source>Microsc Res Tech</source>
<year>2000</year>
<volume>51</volume>
<fpage>563</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="doi">10.1002/1097-0029(20001215)51:6<563::AID-JEMT6>3.0.CO;2-8</pub-id>
<pub-id pub-id-type="pmid">11169858</pub-id>
</element-citation>
</ref>
<ref id="R42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teichert</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Mechler</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>DH</given-names>
</name>
</person-group>
<article-title>Lysosomal (vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival</article-title>
<source>J Biol Chem</source>
<year>1989</year>
<volume>264</volume>
<fpage>16037</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="pmid">2674123</pub-id>
</element-citation>
</ref>
<ref id="R43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Autophagy: process and function</article-title>
<source>Genes Dev</source>
<year>2007</year>
<volume>21</volume>
<fpage>2861</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1101/gad.1599207</pub-id>
<pub-id pub-id-type="pmid">18006683</pub-id>
</element-citation>
</ref>
<ref id="R44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takeshige</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Baba</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tsuboi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Noda</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction</article-title>
<source>J Cell Biol</source>
<year>1992</year>
<volume>119</volume>
<fpage>301</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.119.2.301</pub-id>
<pub-id pub-id-type="pmid">1400575</pub-id>
</element-citation>
</ref>
<ref id="R45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mari</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tooze</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Reggiori</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>The puzzling origin of the autophagosomal membrane</article-title>
<source>F1000 Biol Rep</source>
<year>2011</year>
<volume>3</volume>
<fpage>25</fpage>
<pub-id pub-id-type="doi">10.3410/B3-25</pub-id>
<pub-id pub-id-type="pmid">22162728</pub-id>
</element-citation>
</ref>
<ref id="R46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reggiori</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Autophagy in the eukaryotic cell</article-title>
<source>Eukaryot Cell</source>
<year>2002</year>
<volume>1</volume>
<fpage>11</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="doi">10.1128/EC.01.1.11-21.2002</pub-id>
<pub-id pub-id-type="pmid">12455967</pub-id>
</element-citation>
</ref>
<ref id="R47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hopper</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Magee</surname>
<given-names>PT</given-names>
</name>
<name>
<surname>Welch</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Friedman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>BD</given-names>
</name>
</person-group>
<article-title>Macromolecule synthesis and breakdown in relation to sporulation and meiosis in yeast</article-title>
<source>J Bacteriol</source>
<year>1974</year>
<volume>119</volume>
<fpage>619</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="pmid">4604714</pub-id>
</element-citation>
</ref>
<ref id="R48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Autophagosome formation: core machinery and adaptations</article-title>
<source>Nat Cell Biol</source>
<year>2007</year>
<volume>9</volume>
<fpage>1102</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1038/ncb1007-1102</pub-id>
<pub-id pub-id-type="pmid">17909521</pub-id>
</element-citation>
</ref>
<ref id="R49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khalfan</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae</article-title>
<source>Curr Opin Cell Biol</source>
<year>2002</year>
<volume>14</volume>
<fpage>468</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="doi">10.1016/S0955-0674(02)00343-5</pub-id>
<pub-id pub-id-type="pmid">12383798</pub-id>
</element-citation>
</ref>
<ref id="R50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuga</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gomi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Shintani</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae</article-title>
<source>J Biol Chem</source>
<year>2011</year>
<volume>286</volume>
<fpage>13704</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M110.173906</pub-id>
<pub-id pub-id-type="pmid">21343297</pub-id>
</element-citation>
</ref>
<ref id="R51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scott</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Baba</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Aminopeptidase I is targeted to the vacuole by a nonclassical vesicular mechanism</article-title>
<source>J Cell Biol</source>
<year>1997</year>
<volume>138</volume>
<fpage>37</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.138.1.37</pub-id>
<pub-id pub-id-type="pmid">9214379</pub-id>
</element-citation>
</ref>
<ref id="R52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baba</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Osumi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome</article-title>
<source>J Cell Biol</source>
<year>1997</year>
<volume>139</volume>
<fpage>1687</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.139.7.1687</pub-id>
<pub-id pub-id-type="pmid">9412464</pub-id>
</element-citation>
</ref>
<ref id="R53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hutchins</surname>
<given-names>MU</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Vacuolar localization of oligomeric alpha-mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae</article-title>
<source>J Biol Chem</source>
<year>2001</year>
<volume>276</volume>
<fpage>20491</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M101150200</pub-id>
<pub-id pub-id-type="pmid">11264288</pub-id>
</element-citation>
</ref>
<ref id="R54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kraft</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Reggiori</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Peter</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Selective types of autophagy in yeast</article-title>
<source>Biochim Biophys Acta</source>
<year>2009</year>
<volume>1793</volume>
<fpage>1404</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamcr.2009.02.006</pub-id>
<pub-id pub-id-type="pmid">19264099</pub-id>
</element-citation>
</ref>
<ref id="R55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Riezman</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Endocytosis in yeast: several of the yeast secretory mutants are defective in endocytosis</article-title>
<source>Cell</source>
<year>1985</year>
<volume>40</volume>
<fpage>1001</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(85)90360-5</pub-id>
<pub-id pub-id-type="pmid">3886157</pub-id>
</element-citation>
</ref>
<ref id="R56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Munn</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Stevenson</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Geli</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Riezman</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>end5, end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae</article-title>
