Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 001E09 ( Pmc/Corpus ); précédent : 001E089; suivant : 001E100 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Persistent Infection by HSV-1 Is Associated With Changes in Functional Architecture of iPSC-Derived Neurons and Brain Activation Patterns Underlying Working Memory Performance</title>
<author>
<name sortKey="D Iuto, Leonardo" sort="D Iuto, Leonardo" uniqKey="D Iuto L" first="Leonardo" last="D Iuto">Leonardo D Iuto</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Department of Psychiatry, WPIC, University of Pittsburgh, School of Medicine</institution>
,
<addr-line>Pittsburgh PA</addr-line>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0010">These authors contributed equally to the article.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Prasad, Konasale M" sort="Prasad, Konasale M" uniqKey="Prasad K" first="Konasale M." last="Prasad">Konasale M. Prasad</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Department of Psychiatry, WPIC, University of Pittsburgh, School of Medicine</institution>
,
<addr-line>Pittsburgh PA</addr-line>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0010">These authors contributed equally to the article.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Upton, Catherine H" sort="Upton, Catherine H" uniqKey="Upton C" first="Catherine H." last="Upton">Catherine H. Upton</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Department of Psychiatry, WPIC, University of Pittsburgh, School of Medicine</institution>
,
<addr-line>Pittsburgh PA</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Viggiano, Luigi" sort="Viggiano, Luigi" uniqKey="Viggiano L" first="Luigi" last="Viggiano">Luigi Viggiano</name>
<affiliation>
<nlm:aff id="AF0002">
<institution>Department of Biology, University of Bari “Aldo Moro”</institution>
,
<addr-line>Bari</addr-line>
,
<country>Italy</country>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Milosevic, Jadranka" sort="Milosevic, Jadranka" uniqKey="Milosevic J" first="Jadranka" last="Milosevic">Jadranka Milosevic</name>
<affiliation>
<nlm:aff id="AF0003">
<institution>Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine</institution>
,
<addr-line>Pittsburgh, PA</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Raimondi, Giorgio" sort="Raimondi, Giorgio" uniqKey="Raimondi G" first="Giorgio" last="Raimondi">Giorgio Raimondi</name>
<affiliation>
<nlm:aff id="AF0004">
<institution>Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mcclain, Lora" sort="Mcclain, Lora" uniqKey="Mcclain L" first="Lora" last="Mcclain">Lora Mcclain</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Department of Psychiatry, WPIC, University of Pittsburgh, School of Medicine</institution>
,
<addr-line>Pittsburgh PA</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chowdari, Kodavali" sort="Chowdari, Kodavali" uniqKey="Chowdari K" first="Kodavali" last="Chowdari">Kodavali Chowdari</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Department of Psychiatry, WPIC, University of Pittsburgh, School of Medicine</institution>
,
<addr-line>Pittsburgh PA</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tischfield, Jay" sort="Tischfield, Jay" uniqKey="Tischfield J" first="Jay" last="Tischfield">Jay Tischfield</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Department of Genetics and The Human Genome Institute of New Jersey, Rutgers, The State University of New Jersey</institution>
,
<addr-line>Piscataway, NJ</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sheldon, Michael" sort="Sheldon, Michael" uniqKey="Sheldon M" first="Michael" last="Sheldon">Michael Sheldon</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Department of Genetics and The Human Genome Institute of New Jersey, Rutgers, The State University of New Jersey</institution>
,
<addr-line>Piscataway, NJ</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Moore, Jennifer C" sort="Moore, Jennifer C" uniqKey="Moore J" first="Jennifer C." last="Moore">Jennifer C. Moore</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Department of Genetics and The Human Genome Institute of New Jersey, Rutgers, The State University of New Jersey</institution>
,
<addr-line>Piscataway, NJ</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yolken, Robert H" sort="Yolken, Robert H" uniqKey="Yolken R" first="Robert H." last="Yolken">Robert H. Yolken</name>
<affiliation>
<nlm:aff id="AF0006">
<institution>Stanley Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kinchington, Paul R" sort="Kinchington, Paul R" uniqKey="Kinchington P" first="Paul R." last="Kinchington">Paul R. Kinchington</name>
<affiliation>
<nlm:aff id="AF0007">
<institution>Department of Ophthalmology, University of Pittsburgh School of Medicine</institution>
,
<addr-line>Pittsburgh, PA</addr-line>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0008">
<institution>Department of Molecular Genetics & Biochemistry, University of Pittsburgh</institution>
,
<addr-line>Pittsburgh, PA</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nimgaonkar, Vishwajit L" sort="Nimgaonkar, Vishwajit L" uniqKey="Nimgaonkar V" first="Vishwajit L." last="Nimgaonkar">Vishwajit L. Nimgaonkar</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Department of Psychiatry, WPIC, University of Pittsburgh, School of Medicine</institution>
,
<addr-line>Pittsburgh PA</addr-line>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0009">
<institution>Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh</institution>
,
<addr-line>Pittsburgh, PA</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24622295</idno>
<idno type="pmc">4266288</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266288</idno>
<idno type="RBID">PMC:4266288</idno>
<idno type="doi">10.1093/schbul/sbu032</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">001E09</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001E09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Persistent Infection by HSV-1 Is Associated With Changes in Functional Architecture of iPSC-Derived Neurons and Brain Activation Patterns Underlying Working Memory Performance</title>
<author>
<name sortKey="D Iuto, Leonardo" sort="D Iuto, Leonardo" uniqKey="D Iuto L" first="Leonardo" last="D Iuto">Leonardo D Iuto</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Department of Psychiatry, WPIC, University of Pittsburgh, School of Medicine</institution>
,
<addr-line>Pittsburgh PA</addr-line>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0010">These authors contributed equally to the article.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Prasad, Konasale M" sort="Prasad, Konasale M" uniqKey="Prasad K" first="Konasale M." last="Prasad">Konasale M. Prasad</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Department of Psychiatry, WPIC, University of Pittsburgh, School of Medicine</institution>
,
<addr-line>Pittsburgh PA</addr-line>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0010">These authors contributed equally to the article.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Upton, Catherine H" sort="Upton, Catherine H" uniqKey="Upton C" first="Catherine H." last="Upton">Catherine H. Upton</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Department of Psychiatry, WPIC, University of Pittsburgh, School of Medicine</institution>
,
<addr-line>Pittsburgh PA</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Viggiano, Luigi" sort="Viggiano, Luigi" uniqKey="Viggiano L" first="Luigi" last="Viggiano">Luigi Viggiano</name>
<affiliation>
<nlm:aff id="AF0002">
<institution>Department of Biology, University of Bari “Aldo Moro”</institution>
,
<addr-line>Bari</addr-line>
,
<country>Italy</country>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Milosevic, Jadranka" sort="Milosevic, Jadranka" uniqKey="Milosevic J" first="Jadranka" last="Milosevic">Jadranka Milosevic</name>
<affiliation>
<nlm:aff id="AF0003">
<institution>Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine</institution>
,
<addr-line>Pittsburgh, PA</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Raimondi, Giorgio" sort="Raimondi, Giorgio" uniqKey="Raimondi G" first="Giorgio" last="Raimondi">Giorgio Raimondi</name>
<affiliation>
<nlm:aff id="AF0004">
<institution>Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mcclain, Lora" sort="Mcclain, Lora" uniqKey="Mcclain L" first="Lora" last="Mcclain">Lora Mcclain</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Department of Psychiatry, WPIC, University of Pittsburgh, School of Medicine</institution>