<source>Mol Biol Cell</source>
<year>1995</year>
<volume>6</volume>
<fpage>1721</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="doi">10.1091/mbc.6.12.1721</pub-id>
<pub-id pub-id-type="pmid">8590801</pub-id>
</element-citation>
</ref>
<ref id="R57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wendland</surname>
<given-names>B</given-names>
</name>
<name>
<surname>McCaffery</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>A novel fluorescence-activated cell sorter-based screen for yeast endocytosis mutants identifies a yeast homologue of mammalian eps15</article-title>
<source>J Cell Biol</source>
<year>1996</year>
<volume>135</volume>
<fpage>1485</fpage>
<lpage>500</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.135.6.1485</pub-id>
<pub-id pub-id-type="pmid">8978817</pub-id>
</element-citation>
</ref>
<ref id="R58">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raths</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rohrer</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Crausaz</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Riezman</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>end3 and end4: two mutants defective in receptor-mediated and fluid-phase endocytosis in Saccharomyces cerevisiae</article-title>
<source>J Cell Biol</source>
<year>1993</year>
<volume>120</volume>
<fpage>55</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.120.1.55</pub-id>
<pub-id pub-id-type="pmid">8380177</pub-id>
</element-citation>
</ref>
<ref id="R59">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaksonen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Toret</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Drubin</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>A modular design for the clathrin- and actin-mediated endocytosis machinery</article-title>
<source>Cell</source>
<year>2005</year>
<volume>123</volume>
<fpage>305</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2005.09.024</pub-id>
<pub-id pub-id-type="pmid">16239147</pub-id>
</element-citation>
</ref>
<ref id="R60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kukulski</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Schorb</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kaksonen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Briggs</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography</article-title>
<source>Cell</source>
<year>2012</year>
<volume>150</volume>
<fpage>508</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2012.05.046</pub-id>
<pub-id pub-id-type="pmid">22863005</pub-id>
</element-citation>
</ref>
<ref id="R61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Newpher</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>RP</given-names>
</name>
<name>
<surname>Lemmon</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Lemmon</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast</article-title>
<source>Dev Cell</source>
<year>2005</year>
<volume>9</volume>
<fpage>87</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="doi">10.1016/j.devcel.2005.04.014</pub-id>
<pub-id pub-id-type="pmid">15992543</pub-id>
</element-citation>
</ref>
<ref id="R62">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Idrissi</surname>
<given-names>FZ</given-names>
</name>
<name>
<surname>Grötsch</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fernández-Golbano</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Presciatto-Baschong</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Riezman</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Geli</surname>
<given-names>MI</given-names>
</name>
</person-group>
<article-title>Distinct acto/myosin-I structures associate with endocytic profiles at the plasma membrane</article-title>
<source>J Cell Biol</source>
<year>2008</year>
<volume>180</volume>
<fpage>1219</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="pmid">18347067</pub-id>
</element-citation>
</ref>
<ref id="R63">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boettner</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Chi</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Lemmon</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>Lessons from yeast for clathrin-mediated endocytosis</article-title>
<source>Nat Cell Biol</source>
<year>2012</year>
<volume>14</volume>
<fpage>2</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1038/ncb2403</pub-id>
<pub-id pub-id-type="pmid">22193158</pub-id>
</element-citation>
</ref>
<ref id="R64">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Godlee</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kaksonen</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Review series: From uncertain beginnings: initiation mechanisms of clathrin-mediated endocytosis</article-title>
<source>J Cell Biol</source>
<year>2013</year>
<volume>203</volume>
<fpage>717</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.201307100</pub-id>
<pub-id pub-id-type="pmid">24322426</pub-id>
</element-citation>
</ref>
<ref id="R65">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaksonen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Toret</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Drubin</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>Harnessing actin dynamics for clathrin-mediated endocytosis</article-title>
<source>Nat Rev Mol Cell Biol</source>
<year>2006</year>
<volume>7</volume>
<fpage>404</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1038/nrm1940</pub-id>
<pub-id pub-id-type="pmid">16723976</pub-id>
</element-citation>
</ref>
<ref id="R66">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weinberg</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Drubin</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>Clathrin-mediated endocytosis in budding yeast</article-title>
<source>Trends Cell Biol</source>
<year>2012</year>
<volume>22</volume>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1016/j.tcb.2011.09.001</pub-id>
<pub-id pub-id-type="pmid">22018597</pub-id>
</element-citation>
</ref>
<ref id="R67">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doyon</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Zeitler</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Cherone</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Santiago</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Vo</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Doyon</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>JC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells</article-title>
<source>Nat Cell Biol</source>
<year>2011</year>
<volume>13</volume>
<fpage>331</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1038/ncb2175</pub-id>
<pub-id pub-id-type="pmid">21297641</pub-id>
</element-citation>
</ref>
<ref id="R68">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Perrais</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Merrifield</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis</article-title>
<source>PLoS Biol</source>
<year>2011</year>
<volume>9</volume>
<fpage>e1000604</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pbio.1000604</pub-id>