,
<addr-line>Pittsburgh PA</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chowdari, Kodavali" sort="Chowdari, Kodavali" uniqKey="Chowdari K" first="Kodavali" last="Chowdari">Kodavali Chowdari</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Department of Psychiatry, WPIC, University of Pittsburgh, School of Medicine</institution>
,
<addr-line>Pittsburgh PA</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tischfield, Jay" sort="Tischfield, Jay" uniqKey="Tischfield J" first="Jay" last="Tischfield">Jay Tischfield</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Department of Genetics and The Human Genome Institute of New Jersey, Rutgers, The State University of New Jersey</institution>
,
<addr-line>Piscataway, NJ</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sheldon, Michael" sort="Sheldon, Michael" uniqKey="Sheldon M" first="Michael" last="Sheldon">Michael Sheldon</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Department of Genetics and The Human Genome Institute of New Jersey, Rutgers, The State University of New Jersey</institution>
,
<addr-line>Piscataway, NJ</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Moore, Jennifer C" sort="Moore, Jennifer C" uniqKey="Moore J" first="Jennifer C." last="Moore">Jennifer C. Moore</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Department of Genetics and The Human Genome Institute of New Jersey, Rutgers, The State University of New Jersey</institution>
,
<addr-line>Piscataway, NJ</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yolken, Robert H" sort="Yolken, Robert H" uniqKey="Yolken R" first="Robert H." last="Yolken">Robert H. Yolken</name>
<affiliation>
<nlm:aff id="AF0006">
<institution>Stanley Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kinchington, Paul R" sort="Kinchington, Paul R" uniqKey="Kinchington P" first="Paul R." last="Kinchington">Paul R. Kinchington</name>
<affiliation>
<nlm:aff id="AF0007">
<institution>Department of Ophthalmology, University of Pittsburgh School of Medicine</institution>
,
<addr-line>Pittsburgh, PA</addr-line>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0008">
<institution>Department of Molecular Genetics & Biochemistry, University of Pittsburgh</institution>
,
<addr-line>Pittsburgh, PA</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nimgaonkar, Vishwajit L" sort="Nimgaonkar, Vishwajit L" uniqKey="Nimgaonkar V" first="Vishwajit L." last="Nimgaonkar">Vishwajit L. Nimgaonkar</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Department of Psychiatry, WPIC, University of Pittsburgh, School of Medicine</institution>
,
<addr-line>Pittsburgh PA</addr-line>
;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AF0009">
<institution>Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh</institution>
,
<addr-line>Pittsburgh, PA</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Schizophrenia Bulletin</title>
<idno type="ISSN">0586-7614</idno>
<idno type="eISSN">1745-1701</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background:</title>
<p>Herpes simplex virus, type 1 (HSV-1) commonly produces lytic mucosal lesions. It invariably initiates latent infection in sensory ganglia enabling persistent, lifelong infection. Acute HSV-1 encephalitis is rare and definitive evidence of latent infection in the brain is lacking. However, exposure untraceable to encephalitis has been repeatedly associated with impaired working memory and executive functions, particularly among schizophrenia patients.</p>
</sec>
<sec>
<title>Methods:</title>
<p>Patterns of HSV-1 infection and gene expression changes were examined in human induced pluripotent stem cell (iPSC)-derived neurons. Separately, differences in blood oxygenation level-dependent (BOLD) responses to working memory challenges using letter
<italic>n</italic>
-back tests were investigated using functional magnetic resonance imaging (fMRI) among schizophrenia cases/controls.</p>
</sec>
<sec>
<title>Results:</title>
<p>HSV-1 induced lytic changes in iPSC-derived glutamatergic neurons and neuroprogenitor cells. In neurons, HSV-1 also entered a quiescent state following coincubation with antiviral drugs, with distinctive changes in gene expression related to functions such as glutamatergic signaling. In the fMRI studies, main effects of schizophrenia (
<italic>P</italic>
= .001) and HSV-1 exposure (1-back,
<italic>P</italic>
= 1.76 × 10
<sup></sup>
<sup>4</sup>
; 2-back,
<italic>P</italic>
= 1.39 × 10
<sup></sup>
<sup>5</sup>
) on BOLD responses were observed. We also noted increased BOLD responses in the frontoparietal, thalamus, and midbrain regions among HSV-1 exposed schizophrenia cases and controls, compared with unexposed persons.</p>
</sec>
<sec>
<title>Conclusions:</title>
<p>The lytic/quiescent cycles in iPSC-derived neurons indicate that persistent neuronal infection can occur, altering cellular function. The fMRI studies affirm the associations between nonencephalitic HSV-1 infection and functional brain changes linked with working memory impairment. The fMRI and iPSC studies together provide putative mechanisms for the cognitive impairments linked to HSV-1 exposure.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, R" uniqKey="Gupta R">R Gupta</name>
</author>
<author>
<name sortKey="Warren, T" uniqKey="Warren T">T Warren</name>
</author>
<author>
<name sortKey="Wald, A" uniqKey="Wald A">A Wald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flagg, Ew" uniqKey="Flagg E">EW Flagg</name>
</author>
<author>
<name sortKey="Weinstock, H" uniqKey="Weinstock H">H Weinstock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steiner, I" uniqKey="Steiner I">I Steiner</name>
</author>
<author>
<name sortKey="Kennedy, Pg" uniqKey="Kennedy P">PG Kennedy</name>
</author>
<author>
<name sortKey="Pachner, Ar" uniqKey="Pachner A">AR Pachner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baringer, Jr" uniqKey="Baringer J">JR Baringer</name>
</author>
<author>
<name sortKey="Pisani, P" uniqKey="Pisani P">P Pisani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karatas, H" uniqKey="Karatas H">H Karatas</name>
</author>
<author>
<name sortKey="Gurer, G" uniqKey="Gurer G">G Gurer</name>
</author>
<author>
<name sortKey="Pinar, A" uniqKey="Pinar A">A Pinar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dickerson, Fb" uniqKey="Dickerson F">FB Dickerson</name>
</author>
<author>
<name sortKey="Boronow, Jj" uniqKey="Boronow J">JJ Boronow</name>
</author>
<author>
<name sortKey="Stallings, C" uniqKey="Stallings C">C Stallings</name>
</author>
<author>
<name sortKey="Origoni, Ae" uniqKey="Origoni A">AE Origoni</name>
</author>
<author>
<name sortKey="Ruslanova, I" uniqKey="Ruslanova I">I Ruslanova</name>
</author>
<author>
<name sortKey="Yolken, Rh" uniqKey="Yolken R">RH Yolken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shirts, Bh" uniqKey="Shirts B">BH Shirts</name>
</author>
<author>
<name sortKey="Prasad, Km" uniqKey="Prasad K">KM Prasad</name>
</author>
<author>
<name sortKey="Pogue Geile, Mf" uniqKey="Pogue Geile M">MF Pogue-Geile</name>
</author>
<author>
<name sortKey="Dickerson, F" uniqKey="Dickerson F">F Dickerson</name>
</author>
<author>
<name sortKey="Yolken, Rh" uniqKey="Yolken R">RH Yolken</name>
</author>
<author>
<name sortKey="Nimgaonkar, Vl" uniqKey="Nimgaonkar V">VL Nimgaonkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yolken, Rh" uniqKey="Yolken R">RH Yolken</name>
</author>
<author>
<name sortKey="Torrey, Ef" uniqKey="Torrey E">EF Torrey</name>
</author>
<author>
<name sortKey="Lieberman, Ja" uniqKey="Lieberman J">JA Lieberman</name>
</author>
<author>
<name sortKey="Yang, S" uniqKey="Yang S">S Yang</name>
</author>
<author>
<name sortKey="Dickerson, Fb" uniqKey="Dickerson F">FB Dickerson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schretlen, Dj" uniqKey="Schretlen D">DJ Schretlen</name>
</author>
<author>
<name sortKey="Vannorsdall, Td" uniqKey="Vannorsdall T">TD Vannorsdall</name>
</author>
<author>
<name sortKey="Winicki, Jm" uniqKey="Winicki J">JM Winicki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dickerson, F" uniqKey="Dickerson F">F Dickerson</name>
</author>
<author>
<name sortKey="Stallings, C" uniqKey="Stallings C">C Stallings</name>
</author>
<author>
<name sortKey="Origoni, A" uniqKey="Origoni A">A Origoni</name>
</author>
<author>
<name sortKey="Vaughan, C" uniqKey="Vaughan C">C Vaughan</name>
</author>
<author>
<name sortKey="Khushalani, S" uniqKey="Khushalani S">S Khushalani</name>
</author>
<author>
<name sortKey="Yolken, R" uniqKey="Yolken R">R Yolken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dickerson, Fb" uniqKey="Dickerson F">FB Dickerson</name>
</author>
<author>
<name sortKey="Boronow, Jj" uniqKey="Boronow J">JJ Boronow</name>
</author>
<author>
<name sortKey="Stallings, C" uniqKey="Stallings C">C Stallings</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Watson, Am" uniqKey="Watson A">AM Watson</name>
</author>
<author>
<name sortKey="Prasad, Km" uniqKey="Prasad K">KM Prasad</name>
</author>
<author>
<name sortKey="Klei, L" uniqKey="Klei L">L Klei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dickerson, F" uniqKey="Dickerson F">F Dickerson</name>
</author>
<author>
<name sortKey="Stallings, C" uniqKey="Stallings C">C Stallings</name>
</author>
<author>
<name sortKey="Sullens, A" uniqKey="Sullens A">A Sullens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prasad, Km" uniqKey="Prasad K">KM Prasad</name>
</author>
<author>
<name sortKey="Watson, Am" uniqKey="Watson A">AM Watson</name>
</author>
<author>
<name sortKey="Dickerson, Fb" uniqKey="Dickerson F">FB Dickerson</name>
</author>
<author>
<name sortKey="Yolken, Rh" uniqKey="Yolken R">RH Yolken</name>
</author>
<author>
<name sortKey="Nimgaonkar, Vl" uniqKey="Nimgaonkar V">VL Nimgaonkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aiello, Ae" uniqKey="Aiello A">AE Aiello</name>
</author>
<author>
<name sortKey="Haan, Mn" uniqKey="Haan M">MN Haan</name>
</author>
<author>
<name sortKey="Pierce, Cm" uniqKey="Pierce C">CM Pierce</name>
</author>
<author>
<name sortKey="Simanek, Am" uniqKey="Simanek A">AM Simanek</name>
</author>
<author>
<name sortKey="Liang, J" uniqKey="Liang J">J Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prasad, Km" uniqKey="Prasad K">KM Prasad</name>
</author>
<author>
<name sortKey="Shirts, Bh" uniqKey="Shirts B">BH Shirts</name>
</author>
<author>
<name sortKey="Yolken, Rh" uniqKey="Yolken R">RH Yolken</name>
</author>
<author>
<name sortKey="Keshavan, Ms" uniqKey="Keshavan M">MS Keshavan</name>
</author>
<author>
<name sortKey="Nimgaonkar, Vl" uniqKey="Nimgaonkar V">VL Nimgaonkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prasad, Km" uniqKey="Prasad K">KM Prasad</name>
</author>
<author>
<name sortKey="Eack, Sm" uniqKey="Eack S">SM Eack</name>
</author>
<author>
<name sortKey="Goradia, D" uniqKey="Goradia D">D Goradia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prasad, Km" uniqKey="Prasad K">KM Prasad</name>
</author>
<author>
<name sortKey="Eack, Sm" uniqKey="Eack S">SM Eack</name>
</author>
<author>
<name sortKey="Keshavan, Ms" uniqKey="Keshavan M">MS Keshavan</name>
</author>
<author>
<name sortKey="Yolken, Rh" uniqKey="Yolken R">RH Yolken</name>
</author>
<author>
<name sortKey="Iyengar, S" uniqKey="Iyengar S">S Iyengar</name>
</author>
<author>
<name sortKey="Nimgaonkar, Vl" uniqKey="Nimgaonkar V">VL Nimgaonkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bloom, Dc" uniqKey="Bloom D">DC Bloom</name>
</author>
<author>
<name sortKey="Giordani, Nv" uniqKey="Giordani N">NV Giordani</name>
</author>
<author>
<name sortKey="Kwiatkowski, Dl" uniqKey="Kwiatkowski D">DL Kwiatkowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicoll, Mp" uniqKey="Nicoll M">MP Nicoll</name>
</author>
<author>
<name sortKey="Proenca, Jt" uniqKey="Proenca J">JT Proença</name>
</author>
<author>
<name sortKey="Efstathiou, S" uniqKey="Efstathiou S">S Efstathiou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giordani, Nv" uniqKey="Giordani N">NV Giordani</name>
</author>
<author>
<name sortKey="Neumann, Dm" uniqKey="Neumann D">DM Neumann</name>
</author>
<author>
<name sortKey="Kwiatkowski, Dl" uniqKey="Kwiatkowski D">DL Kwiatkowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carter, Cs" uniqKey="Carter C">CS Carter</name>
</author>
<author>
<name sortKey="Perlstein, W" uniqKey="Perlstein W">W Perlstein</name>
</author>
<author>
<name sortKey="Ganguli, R" uniqKey="Ganguli R">R Ganguli</name>
</author>
<author>
<name sortKey="Brar, J" uniqKey="Brar J">J Brar</name>
</author>
<author>
<name sortKey="Mintun, M" uniqKey="Mintun M">M Mintun</name>
</author>
<author>
<name sortKey="Cohen, Jd" uniqKey="Cohen J">JD Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friedman, Hr" uniqKey="Friedman H">HR Friedman</name>
</author>
<author>
<name sortKey="Goldman Rakic, Ps" uniqKey="Goldman Rakic P">PS Goldman-Rakic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="D Iuto, L" uniqKey="D Iuto L">L D’Aiuto</name>
</author>
<author>
<name sortKey="Di Maio, R" uniqKey="Di Maio R">R Di Maio</name>
</author>
<author>
<name sortKey="Heath, B" uniqKey="Heath B">B Heath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramachandran, S" uniqKey="Ramachandran S">S Ramachandran</name>
</author>
<author>
<name sortKey="Knickelbein, Je" uniqKey="Knickelbein J">JE Knickelbein</name>
</author>
<author>
<name sortKey="Ferko, C" uniqKey="Ferko C">C Ferko</name>
</author>
<author>
<name sortKey="Hendricks, Rl" uniqKey="Hendricks R">RL Hendricks</name>
</author>
<author>
<name sortKey="Kinchington, Pr" uniqKey="Kinchington P">PR Kinchington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Talkowski, Me" uniqKey="Talkowski M">ME Talkowski</name>
</author>
<author>
<name sortKey="Mccann, Kl" uniqKey="Mccann K">KL McCann</name>
</author>
<author>
<name sortKey="Chen, M" uniqKey="Chen M">M Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cremer, M" uniqKey="Cremer M">M Cremer</name>
</author>
<author>
<name sortKey="Muller, S" uniqKey="Muller S">S Müller</name>
</author>
<author>
<name sortKey="Kohler, D" uniqKey="Kohler D">D Köhler</name>
</author>
<author>
<name sortKey="Brero, A" uniqKey="Brero A">A Brero</name>
</author>
<author>
<name sortKey="Solovei, I" uniqKey="Solovei I">I Solovei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="First, Mb" uniqKey="First M">MB First</name>
</author>
<author>
<name sortKey="Spitzer, Rl" uniqKey="Spitzer R">RL Spitzer</name>
</author>
<author>
<name sortKey="Gibbon, M" uniqKey="Gibbon M">M Gibbon</name>
</author>
<author>
<name sortKey="Williams, Jbw" uniqKey="Williams J">JBW Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hollingshead, Ab" uniqKey="Hollingshead A">AB Hollingshead</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stolz, E" uniqKey="Stolz E">E Stolz</name>
</author>
<author>
<name sortKey="Pancholi, Km" uniqKey="Pancholi K">KM Pancholi</name>
</author>
<author>
<name sortKey="Goradia, Dd" uniqKey="Goradia D">DD Goradia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maldjian, Ja" uniqKey="Maldjian J">JA Maldjian</name>
</author>
<author>
<name sortKey="Laurienti, Pj" uniqKey="Laurienti P">PJ Laurienti</name>
</author>
<author>
<name sortKey="Kraft, Ra" uniqKey="Kraft R">RA Kraft</name>
</author>
<author>
<name sortKey="Burdette, Jh" uniqKey="Burdette J">JH Burdette</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ward, Bd" uniqKey="Ward B">BD Ward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Margolis, Tp" uniqKey="Margolis T">TP Margolis</name>
</author>
<author>
<name sortKey="Elfman, Fl" uniqKey="Elfman F">FL Elfman</name>
</author>
<author>
<name sortKey="Leib, D" uniqKey="Leib D">D Leib</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, T" uniqKey="Liu T">T Liu</name>
</author>
<author>
<name sortKey="Khanna, Km" uniqKey="Khanna K">KM Khanna</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Fink, Dj" uniqKey="Fink D">DJ Fink</name>
</author>
<author>
<name sortKey="Hendricks, Rl" uniqKey="Hendricks R">RL Hendricks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matthews, Jt" uniqKey="Matthews J">JT Matthews</name>
</author>
<author>
<name sortKey="Terry, Bj" uniqKey="Terry B">BJ Terry</name>
</author>
<author>
<name sortKey="Field, Ak" uniqKey="Field A">AK Field</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Clercq, E" uniqKey="De Clercq E">E De Clercq</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kramer, Mf" uniqKey="Kramer M">MF Kramer</name>
</author>
<author>
<name sortKey="Cook, Wj" uniqKey="Cook W">WJ Cook</name>
</author>
<author>
<name sortKey="Roth, Fp" uniqKey="Roth F">FP Roth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kosz Vnenchak, M" uniqKey="Kosz Vnenchak M">M Kosz-Vnenchak</name>
</author>
<author>
<name sortKey="Coen, Dm" uniqKey="Coen D">DM Coen</name>
</author>
<author>
<name sortKey="Knipe, Dm" uniqKey="Knipe D">DM Knipe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Regnell, Ce" uniqKey="Regnell C">CE Regnell</name>
</author>
<author>
<name sortKey="Hildrestrand, Ga" uniqKey="Hildrestrand G">GA Hildrestrand</name>
</author>
<author>