<pub-id pub-id-type="pmid">21445324</pub-id>
</element-citation>
</ref>
<ref id="R69">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prosser</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Drivas</surname>
<given-names>TG</given-names>
</name>
<name>
<surname>Maldonado-Báez</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wendland</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin</article-title>
<source>J Cell Biol</source>
<year>2011</year>
<volume>195</volume>
<fpage>657</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.201104045</pub-id>
<pub-id pub-id-type="pmid">22065638</pub-id>
</element-citation>
</ref>
<ref id="R70">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hicke</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Riezman</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis</article-title>
<source>Cell</source>
<year>1996</year>
<volume>84</volume>
<fpage>277</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="doi">10.1016/S0092-8674(00)80982-4</pub-id>
<pub-id pub-id-type="pmid">8565073</pub-id>
</element-citation>
</ref>
<ref id="R71">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galan</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Moreau</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Andre</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Volland</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Haguenauer-Tsapis</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease</article-title>
<source>J Biol Chem</source>
<year>1996</year>
<volume>271</volume>
<fpage>10946</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.271.18.10946</pub-id>
<pub-id pub-id-type="pmid">8631913</pub-id>
</element-citation>
</ref>
<ref id="R72">
<label>72</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Springael</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>André</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae</article-title>
<source>Mol Biol Cell</source>
<year>1998</year>
<volume>9</volume>
<fpage>1253</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1091/mbc.9.6.1253</pub-id>
<pub-id pub-id-type="pmid">9614172</pub-id>
</element-citation>
</ref>
<ref id="R73">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dunn</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hicke</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Multiple roles for Rsp5p-dependent ubiquitination at the internalization step of endocytosis</article-title>
<source>J Biol Chem</source>
<year>2001</year>
<volume>276</volume>
<fpage>25974</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M104113200</pub-id>
<pub-id pub-id-type="pmid">11356856</pub-id>
</element-citation>
</ref>
<ref id="R74">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dunn</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hicke</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Domains of the Rsp5 ubiquitin-protein ligase required for receptor-mediated and fluid-phase endocytosis</article-title>
<source>Mol Biol Cell</source>
<year>2001</year>
<volume>12</volume>
<fpage>421</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="doi">10.1091/mbc.12.2.421</pub-id>
<pub-id pub-id-type="pmid">11179425</pub-id>
</element-citation>
</ref>
<ref id="R75">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hein</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Springael</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Volland</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Haguenauer-Tsapis</surname>
<given-names>R</given-names>
</name>
<name>
<surname>André</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase</article-title>
<source>Mol Microbiol</source>
<year>1995</year>
<volume>18</volume>
<fpage>77</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2958.1995.mmi_18010077.x</pub-id>
<pub-id pub-id-type="pmid">8596462</pub-id>
</element-citation>
</ref>
<ref id="R76">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>MacGurn</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Stefan</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface</article-title>
<source>Cell</source>
<year>2008</year>
<volume>135</volume>
<fpage>714</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2008.09.025</pub-id>
<pub-id pub-id-type="pmid">18976803</pub-id>
</element-citation>
</ref>
<ref id="R77">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nikko</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Pelham</surname>
<given-names>HR</given-names>
</name>
</person-group>
<article-title>Arrestin-like proteins mediate ubiquitination and endocytosis of the yeast metal transporter Smf1</article-title>
<source>EMBO Rep</source>
<year>2008</year>
<volume>9</volume>
<fpage>1216</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="doi">10.1038/embor.2008.199</pub-id>
<pub-id pub-id-type="pmid">18953286</pub-id>
</element-citation>
</ref>
<ref id="R78">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Becuwe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Vieira</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Lara</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gomes-Rezende</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Soares-Cunha</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Casal</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Haguenauer-Tsapis</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Vincent</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Paiva</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Léon</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis</article-title>
<source>J Cell Biol</source>
<year>2012</year>
<volume>196</volume>
<fpage>247</fpage>
<lpage>59</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.201109113</pub-id>
<pub-id pub-id-type="pmid">22249293</pub-id>
</element-citation>
</ref>
<ref id="R79">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merhi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>André</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Internal amino acids promote Gap1 permease ubiquitylation via TORC1/Npr1/14-3-3-dependent control of the Bul arrestin-like adaptors</article-title>
<source>Mol Cell Biol</source>
<year>2012</year>
<volume>32</volume>
<fpage>4510</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="doi">10.1128/MCB.00463-12</pub-id>
<pub-id pub-id-type="pmid">22966204</pub-id>
</element-citation>
</ref>
<ref id="R80">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Donnell</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Thorner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cyert</surname>
<given-names>MS</given-names>
</name>
</person-group>
<article-title>A calcineurin-dependent switch controls the trafficking function of α-arrestin Aly1/Art6</article-title>
<source>J Biol Chem</source>
<year>2013</year>
<volume>288</volume>
<fpage>24063</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M113.478511</pub-id>
<pub-id pub-id-type="pmid">23824189</pub-id>
</element-citation>
</ref>
<ref id="R81">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nikko</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Marini</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>André</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Permease recycling and ubiquitination status reveal a particular role for Bro1 in the multivesicular body pathway</article-title>
<source>J Biol Chem</source>
<year>2003</year>
<volume>278</volume>
<fpage>50732</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M306953200</pub-id>
<pub-id pub-id-type="pmid">14523026</pub-id>
</element-citation>
</ref>
<ref id="R82">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>EW</given-names>
</name>
</person-group>
<article-title>Three proteolytic systems in the yeast saccharomyces cerevisiae</article-title>
<source>J Biol Chem</source>
<year>1991</year>
<volume>266</volume>
<fpage>7963</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">2022624</pub-id>
</element-citation>
</ref>
<ref id="R83">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ammerer</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hunter</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Rothman</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Saari</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Valls</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>TH</given-names>
</name>
</person-group>
<article-title>PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors</article-title>
<source>Mol Cell Biol</source>
<year>1986</year>
<volume>6</volume>
<fpage>2490</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">3023936</pub-id>
</element-citation>
</ref>
<ref id="R84">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Berkower</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Loayza</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Michaelis</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Metabolic instability and constitutive endocytosis of STE6, the a-factor transporter of Saccharomyces cerevisiae</article-title>
<source>Mol Biol Cell</source>
<year>1994</year>
<volume>5</volume>
<fpage>1185</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="doi">10.1091/mbc.5.11.1185</pub-id>
<pub-id pub-id-type="pmid">7865884</pub-id>
</element-citation>
</ref>
<ref id="R85">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schandel</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Jenness</surname>
<given-names>DD</given-names>
</name>
</person-group>
<article-title>Direct evidence for ligand-induced internalization of the yeast alpha-factor pheromone receptor</article-title>
<source>Mol Cell Biol</source>
<year>1994</year>
<volume>14</volume>
<fpage>7245</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="pmid">7935439</pub-id>
</element-citation>
</ref>
<ref id="R86">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hecht</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Wytiaz</surname>
<given-names>VA</given-names>
</name>
<name>
<surname>Ast</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schuldiner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brodsky</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Characterization of an M28 metalloprotease family member residing in the yeast vacuole</article-title>
<source>FEMS Yeast Res</source>
<year>2013</year>
<volume>13</volume>
<fpage>471</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1111/1567-1364.12050</pub-id>
<pub-id pub-id-type="pmid">23679341</pub-id>
</element-citation>
</ref>
<ref id="R87">
<label>87</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rawlings</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Barrett</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Evolutionary families of peptidases</article-title>
<source>Biochem J</source>
<year>1993</year>
<volume>290</volume>
<fpage>205</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="pmid">8439290</pub-id>
</element-citation>
</ref>
<ref id="R88">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rawlings</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Barrett</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Bateman</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>MEROPS: the database of proteolytic enzymes, their substrates and inhibitors</article-title>
<source>Nucleic Acids Res</source>
<year>2012</year>
<volume>40</volume>
<fpage>D343</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkr987</pub-id>
<pub-id pub-id-type="pmid">22086950</pub-id>
</element-citation>
</ref>
<ref id="R89">
<label>89</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hedstrom</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Serine protease mechanism and specificity</article-title>
<source>Chem Rev</source>
<year>2002</year>
<volume>102</volume>
<fpage>4501</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.1021/cr000033x</pub-id>
<pub-id pub-id-type="pmid">12475199</pub-id>
</element-citation>
</ref>
<ref id="R90">
<label>90</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rawlings</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Barrett</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Evolutionary families of metallopeptidases</article-title>
<source>Methods Enzymol</source>
<year>1995</year>
<volume>248</volume>
<fpage>183</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="doi">10.1016/0076-6879(95)48015-3</pub-id>
<pub-id pub-id-type="pmid">7674922</pub-id>
</element-citation>
</ref>
<ref id="R91">
<label>91</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>RN</given-names>
</name>
</person-group>
<article-title>Evolution in the structure and function of aspartic proteases</article-title>
<source>J Cell Biochem</source>
<year>1987</year>
<volume>33</volume>
<fpage>53</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1002/jcb.240330106</pub-id>
<pub-id pub-id-type="pmid">3546346</pub-id>
</element-citation>
</ref>
<ref id="R92">
<label>92</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dunn</surname>
<given-names>BM</given-names>
</name>
</person-group>
<article-title>Structure and mechanism of the pepsin-like family of aspartic peptidases</article-title>
<source>Chem Rev</source>
<year>2002</year>
<volume>102</volume>
<fpage>4431</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="doi">10.1021/cr010167q</pub-id>
<pub-id pub-id-type="pmid">12475196</pub-id>
</element-citation>
</ref>
<ref id="R93">
<label>93</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Winther</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Sørensen</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Propeptide of carboxypeptidase Y provides a chaperone-like function as well as inhibition of the enzymatic activity</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>1991</year>
<volume>88</volume>
<fpage>9330</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.88.20.9330</pub-id>
<pub-id pub-id-type="pmid">1924396</pub-id>
</element-citation>
</ref>
<ref id="R94">
<label>94</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stevens</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Esmon</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Schekman</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole</article-title>
<source>Cell</source>
<year>1982</year>
<volume>30</volume>
<fpage>439</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(82)90241-0</pub-id>
<pub-id pub-id-type="pmid">6754086</pub-id>
</element-citation>
</ref>
<ref id="R95">