<name sortKey="Sejersted, Y" uniqKey="Sejersted Y">Y Sejersted</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Schizophr Bull</journal-id>
<journal-id journal-id-type="iso-abbrev">Schizophr Bull</journal-id>
<journal-id journal-id-type="hwp">schbul</journal-id>
<journal-id journal-id-type="publisher-id">schbul</journal-id>
<journal-title-group>
<journal-title>Schizophrenia Bulletin</journal-title>
</journal-title-group>
<issn pub-type="ppub">0586-7614</issn>
<issn pub-type="epub">1745-1701</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
<publisher-loc>US</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24622295</article-id>
<article-id pub-id-type="pmc">4266288</article-id>
<article-id pub-id-type="doi">10.1093/schbul/sbu032</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Regular Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Persistent Infection by HSV-1 Is Associated With Changes in Functional Architecture of iPSC-Derived Neurons and Brain Activation Patterns Underlying Working Memory Performance</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>D’Aiuto</surname>
<given-names>Leonardo</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AF0010">
<sup>10</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Prasad</surname>
<given-names>Konasale M.</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AF0010">
<sup>10</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Upton</surname>
<given-names>Catherine H.</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Viggiano</surname>
<given-names>Luigi</given-names>
</name>
<xref ref-type="aff" rid="AF0002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Milosevic</surname>
<given-names>Jadranka</given-names>
</name>
<xref ref-type="aff" rid="AF0003">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Raimondi</surname>
<given-names>Giorgio</given-names>
</name>
<xref ref-type="aff" rid="AF0004">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>McClain</surname>
<given-names>Lora</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chowdari</surname>
<given-names>Kodavali</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tischfield</surname>
<given-names>Jay</given-names>
</name>
<xref ref-type="aff" rid="AF0005">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sheldon</surname>
<given-names>Michael</given-names>
</name>
<xref ref-type="aff" rid="AF0005">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Moore</surname>
<given-names>Jennifer C.</given-names>
</name>
<xref ref-type="aff" rid="AF0005">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yolken</surname>
<given-names>Robert H.</given-names>
</name>
<xref ref-type="aff" rid="AF0006">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kinchington</surname>
<given-names>Paul R.</given-names>
</name>
<xref ref-type="aff" rid="AF0007">
<sup>7</sup>
</xref>
<xref ref-type="aff" rid="AF0008">
<sup>8</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nimgaonkar</surname>
<given-names>Vishwajit L.</given-names>
</name>
<xref ref-type="corresp" rid="c1">*</xref>
<xref ref-type="aff" rid="AF0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AF0009">
<sup>9</sup>
</xref>
</contrib>
<aff id="AF0001">
<sup>1</sup>
<institution>Department of Psychiatry, WPIC, University of Pittsburgh, School of Medicine</institution>
,
<addr-line>Pittsburgh PA</addr-line>
;</aff>
<aff id="AF0002">
<sup>2</sup>
<institution>Department of Biology, University of Bari “Aldo Moro”</institution>
,
<addr-line>Bari</addr-line>
,
<country>Italy</country>
;</aff>
<aff id="AF0003">
<sup>3</sup>
<institution>Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine</institution>
,
<addr-line>Pittsburgh, PA</addr-line>
;</aff>
<aff id="AF0004">
<sup>4</sup>
<institution>Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
;</aff>
<aff id="AF0005">
<sup>5</sup>
<institution>Department of Genetics and The Human Genome Institute of New Jersey, Rutgers, The State University of New Jersey</institution>
,
<addr-line>Piscataway, NJ</addr-line>
;</aff>
<aff id="AF0006">
<sup>6</sup>
<institution>Stanley Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine</institution>
,
<addr-line>Baltimore, MD</addr-line>
;</aff>
<aff id="AF0007">
<sup>7</sup>
<institution>Department of Ophthalmology, University of Pittsburgh School of Medicine</institution>
,
<addr-line>Pittsburgh, PA</addr-line>
;</aff>
<aff id="AF0008">
<sup>8</sup>
<institution>Department of Molecular Genetics & Biochemistry, University of Pittsburgh</institution>
,
<addr-line>Pittsburgh, PA</addr-line>
;</aff>
<aff id="AF0009">
<sup>9</sup>
<institution>Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh</institution>
,
<addr-line>Pittsburgh, PA</addr-line>
</aff>
<aff id="AF0010">
<sup>10</sup>
These authors contributed equally to the article.</aff>
</contrib-group>
<author-notes>
<corresp id="c1">*To whom correspondence should be addressed; Western Psychiatric Institute and Clinic, TDH 441, 3811 O’Hara St, Pittsburgh, PA 15213, US; tel:
<phone>412-246-6353</phone>
, fax:
<fax>412-246-6350</fax>
, e-mail:
<email>vishwajitnl@upmc.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>1</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>12</day>
<month>3</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>12</day>
<month>3</month>
<year>2014</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>41</volume>
<issue>1</issue>
<fpage>123</fpage>
<lpage>132</lpage>
<permissions>
<copyright-statement>© The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="creative-commons" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/">http://creativecommons.org/licenses/by-nc-nd/3.0/</ext-link>
), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com</license-p>
</license>
</permissions>
<abstract>
<sec>
<title>Background:</title>
<p>Herpes simplex virus, type 1 (HSV-1) commonly produces lytic mucosal lesions. It invariably initiates latent infection in sensory ganglia enabling persistent, lifelong infection. Acute HSV-1 encephalitis is rare and definitive evidence of latent infection in the brain is lacking. However, exposure untraceable to encephalitis has been repeatedly associated with impaired working memory and executive functions, particularly among schizophrenia patients.</p>
</sec>
<sec>
<title>Methods:</title>
<p>Patterns of HSV-1 infection and gene expression changes were examined in human induced pluripotent stem cell (iPSC)-derived neurons. Separately, differences in blood oxygenation level-dependent (BOLD) responses to working memory challenges using letter
<italic>n</italic>
-back tests were investigated using functional magnetic resonance imaging (fMRI) among schizophrenia cases/controls.</p>
</sec>
<sec>
<title>Results:</title>
<p>HSV-1 induced lytic changes in iPSC-derived glutamatergic neurons and neuroprogenitor cells. In neurons, HSV-1 also entered a quiescent state following coincubation with antiviral drugs, with distinctive changes in gene expression related to functions such as glutamatergic signaling. In the fMRI studies, main effects of schizophrenia (
<italic>P</italic>
= .001) and HSV-1 exposure (1-back,
<italic>P</italic>
= 1.76 × 10
<sup></sup>
<sup>4</sup>
; 2-back,
<italic>P</italic>
= 1.39 × 10
<sup></sup>
<sup>5</sup>
) on BOLD responses were observed. We also noted increased BOLD responses in the frontoparietal, thalamus, and midbrain regions among HSV-1 exposed schizophrenia cases and controls, compared with unexposed persons.</p>
</sec>
<sec>
<title>Conclusions:</title>
<p>The lytic/quiescent cycles in iPSC-derived neurons indicate that persistent neuronal infection can occur, altering cellular function. The fMRI studies affirm the associations between nonencephalitic HSV-1 infection and functional brain changes linked with working memory impairment. The fMRI and iPSC studies together provide putative mechanisms for the cognitive impairments linked to HSV-1 exposure.</p>
</sec>
</abstract>
<kwd-group>
<title>Key words:</title>
<kwd>memory</kwd>
<kwd>induced pluripotent stem cells</kwd>
<kwd>herpes simplex virus type 1</kwd>
<kwd>fMRI</kwd>
<kwd>herpes</kwd>
</kwd-group>
<counts>
<page-count count="10"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Herpes simplex virus, type 1 (HSV-1) causes human specific infections in the majority of US adults (
<uri xlink:type="simple" xlink:href="http://www.cdc.gov/nchs/nhanes.htm">http://www.cdc.gov/nchs/nhanes.htm</uri>
) and increasing numbers of neonates (
<uri xlink:type="simple" xlink:href="http://www.cdc.gov/nchs/nhanes.htm">http://www.cdc.gov/nchs/nhanes.htm</uri>
).