<label>95</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zubenko</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>EW</given-names>
</name>
</person-group>
<article-title>Mutations in PEP4 locus of Saccharomyces cerevisiae block final step in maturation of two vacuolar hydrolases</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>1983</year>
<volume>80</volume>
<fpage>510</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.80.2.510</pub-id>
<pub-id pub-id-type="pmid">6340101</pub-id>
</element-citation>
</ref>
<ref id="R96">
<label>96</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bonangelino</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Chavez</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Bonifacino</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae</article-title>
<source>Mol Biol Cell</source>
<year>2002</year>
<volume>13</volume>
<fpage>2486</fpage>
<lpage>501</lpage>
<pub-id pub-id-type="doi">10.1091/mbc.02-01-0005</pub-id>
<pub-id pub-id-type="pmid">12134085</pub-id>
</element-citation>
</ref>
<ref id="R97">
<label>97</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robinson</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Banta</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases</article-title>
<source>Mol Cell Biol</source>
<year>1988</year>
<volume>8</volume>
<fpage>4936</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="pmid">3062374</pub-id>
</element-citation>
</ref>
<ref id="R98">
<label>98</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rothman</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Howald</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>TH</given-names>
</name>
</person-group>
<article-title>Characterization of genes required for protein sorting and vacuolar function in the yeast Saccharomyces cerevisiae</article-title>
<source>EMBO J</source>
<year>1989</year>
<volume>8</volume>
<fpage>2057</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">2676511</pub-id>
</element-citation>
</ref>
<ref id="R99">
<label>99</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marcusson</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Horazdovsky</surname>
<given-names>BF</given-names>
</name>
<name>
<surname>Cereghino</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Gharakhanian</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene</article-title>
<source>Cell</source>
<year>1994</year>
<volume>77</volume>
<fpage>579</fpage>
<lpage>86</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(94)90219-4</pub-id>
<pub-id pub-id-type="pmid">8187177</pub-id>
</element-citation>
</ref>
<ref id="R100">
<label>100</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whyte</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Munro</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>A yeast homolog of the mammalian mannose 6-phosphate receptors contributes to the sorting of vacuolar hydrolases</article-title>
<source>Curr Biol</source>
<year>2001</year>
<volume>11</volume>
<fpage>1074</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1016/S0960-9822(01)00273-1</pub-id>
<pub-id pub-id-type="pmid">11470415</pub-id>
</element-citation>
</ref>
<ref id="R101">
<label>101</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spormann</surname>
<given-names>DO</given-names>
</name>
<name>
<surname>Heim</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>DH</given-names>
</name>
</person-group>
<article-title>Biogenesis of the yeast vacuole (lysosome). The precursor forms of the soluble hydrolase carboxypeptidase yscS are associated with the vacuolar membrane</article-title>
<source>J Biol Chem</source>
<year>1992</year>
<volume>267</volume>
<fpage>8021</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">1569061</pub-id>
</element-citation>
</ref>
<ref id="R102">
<label>102</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katzmann</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Babst</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I</article-title>
<source>Cell</source>
<year>2001</year>
<volume>106</volume>
<fpage>145</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1016/S0092-8674(01)00434-2</pub-id>
<pub-id pub-id-type="pmid">11511343</pub-id>
</element-citation>
</ref>
<ref id="R103">
<label>103</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katzmann</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Sarkar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Audhya</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>Multivesicular body sorting: ubiquitin ligase Rsp5 is required for the modification and sorting of carboxypeptidase S</article-title>
<source>Mol Biol Cell</source>
<year>2004</year>
<volume>15</volume>
<fpage>468</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="doi">10.1091/mbc.E03-07-0473</pub-id>
<pub-id pub-id-type="pmid">14657247</pub-id>
</element-citation>
</ref>
<ref id="R104">
<label>104</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hettema</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Valdez-Taubas</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pelham</surname>
<given-names>HR</given-names>
</name>
</person-group>
<article-title>Bsd2 binds the ubiquitin ligase Rsp5 and mediates the ubiquitination of transmembrane proteins</article-title>
<source>EMBO J</source>
<year>2004</year>
<volume>23</volume>
<fpage>1279</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.1038/sj.emboj.7600137</pub-id>
<pub-id pub-id-type="pmid">14988731</pub-id>
</element-citation>
</ref>
<ref id="R105">
<label>105</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reggiori</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Pelham</surname>
<given-names>HR</given-names>
</name>
</person-group>
<article-title>A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies</article-title>
<source>Nat Cell Biol</source>
<year>2002</year>
<volume>4</volume>
<fpage>117</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1038/ncb743</pub-id>
<pub-id pub-id-type="pmid">11788821</pub-id>
</element-citation>
</ref>
<ref id="R106">
<label>106</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Cueva</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yaver</surname>
<given-names>DS</given-names>
</name>
</person-group>
<article-title>Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway</article-title>
<source>J Cell Biol</source>
<year>1992</year>
<volume>119</volume>
<fpage>287</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.119.2.287</pub-id>
<pub-id pub-id-type="pmid">1400574</pub-id>
</element-citation>
</ref>
<ref id="R107">
<label>107</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hasilik</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tanner</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Biosynthesis of the vacuolar yeast glycoprotein carboxypeptidase Y. Conversion of precursor into the enzyme</article-title>
<source>Eur J Biochem</source>
<year>1978</year>
<volume>85</volume>
<fpage>599</fpage>
<lpage>608</lpage>
<pub-id pub-id-type="doi">10.1111/j.1432-1033.1978.tb12275.x</pub-id>
<pub-id pub-id-type="pmid">348476</pub-id>
</element-citation>
</ref>
<ref id="R108">
<label>108</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trumbly</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Bradley</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Isolation and characterization of aminopeptidase mutants of Saccharomyces cerevisiae</article-title>
<source>J Bacteriol</source>
<year>1983</year>
<volume>156</volume>
<fpage>36</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="pmid">6352682</pub-id>
</element-citation>
</ref>
<ref id="R109">
<label>109</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harding</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Hefner-Gravink</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Thumm</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway</article-title>
<source>J Biol Chem</source>
<year>1996</year>
<volume>271</volume>
<fpage>17621</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.271.30.17621</pub-id>
<pub-id pub-id-type="pmid">8663607</pub-id>
</element-citation>
</ref>
<ref id="R110">
<label>110</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scott</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Hefner-Gravink</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Morano</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Noda</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>1996</year>
<volume>93</volume>
<fpage>12304</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.93.22.12304</pub-id>
<pub-id pub-id-type="pmid">8901576</pub-id>
</element-citation>
</ref>
<ref id="R111">
<label>111</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Westphal</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Marcusson</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Winther</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>van den Hazel</surname>
<given-names>HB</given-names>
</name>
</person-group>
<article-title>Multiple pathways for vacuolar sorting of yeast proteinase A</article-title>
<source>J Biol Chem</source>
<year>1996</year>
<volume>271</volume>
<fpage>11865</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.271.20.11865</pub-id>
<pub-id pub-id-type="pmid">8662642</pub-id>
</element-citation>
</ref>
<ref id="R112">
<label>112</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van den Hazel</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>Kielland-Brandt</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Winther</surname>
<given-names>JR</given-names>
</name>
</person-group>
<article-title>Autoactivation of proteinase A initiates activation of yeast vacuolar zymogens</article-title>
<source>Eur J Biochem</source>
<year>1992</year>
<volume>207</volume>
<fpage>277</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="doi">10.1111/j.1432-1033.1992.tb17048.x</pub-id>
<pub-id pub-id-type="pmid">1628653</pub-id>
</element-citation>
</ref>
<ref id="R113">
<label>113</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mechler</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Meussdoerffer</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>DH</given-names>
</name>
</person-group>
<article-title>In vivo biosynthesis of the vacuolar proteinases A and B in the yeast Saccharomyces cerevisiae</article-title>
<source>J Biol Chem</source>
<year>1982</year>
<volume>257</volume>
<fpage>11203</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">6749836</pub-id>
</element-citation>
</ref>
<ref id="R114">
<label>114</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parr</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Keates</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Bryksa</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Ogawa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yada</surname>
<given-names>RY</given-names>
</name>
</person-group>
<article-title>The structure and function of Saccharomyces cerevisiae proteinase A</article-title>
<source>Yeast</source>
<year>2007</year>
<volume>24</volume>
<fpage>467</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="doi">10.1002/yea.1485</pub-id>
<pub-id pub-id-type="pmid">17447722</pub-id>
</element-citation>
</ref>
<ref id="R115">
<label>115</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jørgensen</surname>
<given-names>MU</given-names>
</name>
<name>
<surname>Emr</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Winther</surname>
<given-names>JR</given-names>
</name>
</person-group>
<article-title>Ligand recognition and domain structure of Vps10p, a vacuolar protein sorting receptor in Saccharomyces cerevisiae</article-title>
<source>Eur J Biochem</source>
<year>1999</year>
<volume>260</volume>
<fpage>461</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1046/j.1432-1327.1999.00176.x</pub-id>
<pub-id pub-id-type="pmid">10095782</pub-id>
</element-citation>
</ref>
<ref id="R116">
<label>116</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rupp</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hirsch</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>DH</given-names>
</name>
</person-group>
<article-title>Biogenesis of the yeast vacuole (lysosome). Active site mutation in the vacuolar aspartate proteinase yscA blocks maturation of vacuolar proteinases</article-title>
<source>FEBS Lett</source>
<year>1991</year>
<volume>293</volume>
<fpage>62</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1016/0014-5793(91)81153-Y</pub-id>
<pub-id pub-id-type="pmid">1959673</pub-id>
</element-citation>
</ref>
<ref id="R117">
<label>117</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kondo</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shibano</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Amachi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Cronin</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Oda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dunn</surname>
<given-names>BM</given-names>
</name>
</person-group>
<article-title>Substrate specificities and kinetic properties of proteinase A from the yeast Saccharomyces cerevisiae and the development of a novel substrate</article-title>
<source>J Biochem</source>
<year>1998</year>
<volume>124</volume>
<fpage>141</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1093/oxfordjournals.jbchem.a022072</pub-id>
<pub-id pub-id-type="pmid">9644256</pub-id>
</element-citation>
</ref>
<ref id="R118">
<label>118</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dreyer</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Substrate specificity of proteinase yscA from saccharomyces cerevisiae</article-title>
<source>Carlsberg Res Commun</source>
<year>1989</year>
<volume>54</volume>
<fpage>85</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="doi">10.1007/BF02908301</pub-id>
<pub-id pub-id-type="pmid">2478140</pub-id>
</element-citation>
</ref>
<ref id="R119">
<label>119</label>
<mixed-citation publication-type="book">Barrett AJ, Rawlings ND, Woessner JF. Handbook of proteolytic enzymes. Amsterdam; Boston, MA: Elsevier Academic Press, 2004.</mixed-citation>
</ref>
<ref id="R120">
<label>120</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moehle</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Dixon</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>EW</given-names>
</name>
</person-group>
<article-title>Processing pathway for protease B of Saccharomyces cerevisiae</article-title>