<sup>
<xref rid="CIT0001" ref-type="bibr">1</xref>
,
<xref rid="CIT0002" ref-type="bibr">2</xref>
</sup>
Mucosal lesions such as cold sores occur after primary infection, and recurrent infections can induce blinding stromal keratitis. HSV-1 causes fulminant lytic infection in all human cells except sensory ganglia, where latent infection can be established in neurons that serve as reservoirs for lifelong recurrent infections. Persistent infection is thus marked by sporadic productive, lytic infections alternating with latency, when gene expression is largely silenced and only the untranslated latency-associated transcripts (LAT) are abundantly expressed.
<sup>
<xref rid="CIT0003" ref-type="bibr">3</xref>
</sup>
</p>
<p content-type="indent">Periodic reactivation can cause HSV-1 encephalitis, with extensive cognitive impairment, and postencephalitic sequelae.
<sup>
<xref rid="CIT0003" ref-type="bibr">3</xref>
</sup>
Its rarity (~0.04%) suggests that HSV-1 infection does not ordinarily affect the brain, but viral DNA has been detected in 35% of nonencephalitic postmortem brain tissues,
<sup>
<xref rid="CIT0004" ref-type="bibr">4</xref>
,
<xref rid="CIT0005" ref-type="bibr">5</xref>
</sup>
suggesting spread to the brain during persistent infection. Mild/moderate impairments in attention, working, and verbal memory untraceable to prior encephalitis or socioeconomic status (SES)
<sup>
<xref rid="CIT0004" ref-type="bibr">4</xref>
</sup>
were reported repeatedly among HSV-1 exposed schizophrenia patients and even healthy individuals,
<sup>
<xref rid="CIT0006" ref-type="bibr">6–14</xref>
</sup>
with only one discrepant report.
<sup>
<xref rid="CIT0015" ref-type="bibr">15</xref>
</sup>
The estimated ORs for cognitive dysfunction among HSV-1–exposed young adults are 1.25–3.2,
<sup>
<xref rid="CIT0012" ref-type="bibr">12</xref>
,
<xref rid="CIT0013" ref-type="bibr">13</xref>
</sup>
indicating population attributable risks between 15.2%–59.3%. Reduced prefrontal cortical gray matter volume was also reported among HSV-1–exposed schizophrenia patients,
<sup>
<xref rid="CIT0016" ref-type="bibr">16</xref>
,
<xref rid="CIT0017" ref-type="bibr">17</xref>
</sup>
with progressive cognitive impairments and gray matter loss.
<sup>
<xref rid="CIT0017" ref-type="bibr">17</xref>
</sup>
The cognitive impairments were alleviated with an antiviral agent in a randomized placebo-controlled trial.
<sup>
<xref rid="CIT0018" ref-type="bibr">18</xref>
</sup>
These studies together affirm the majority of Bradford-Hill criteria, suggesting causal links.
<sup>
<xref rid="CIT0014" ref-type="bibr">14</xref>
</sup>
</p>
<p content-type="indent">To generate testable mechanisms for the associations, we investigated cellular models using human induced pluripotent stem cells (iPSCs), because existing HSV-1 models utilize nonhuman tissues or transformed cell lines; such models may not recapitulate human specific infection.
<sup>
<xref rid="CIT0019" ref-type="bibr">19–21</xref>
</sup>
With functional magnetic resonance imaging (fMRI), we separately evaluated brain activation patterns while participants performed the
<italic>n</italic>
-back task, a well-established working memory task that identifies consistent patterns of brain activation differences among schizophrenia cases.
<sup>
<xref rid="CIT0022" ref-type="bibr">22</xref>
,
<xref rid="CIT0023" ref-type="bibr">23</xref>
</sup>
</p>
</sec>
<sec sec-type="methods" id="s2">
<title>Methods</title>
<sec id="s3">
<title>iPSC-Based Studies</title>
<sec id="s4">
<title>iPSCs.</title>
<p>iPSCs were generated from human skin biopsies. Line 5404 from a schizophrenia patient was used for all experiments. Line HFF1-S, from neonatal foreskin of an anonymous donor was used for confirmatory studies. Neural progenitor cells (NPCs) and glutamatergic neurons
<sup>
<xref rid="CIT0024" ref-type="bibr">24</xref>
</sup>
were derived from iPSCs
<sup>
<xref rid="CIT0024" ref-type="bibr">24</xref>
</sup>
(
<ext-link ext-link-type="uri" xlink:href="http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu032/-/DC1">supplementary figures S1</ext-link>
and
<ext-link ext-link-type="uri" xlink:href="http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu032/-/DC1">S2</ext-link>
and
<ext-link ext-link-type="uri" xlink:href="http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu032/-/DC1">supplementary information</ext-link>
).</p>
</sec>
<sec id="s5">
<title>HSV-1 Infection.</title>
<p>We used a genetically engineered HSV-1 construct incorporating enhanced green fluorescent protein (EGFP) and monomeric red fluorescent protein (RFP) as reporter genes whose expression is driven by the viral promoters ICP0 and Glycoprotein C, respectively.
<sup>
<xref rid="CIT0025" ref-type="bibr">25</xref>
</sup>
EGFP expression in infected cells indicates that HSV-1 has entered lytic cycles, while RFP expression indicates commitment to viral DNA replication. Cells were incubated with HSV-1 for 2 h at specified multiplicity of infection (MOI). To inhibit viral replication, cells were preincubated with antivirals used in animal models: acyclovir (50 μM), or (E)-5-(2-bromovinyl)-2′-deoxyuridine (5BVdU, 30 μM) along with interferon-alpha (IFN-α, 125 U/ml).
<sup>
<xref rid="CIT0022" ref-type="bibr">22</xref>
</sup>
The proportion of cells expressing EGFP and RFP was determined by flow cytometry (FC). Images were acquired using a Leica IL MD LED inverted fluorescence microscope and a Leica DM5500B fluorescence microscope.</p>
</sec>
<sec id="s6">
<title>Viral Gene Expression.</title>
<p>RNA was extracted using Qiagen kits. Complementary DNA was synthesized using total RNA with SuperScript III recommended protocol (Invitrogen) and quantitative PCR (qPCR) performed using the target and reference (beta actin) Taqman probes with Applied Biosystems-recommended protocols (ABI). All experiments were conducted in triplicate and the comparative Ct method used for quantification.
<sup>
<xref rid="CIT0026" ref-type="bibr">26</xref>
</sup>
</p>
</sec>
<sec id="s7">
<title>Three-Dimensional Fluorescence In Situ Hybridization.</title>
<p>Three-dimensional fluorescence in situ hybridization (3D-FISH) was performed using the HSV-1 genome as a probe.
<sup>
<xref rid="CIT0027" ref-type="bibr">27</xref>
</sup>
To visualize viral DNA in host cellular nuclei, iPSC-derived neurons were infected after 60 days of differentiation in neurobasal medium on matrigel-coated chamber slides. Neurons were infected with HSV-1 in the presence or absence of 5BVdU+IFN-α at MOI 0.3. On average, 50 nuclei from each cellular preparation were scanned. Digital images were generated using Leica LAS AF, 3D Visualization Module. Hybridization signals were subjected to uniform thresholding to demarcate the signals.</p>
</sec>
<sec id="s8">
<title>Oligonucleotide Microarray Analyses.</title>
<p>Cy3-labeled cRNA was used for hybridization to Agilent Human GE 8x60K V2 Gene Expression microarrays (Agilent Technologies), the microarrays scanned using the Agilent Microarray Scanner and data analyzed with Agilent Feature Extraction software (A 9.1.3).
<sup>
<xref rid="CIT0024" ref-type="bibr">24</xref>
</sup>
Differentially expressed genes were determined using unpaired
<italic>t</italic>
tests and Benjamini-Hochberg correction with
<italic>P</italic>
≤ .05 and the fold change of 2 as thresholds. The data were deposited in NCBI’s Gene Expression Omnibus database (
<uri xlink:type="simple" xlink:href="http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46043">http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46043</uri>
).</p>
</sec>
</sec>
<sec id="s9">
<title>fMRI Studies</title>
<sec id="s10">
<title>Clinical Evaluations.</title>
<p>Participants (schizophrenia = 19, controls = 23) completed the Structured Clinical Interview for DSM-IV
<sup>
<xref rid="CIT0028" ref-type="bibr">28</xref>
</sup>
followed by consensus diagnoses.
<sup>
<xref rid="CIT0016" ref-type="bibr">16</xref>
</sup>
SES was evaluated using the Hollingshead Index.