<source>J Cell Biol</source>
<year>1989</year>
<volume>108</volume>
<fpage>309</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.108.2.309</pub-id>
<pub-id pub-id-type="pmid">2645294</pub-id>
</element-citation>
</ref>
<ref id="R121">
<label>121</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nebes</surname>
<given-names>VL</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>EW</given-names>
</name>
</person-group>
<article-title>Activation of the proteinase B precursor of the yeast Saccharomyces cerevisiae by autocatalysis and by an internal sequence</article-title>
<source>J Biol Chem</source>
<year>1991</year>
<volume>266</volume>
<fpage>22851</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">1744078</pub-id>
</element-citation>
</ref>
<ref id="R122">
<label>122</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Subramanian</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Woolford</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Drill</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>EW</given-names>
</name>
</person-group>
<article-title>Pbn1p: an essential endoplasmic reticulum membrane protein required for protein processing in the endoplasmic reticulum of budding yeast</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2006</year>
<volume>103</volume>
<fpage>939</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0505570103</pub-id>
<pub-id pub-id-type="pmid">16418276</pub-id>
</element-citation>
</ref>
<ref id="R123">
<label>123</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Naik</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>EW</given-names>
</name>
</person-group>
<article-title>The PBN1 gene of Saccharomyces cerevisiae: an essential gene that is required for the post-translational processing of the protease B precursor</article-title>
<source>Genetics</source>
<year>1998</year>
<volume>149</volume>
<fpage>1277</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="pmid">9649520</pub-id>
</element-citation>
</ref>
<ref id="R124">
<label>124</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farley</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Shepherd</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>PA</given-names>
</name>
</person-group>
<article-title>The purification and properties of yeast proteinase B from Candida albicans</article-title>
<source>Biochem J</source>
<year>1986</year>
<volume>236</volume>
<fpage>177</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="pmid">3539100</pub-id>
</element-citation>
</ref>
<ref id="R125">
<label>125</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kominami</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hoffschulte</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Leuschel</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Maier</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Holzer</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>The substrate specificity of proteinase B from baker’s yeast</article-title>
<source>Biochim Biophys Acta</source>
<year>1981</year>
<volume>661</volume>
<fpage>136</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="doi">10.1016/0005-2744(81)90092-9</pub-id>
<pub-id pub-id-type="pmid">7028121</pub-id>
</element-citation>
</ref>
<ref id="R126">
<label>126</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jung</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ueno</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hayashi</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Carboxypeptidase Y: structural basis for protein sorting and catalytic triad</article-title>
<source>J Biochem</source>
<year>1999</year>
<volume>126</volume>
<fpage>1</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1093/oxfordjournals.jbchem.a022408</pub-id>
<pub-id pub-id-type="pmid">10393313</pub-id>
</element-citation>
</ref>
<ref id="R127">
<label>127</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Nirasawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kitaoka</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hayashi</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>The role of the N-terminal propeptide of the pro-aminopeptidase processing protease: refolding, processing, and enzyme inhibition</article-title>
<source>Biochem Biophys Res Commun</source>
<year>2002</year>
<volume>296</volume>
<fpage>78</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1016/S0006-291X(02)00838-0</pub-id>
<pub-id pub-id-type="pmid">12147230</pub-id>
</element-citation>
</ref>
<ref id="R128">
<label>128</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spormann</surname>
<given-names>DO</given-names>
</name>
<name>
<surname>Heim</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>DH</given-names>
</name>
</person-group>
<article-title>Carboxypeptidase yscS: gene structure and function of the vacuolar enzyme</article-title>
<source>Eur J Biochem</source>
<year>1991</year>
<volume>197</volume>
<fpage>399</fpage>
<lpage>405</lpage>
<pub-id pub-id-type="doi">10.1111/j.1432-1033.1991.tb15924.x</pub-id>
<pub-id pub-id-type="pmid">2026161</pub-id>
</element-citation>
</ref>
<ref id="R129">
<label>129</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolf</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Ehmann</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Carboxypeptidase S- and carboxypeptidase Y-deficient mutants of Saccharomyces cerevisiae</article-title>
<source>J Bacteriol</source>
<year>1981</year>
<volume>147</volume>
<fpage>418</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="pmid">7021530</pub-id>
</element-citation>
</ref>
<ref id="R130">
<label>130</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Oda</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway</article-title>
<source>J Cell Biol</source>
<year>1997</year>
<volume>137</volume>
<fpage>609</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.137.3.609</pub-id>
<pub-id pub-id-type="pmid">9151668</pub-id>
</element-citation>
</ref>
<ref id="R131">
<label>131</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adachi</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>NN</given-names>
</name>
<name>
<surname>Fujioka</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Inagaki</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Crystallization of Saccharomyces cerevisiae aminopeptidase 1, the major cargo protein of the Cvt pathway</article-title>
<source>Acta Crystallogr Sect F Struct Biol Cryst Commun</source>
<year>2007</year>
<volume>63</volume>
<fpage>200</fpage>
<lpage>3</lpage>
<pub-id pub-id-type="doi">10.1107/S1744309107005441</pub-id>
<pub-id pub-id-type="pmid">17329814</pub-id>
</element-citation>
</ref>
<ref id="R132">
<label>132</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morales Quinones</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Winston</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Stromhaug</surname>
<given-names>PE</given-names>
</name>
</person-group>
<article-title>Propeptide of aminopeptidase 1 protein mediates aggregation and vesicle formation in cytoplasm-to-vacuole targeting pathway</article-title>
<source>J Biol Chem</source>
<year>2012</year>
<volume>287</volume>
<fpage>10121</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M111.311696</pub-id>
<pub-id pub-id-type="pmid">22123825</pub-id>
</element-citation>
</ref>
<ref id="R133">
<label>133</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schu</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Aminopeptidase I enzymatic activity</article-title>
<source>Methods Enzymol</source>
<year>2008</year>
<volume>451</volume>
<fpage>67</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="doi">10.1016/S0076-6879(08)03206-0</pub-id>
<pub-id pub-id-type="pmid">19185714</pub-id>
</element-citation>
</ref>
<ref id="R134">
<label>134</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adamis</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Mannarino</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Riger</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Duarte</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Cruz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pereira</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Eleutherio</surname>
<given-names>EC</given-names>
</name>
</person-group>
<article-title>Lap4, a vacuolar aminopeptidase I, is involved in cadmium-glutathione metabolism</article-title>
<source>Biometals</source>
<year>2009</year>
<volume>22</volume>
<fpage>243</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1007/s10534-008-9160-9</pub-id>
<pub-id pub-id-type="pmid">18716881</pub-id>
</element-citation>
</ref>
<ref id="R135">
<label>135</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ganguli</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bachhawat</surname>
<given-names>AK</given-names>
</name>
</person-group>
<article-title>The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae</article-title>
<source>Genetics</source>
<year>2007</year>
<volume>175</volume>
<fpage>1137</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1534/genetics.106.066944</pub-id>
<pub-id pub-id-type="pmid">17179087</pub-id>
</element-citation>
</ref>
<ref id="R136">
<label>136</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Myers</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Optimal alignments in linear space</article-title>
<source>Comput Appl Biosci</source>
<year>1988</year>
<volume>4</volume>
<fpage>11</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">3382986</pub-id>
</element-citation>
</ref>
<ref id="R137">
<label>137</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nishizawa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yasuhara</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nakai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fujiki</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ohashi</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Molecular cloning of the aminopeptidase Y gene of Saccharomyces cerevisiae. Sequence analysis and gene disruption of a new aminopeptidase</article-title>
<source>J Biol Chem</source>
<year>1994</year>
<volume>269</volume>
<fpage>13651</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">8175800</pub-id>
</element-citation>
</ref>
<ref id="R138">
<label>138</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yasuhara</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nakai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ohashi</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Aminopeptidase Y, a new aminopeptidase from Saccharomyces cerevisiae. Purification, properties, localization, and processing by protease B</article-title>
<source>J Biol Chem</source>
<year>1994</year>
<volume>269</volume>
<fpage>13644</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="pmid">8175799</pub-id>
</element-citation>
</ref>
<ref id="R139">
<label>139</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roberts</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Pohlig</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Rothman</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>TH</given-names>
</name>
</person-group>
<article-title>Structure, biosynthesis, and localization of dipeptidyl aminopeptidase B, an integral membrane glycoprotein of the yeast vacuole</article-title>
<source>J Cell Biol</source>
<year>1989</year>
<volume>108</volume>
<fpage>1363</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.108.4.1363</pub-id>
<pub-id pub-id-type="pmid">2647766</pub-id>
</element-citation>
</ref>
<ref id="R140">
<label>140</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Julius</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Blair</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Brake</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sprague</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Thorner</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Yeast alpha factor is processed from a larger precursor polypeptide: the essential role of a membrane-bound dipeptidyl aminopeptidase</article-title>
<source>Cell</source>
<year>1983</year>
<volume>32</volume>
<fpage>839</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(83)90070-3</pub-id>
<pub-id pub-id-type="pmid">6339075</pub-id>
</element-citation>
</ref>
<ref id="R141">
<label>141</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garcia-Rudaz</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Luna</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Tapia</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kerr</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Colgin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Galimi</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dissen</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Rawlings</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Ojeda</surname>
<given-names>SR</given-names>
</name>
</person-group>
<article-title>Fxna, a novel gene differentially expressed in the rat ovary at the time of folliculogenesis, is required for normal ovarian histogenesis</article-title>
<source>Development</source>
<year>2007</year>
<volume>134</volume>
<fpage>945</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="doi">10.1242/dev.02795</pub-id>
<pub-id pub-id-type="pmid">17267443</pub-id>
</element-citation>
</ref>
<ref id="R142">
<label>142</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larkin</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Blackshields</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>NP</given-names>
</name>
<name>
<surname>Chenna</surname>
<given-names>R</given-names>
</name>
<name>
<surname>McGettigan</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>McWilliam</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Valentin</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wallace</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Wilm</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lopez</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clustal W and Clustal X version 2.0</article-title>
<source>Bioinformatics</source>
<year>2007</year>
<volume>23</volume>
<fpage>2947</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btm404</pub-id>
<pub-id pub-id-type="pmid">17846036</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F290 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001F290 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021