<sup>
<xref rid="CIT0029" ref-type="bibr">29</xref>
</sup>
Exclusion criteria included substance abuse in the past month or dependence in the last 6 months, history of medical/neurological disorders, mental retardation (DSM-IV), illness duration over 8 years or participation in prior HSV-1 studies. The controls were screened for absence of psychosis and substance abuse.
<sup>
<xref rid="CIT0016" ref-type="bibr">16</xref>
</sup>
After complete description of the study, written informed consent was obtained.</p>
</sec>
<sec id="s11">
<title>HSV-1 Exposure.</title>
<p>IgG antibodies to HSV-1 were assayed using solid-phase enzyme immunoassays.
<sup>
<xref rid="CIT0014" ref-type="bibr">14</xref>
</sup>
</p>
</sec>
<sec id="s12">
<title>MRI Studies.</title>
<p>Structural MRI was acquired on a Siemens 3T Tim Trio whole-body scanner using the MPRAGE sequence to co-register fMRI data, overlay the blood oxygenation level-dependent (BOLD) responses and identify regions-of-interest. Scanning parameters were: echo time (TE) = 3.52ms, repetition time (TR) = 2300ms, flip angle = 9°, thickness = 0.8mm, and number of slices = 192.
<sup>
<xref rid="CIT0030" ref-type="bibr">30</xref>
</sup>
In the same session, subjects performed a letter
<italic>n</italic>
-back task and whole-brain BOLD responses were collected using gradient-echo echo-planar imaging (EPI). Scanning parameters for the fMRI were: TE = 31ms, TR = 2000 ms, 36 axial/oblique slices of 4-mm thickness, field of view = 240mm, flip angle = 80°, and matrix size = 64 × 64. The letter
<italic>n</italic>
-back task consisted of 6 blocks (2 blocks each of 0-back, 1-back, and 2-back) of English upper case letters as stimuli. Each stimulus was presented for 500ms. The interstimulus interval (ISI) was jittered randomly between 1.5 and 5.5 s with an average ISI of 3.5 s. Each block was followed by 20 s rest. The first block presented was always 0-back to acclimatize the subjects in the scanner, followed by a randomized order of presentation. Stimuli were presented using E-prime through back projection on a white screen. Subjects responded through a fiber-optic button system by pressing the assigned button every time they saw X on the screen for the 0-back, if they saw the same letter preceding the one presented earlier for the 1-back and if they saw a letter shown 2 letters before the one they were seeing for the 2-back. The responses were collected for both accuracy and response time.</p>
</sec>
<sec id="s13">
<title>Image Processing.</title>
<p>fMRI data were analyzed using SPM8 (
<uri xlink:type="simple" xlink:href="http://www.fil.ion.ucl.ac.uk/spm/software/spm8/">http://www.fil.ion.ucl.ac.uk/spm/software/spm8/</uri>
). Images were realigned and normalized to a standard EPI template and smoothed with 8 × 8 × 8 Gaussian kernel. A full-factorial random effects model was implemented within SPM8 with age, sex, and SES as covariates. We preferred to compare groups across each task level since the behavioral data between-group showed significant differences across each task level rather than between levels of performance. A priori combined intensity and spatial extent threshold significance was determined by running 10 000 Monte Carlo simulations on AlphaSim
<sup>
<xref rid="CIT0031" ref-type="bibr">31</xref>
</sup>
for the whole brain. The simulation showed that the BOLD differences within a cluster of 1385 contiguous voxels with a minimum voxel-wise difference of
<italic>P</italic>
< .05, would provide a
<italic>P</italic>
< .05 corrected for both the intensity and the spatial extent of the clusters. Task performance data were analyzed using generalized linear models for mean response time and the Mann-Whitney
<italic>U</italic>
tests for accuracy. Percent signal changes were extracted from the regional masks of Brodmann areas (BA) defined by the WFU PickAtlas
<sup>
<xref rid="CIT0032" ref-type="bibr">32</xref>
</sup>
that contained the peak intensity voxel and were analyzed using ANOVA on SPSS 21.</p>
</sec>
</sec>
</sec>
<sec id="s14">
<title>Results</title>
<sec id="s15">
<title>iPSC-Based Studies</title>
<sec id="s16">
<title>HSV-1 Infection in NPCs and Neurons.</title>
<p>At 24h post-infection (p.i.), FC analysis showed ~30% and ~15% of EGFP-positive (EGFP
<sup>+</sup>
) cells in infected NPCs and neurons respectively, indicating lytic infection (
<xref ref-type="fig" rid="F1">figure 1</xref>
). A ~2-fold reduction of EGFP
<sup>+</sup>
cells was observed in NPCs and ~3-fold reduction in neurons when HSV1-infected cells were coincubated with acyclovir, compared with vehicle-treated controls. Separately, NPCs and neuronal cultures coincubated with 5BVdU and IFN-α showed a greater reduction in EGFP
<sup>+</sup>
cells (~8% and ~2%, respectively), compared with untreated control cells or acyclovir-treated cells, suggesting that the antiviral agents suppressed viral gene expression.</p>
<fig fig-type="figure" id="F1" position="float">
<label>Fig. 1.</label>
<caption>
<p>Comparative efficiency of antiviral drugs to reduce acute infection in induced pluripotent stem-derived neural progenitor cells (NPCs) and neurons. Top panel: microphotographs of NPCs and neuronal cultures infected with herpes simplex virus, type 1 (HSV-1) (multiplicity of infection of 0.1 and 0.3, respectively) in the presence or absence of viral replication inhibitors acyclovir or 5-(E)-5-(2-bromovinyl)-2′-deoxyuridine along with interferon-α. Bottom panel: fluorescence-activated cell sorting analysis of uninfected and HSV-1 infected NPC and neuronal cultures. Scale bar is 50 μm. For a color version, see this figure online. </p>
</caption>
<graphic xlink:href="schbul_sbu032_f0001"></graphic>
</fig>
<p content-type="indent">Even in the presence of 5BVdU+IFN-α, the majority of infected NPCs detached from culture plates without a concomitant increase in the frequency of EGFP
<sup>+</sup>
and RFP
<sup>+</sup>
cells, suggesting that HSV-1 quiescent infection cannot be established consistently in NPCs (
<xref ref-type="fig" rid="F2">figure 2</xref>
, top panel).</p>
<fig fig-type="figure" id="F2" position="float">
<label>Fig. 2.</label>
<caption>
<p>Quiescent infection established in neurons but not in neural progenitor cells (NPCs). Top panel: microphotographs of induced pluripotent stem-derived NPCs infected with herpes simplex virus, type 1 (HSV-1) in the presence of 5-(E)-5-(2-bromovinyl)-2′-deoxyuridine (5BVdU) and interferon (IFN)-α (5BVdU+IFN-α). Middle and bottom panels: neuronal cultures were incubated under the following conditions: (1) uninfected, (2) infected with HSV-1 and 5BVdU + IFN-α for 7 days (“HSV-1+5BVdU+IFN-α”), (3) infected with HSV-1 and cultured with 5BVdU+IFN-α for 7 days, then drugs were removed from culture medium, and infected cells were further cultured for 5 days in neurobasal medium alone (“withdrawal of 5BVdU+IFN-α”), (4) infected with HSV-1 and cultured with 5BVdU+IFN-α for 7 days, then drugs were removed from culture medium, and infected cells were further cultured for 5 days in neurobasal medium with sodium butyrate (NaB) (“reactivation with NaB”). The relative fraction of enhanced green fluorescent protein
<sup>+</sup>
/red fluorescent protein
<sup>+</sup>
cells in each condition is shown (middle panel, right). Viral titer in the supernatants from the culture plates was measured using Vero plaque assays (bottom panel, left). Microphotographs in the bottom panel, right, show the effects of adding supernatants from the original cultures to fresh neuronal cultures (label to left of each microphotograph indicates the culture condition from which the supernatant was derived). Scale bar is 50 μm. For a color version, see this figure online.</p>
</caption>
<graphic xlink:href="schbul_sbu032_f0002"></graphic>
</fig>
<p content-type="indent">In contrast, when neuronal cultures were infected at MOI of 0.3 with 5BVdU+IFN-α and maintained from day −1 to day +7 p.i., only 9% of cells expressed EGFP, suggesting that viral gene expression was suppressed in the majority of cells and lytic infection was present in a minority (
<xref ref-type="fig" rid="F2">figure 2</xref>
, middle panel). Infectious viral particles were undetectable in the supernatant for 7 days of infected neuronal cultures treated with inhibitors, based on subsequent Vero cell plaque assays (
<xref ref-type="fig" rid="F2">figure 2</xref>
, bottom panel, left). Culture supernatants from these neuronal cultures tested against new neuronal cultures (1/20 of the volumes of the culture supernatants were applied to neuronal cultures) failed to yield EGFP
<sup>+</sup>
or EGFP
<sup>+</sup>
/RFP
<sup>+</sup>
cells in all cultures up to 48 h p.i., consistent with the plaque assays (
<xref ref-type="fig" rid="F2">figure 2</xref>
, bottom panel, right). Though the green fluorescence in the initial neuronal cultures indicates activation of the ICP0 promoter, productive infection was thus fully suppressed and quiescent infection may be present (
<xref ref-type="fig" rid="F2">figure 2</xref>
, middle panel).</p>
<p content-type="indent">Withdrawal of 5BVdU+IFN-α was followed by ~3-fold increase of EGFP
<sup>+</sup>
cells and ~5-fold increase of EGFP
<sup>+</sup>
/RFP
<sup>+</sup>
cells (
<xref ref-type="fig" rid="F2">figure 2</xref>
, middle panel). Infectious viral particles were undetected in most cultures, although a relatively low level of infectious virus (~3 log(10) pfu/ml) was detected in 3 out of 9 cultures (data not shown). Culture supernatants were also tested for presence of virions by application to additional neuronal cultures. Only sporadic EGFP
<sup>+</sup>
and EGFP
<sup>+</sup>
/RFP
<sup>+</sup>
cells were observed when neuronal cultures were infected with up to 1/20 of the volume of the culture supernatants (
<xref ref-type="fig" rid="F2">figure 2</xref>
, bottom panel, right). Thus, withdrawal of 5BVdU and IFN-α reactivates lytic cycle genes, but productive infection is still substantially suppressed.</p>
</sec>
<sec id="s17">
<title>Reactivation of Quiescent Infection With Sodium Butyrate.</title>
<p>Neurons were cultured for 5 days with sodium butyrate (NaB) (5mM), a histone deacetylase inhibitor, after initial 7-day treatment with 5BVdU+IFN-α. FC showed ~2-fold increase of EGFP
<sup>+</sup>
cells and ~6-fold increase of EGFP
<sup>+</sup>
/RFP
<sup>+</sup>
cells, (
<xref ref-type="fig" rid="F2">figure 2</xref>
, middle panel). Productive infection was confirmed by applying NaB-treated culture supernatants to fresh neuronal cultures, yielding a high proportion of EGFP
<sup>+</sup>
and EGFP+/RFP
<sup>+</sup>
cells (
<xref ref-type="fig" rid="F2">figure 2</xref>
, bottom panel, right). The viral titer of culture supernatant was ~4 log(10) pfu/ml (
<xref ref-type="fig" rid="F2">figure 2</xref>
, bottom panel, left). Thus, HSV-1 can be recovered from quiescently infected neurons with NaB.</p>
</sec>
<sec id="s18">
<title>Nuclear Localization of the HSV-1 Genome During Neuronal Infection.</title>
<p>Lytic or quiescent infection was induced in iPSC-derived neurons as described and HSV-1 genomes visualized using 3D-FISH. In acutely infected cultures, numerous FISH signals corresponding to HSV-1 genomes were found in the central region of the nucleus, and the host chromatin showed displacement toward the nuclear periphery (
<ext-link ext-link-type="uri" xlink:href="http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu032/-/DC1">supplementary figure S3a</ext-link>
). In neurons with quiescent infection, only a weak signal was detected at the nuclear periphery (
<ext-link ext-link-type="uri" xlink:href="http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu032/-/DC1">supplementary figure S3b</ext-link>
).</p>
</sec>
<sec id="s19">
<title>Viral and Neuronal Gene Expression.</title>
<p>Using qPCR assays, viral LAT, ICP4, and DNA polymerase genes were expressed at higher levels during lytic vs quiescent infection (fold-changes: LAT: 54, ICP4: 63, DNA polymerase: 51). Microarray analysis of host neuronal gene expression indicated that 10 087 genes were altered significantly during lytic infection (
<italic>P</italic>
< .05, corrected for multiple comparisons, mean fold changes <0.5 or >2), but during quiescent infection, only 1525 genes changed significantly; the latter included glutamate receptor and voltage-gated ion channel genes (
<xref ref-type="fig" rid="F3">figure 3</xref>
). During lytic infection, Ingenuity Pathways Analysis indicated enrichment of glutamate receptor signaling, mitochondrial dysfunction, axonal guidance signaling, chondroitin and dermatan sulfate degradation pathways; an overlapping set were altered in quiescently infected cells (
<xref ref-type="fig" rid="F3">figure 3</xref>
).</p>
<fig fig-type="figure" id="F3" position="float">
<label>Fig. 3.</label>
<caption>
<p>Gene expression analysis in acutely and quiescently infected neurons. The heat map represents statistically significant (
<italic>P</italic>
≤ .05), differentially expressed genes after one-way ANOVA analysis and Benjamini-Hochberg correction applied. Columns represent individual samples (each group
<italic>n</italic>
= 3); selected genes are represented in rows. Upregulated genes are shown in yellow, and downregulated genes are shown in purple. Right: Ingenuity Pathways Analysis of acutely and quiescently infected neuronal cultures. For a color version, see this figure online.</p>
</caption>
<graphic xlink:href="schbul_sbu032_f0003"></graphic>
</fig>
</sec>
</sec>
<sec id="s20">
<title>fMRI Studies</title>
<sec id="s21">
<title>Participants.</title>
<p>HSV-1 exposure was significantly more prevalent among schizophrenia cases (HSV1
<sup>+</sup>
= 13, HSV1
<sup></sup>
= 6) than healthy controls (HC; HSV1
<sup>+</sup>
= 6, HSV1
<sup></sup>
= 17;
<italic>χ</italic>
<sup>2</sup>
= 7.53,
<italic>df</italic>
= 3,
<italic>P</italic>
= .006), but the mean age (schizophrenia, 27.44 ± 9.87 years; HC, 26.38 ± 6.78 years,
<italic>t</italic>
= 0.41,
<italic>P</italic>
= .4) and gender (schizophrenia, M/F 10/9; HC, M/F 8/15,
<italic>χ</italic>
<sup>2</sup>
= 1.35,
<italic>df</italic>
= 3,
<italic>P</italic>
= .25) distribution did not differ significantly across diagnostic groups or by serological status (all
<italic>P</italic>
> .4). Although the SES of schizophrenia patients (27.03 ± 8.76) was significantly lower than the HC (41.59 ± 9.01) (
<italic>χ</italic>
<sup>2</sup>
= 5.28,
<italic>P</italic>
< .001), it did not differ by HSV-1 status in the case/control groups.</p>
</sec>
<sec id="s22">
<title>Letter
<italic>n</italic>
-Back Task.</title>
<p>The overall sensitivity of performance (
<italic>d′</italic>
) was 2.95, with no significant differences across diagnostic or serostatus groups. The response time of 0-back (schizophrenia, 676.94 ± 121.25 ms; HC, 627.38 ± 192.77 ms; Wald
<italic>χ</italic>
<sup>2</sup>
= 4.01,
<italic>df</italic>
= 1,
<italic>P</italic>
= .045) and 1-back (schizophrenia, 795.31 ± 181.15 ms; HC, 712.57 ± 275.82 ms; Wald
<italic>χ</italic>
<sup>2</sup>
= 5.94,
<italic>df</italic>
= 1,
<italic>P</italic>
= .015) showed diagnosis effect but not HSV-1 status or diagnosis-by-serostatus interaction effects. The 2-back task response time showed a trend for the main effect of diagnosis (schizophrenia, 895.29 ± 504.43 ms; HC, 825.64 ± 276.44 ms; Wald
<italic>χ</italic>
<sup>2</sup>
= 2.9,
<italic>df</italic>
= 1,
<italic>P</italic>
= .088) and HSV-1 status (HSV1
<sup>+</sup>
= 986.74 ± 527.78 ms; HSV1
<sup></sup>
= 712.39 ± 438.30 ms, Wald
<italic>χ</italic>
<sup>2</sup>
= 3.45, df 1,
<italic>P</italic>
= 0.06) and diagnosis-by-HSV1 status interaction (Wald
<italic>χ</italic>
<sup>2</sup>
= 3.6,
<italic>df</italic>
= 1,
<italic>P</italic>
= .058). There were no significant main effects of diagnosis, HSV-1 status or diagnosis-by-HSV1 status interaction on accuracy of performance. Besides, we did not observe either diagnosis or HSV1 status effect on mean response times or accuracy between each level of task across the groups. Therefore, the groups were contrasted at each level of task for BOLD response differences.</p>
</sec>
</sec>
<sec id="s23">
<title>BOLD Response Differences (
<xref ref-type="fig" rid="F4">figure 4</xref>
)</title>
<sec id="s24">
<title>Main Effect of Task, Diagnostic Status, and HSV-1 Status.</title>
<sec id="s25">
<title>Task Main Effect</title>
<p>The task main effect was noted in the prefrontal (BA 10, 45 and anterior cingulate gyrus,), posterior parietal cortex (BA 40), occipital and insular cortices for the 1-back, and the prefrontal (BA 8 and 10), posterior parietal (BA 40), occipital and inferior temporal cortices for the 2-back, but not for the 0-back task where only the occipital cortex (BA 17 and 18) showed increased activations.</p>
<fig fig-type="figure" id="F4" position="float">
<label>Fig. 4.</label>
<caption>
<p>Blood oxygenation level dependent (BOLD) response differences in response to 2-back challenge. (A) Combined schizophrenia and healthy control sample. Herpes simplex virus, type 1 (HSV1)
<sup>+</sup>
show greater activation compared with HSV-1
<sup></sup>
subjects in the substantia nigra, the red nucleus, and thalamus. (B) HSV1
<sup>+</sup>
schizophrenia subjects show increased activation in bilateral red nucleus and substantia nigra compared with HSV1
<sup></sup>
schizophrenia subjects. (C) Increased activation in the prefrontal and parietal regions among HSV1
<sup>+</sup>
in controls compared with HSV1
<sup></sup>
controls. (D) HSV1
<sup>+</sup>
schizophrenia subjects showed decreased BOLD responses in the anterior cingulate regions compared with HSV1
<sup>+</sup>
HC. (E) HSV1
<sup></sup>
schizophrenia subjects showing increased BOLD responses in bilateral superior temporal gyri. Increased activation in the prefrontal Brodmann areas 9 and 46 showed a trend (corrected
<italic>P</italic>
= .06). For a color version, see this figure online.</p>
</caption>
<graphic xlink:href="schbul_sbu032_f0004"></graphic>
</fig>
</sec>
<sec id="s26">
<title>HSV-1 Main Effect</title>
<p>A significant effect of HSV-1 exposure was noted in the prefrontal and subcortical regions for the 1-back (BA 8) and 2-back (BA 6, 8, left thalamus, substantia nigra, and red nucleus), but not for the 0-back.</p>
</sec>
<sec id="s27">
<title>Diagnosis Main Effect</title>
<p>0-back did not show diagnosis main effect. We observed diagnosis main effect for 1-back in the inferior parietal lobule (BA 40), and for the 2-back task in the superior temporal gyrus (STG, BA 42, 22), and the right cuneus, but not in the prefrontal regions at the combined intensity and spatial extent threshold used here.</p>
</sec>
<sec id="s28">
<title>Diagnosis-by-HSV-1 Interactions</title>
<p>A significant interaction was noted in the left superior parietal lobule (BA 7,
<italic>F</italic>
= 16.30,
<italic>P</italic>
= 3.02×10
<sup>−4</sup>
) for the 0-back, but not for the 1-back and 2-back tasks.</p>
</sec>
</sec>
<sec id="s29">
<title>Associations With HSV-1 Status.</title>
<p>The
<italic>t</italic>
tests to investigate directionality of effects showed increased BOLD responses for all contrasts comparing HSV-1–exposed subjects with those not exposed.</p>
<sec id="s30">
<title>Combined Schizophrenia and HC Controlling for Diagnostic Status</title>
<p>HSV-1 exposure was associated with increased BOLD responses in the prefrontal and subcortical regions for the 1-back (BA 6, 8, 32, thalamus) and 2-back (BA 6, thalamus, substantia nigra, and red nucleus) tasks, but not for the 0-back task where BOLD responses were increased mainly in the bilateral superior temporal gyri (BA 42, 22, and 40) (
<xref ref-type="table" rid="T1">table 1</xref>
). BOLD responses for 1-back task was elevated nearly 2.5-fold in the thalamus (
<italic>t</italic>
= 2.5,
<italic>P</italic>
= .016) among HSV1
<sup>+</sup>
compared with HSV1
<sup></sup>
subjects. For the 2-back task, HSV1
<sup>+</sup>
subjects showed 3-fold increase in BOLD responses compared with HSV1
<sup></sup>
within the substantia nigra, thalamus, and red nucleus cluster (
<italic>t</italic>
= 3.9,
<italic>P</italic>
= .0003) (
<xref ref-type="table" rid="T1">table 1</xref>
).</p>
<table-wrap id="T1" position="float">
<label>Table 1.</label>
<caption>
<p>fMRI Results With Contrasts</p>
</caption>
<table frame="vsides" rules="groups">
<thead>
<tr>
<th align="left" valign="bottom" rowspan="1" colspan="1">Contrast</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">
<italic>x</italic>
</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">
<italic>y</italic>
</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">
<italic>z</italic>
</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Region</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Brodmann Area</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Statistic</th>
<th align="left" valign="bottom" rowspan="1" colspan="1">Corrected
<italic>P</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="8" rowspan="1">Main effect of task</td>
</tr>
<tr>
<td valign="top" rowspan="3" colspan="1">1 back</td>
<td rowspan="1" colspan="1">−30</td>
<td rowspan="1" colspan="1">22</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">Left inferior frontal gyrus, insula</td>
<td rowspan="1" colspan="1">45, 47, 13</td>
<td rowspan="1" colspan="1">40.16</td>
<td rowspan="1" colspan="1">3.59×10
<sup>−7</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">56</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">Bilateral medial frontal, superior frontal, and anterior cingulate</td>
<td rowspan="1" colspan="1">10</td>
<td rowspan="1" colspan="1">37.12</td>
<td rowspan="1" colspan="1">7.34×10
<sup>−7</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">40</td>
<td rowspan="1" colspan="1">−46</td>
<td rowspan="1" colspan="1">44</td>
<td rowspan="1" colspan="1">Right inferior parietal lobule and subgyral</td>
<td rowspan="1" colspan="1">40</td>
<td rowspan="1" colspan="1">19.85</td>
<td rowspan="1" colspan="1">9.10×10
<sup>−5</sup>
</td>
</tr>
<tr>
<td valign="top" rowspan="4" colspan="1">2-back</td>
<td rowspan="1" colspan="1">56</td>
<td rowspan="1" colspan="1">−4</td>
<td rowspan="1" colspan="1">−30</td>
<td rowspan="1" colspan="1">Right fusiform, inferior temporal, and middle temporal gyri</td>
<td rowspan="1" colspan="1">20, 21</td>
<td rowspan="1" colspan="1">33.53</td>
<td rowspan="1" colspan="1">1.79×10
<sup>−6</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">−36</td>
<td rowspan="1" colspan="1">−52</td>
<td rowspan="1" colspan="1">56</td>
<td rowspan="1" colspan="1">Left inferior parietal lobule</td>
<td rowspan="1" colspan="1">40</td>
<td rowspan="1" colspan="1">42.51</td>
<td rowspan="1" colspan="1">2.10×10
<sup>−7</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">48</td>
<td rowspan="1" colspan="1">14</td>
<td rowspan="1" colspan="1">38</td>
<td rowspan="1" colspan="1">Right middle frontal gyrus</td>
<td rowspan="1" colspan="1">8, 10, 46</td>
<td rowspan="1" colspan="1">83.06</td>
<td rowspan="1" colspan="1">1.57×10
<sup>−10</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">−2</td>
<td rowspan="1" colspan="1">56</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">Left medial frontal gyrus</td>
<td rowspan="1" colspan="1">10, 11, 32</td>
<td rowspan="1" colspan="1">44.19</td>
<td rowspan="1" colspan="1">1.45×10
<sup>−7</sup>
</td>
</tr>
<tr>
<td colspan="8" rowspan="1">Main effect of HSV1 serostatus</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1-back</td>
<td rowspan="1" colspan="1">−4</td>
<td rowspan="1" colspan="1">26</td>
<td rowspan="1" colspan="1">64</td>
<td rowspan="1" colspan="1">Left superior frontal gyrus</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">17.87</td>
<td rowspan="1" colspan="1">1.76×10
<sup>−4</sup>
</td>
</tr>
<tr>
<td valign="top" rowspan="2" colspan="1">2-back</td>
<td rowspan="1" colspan="1">−12</td>
<td rowspan="1" colspan="1">−22</td>
<td rowspan="1" colspan="1">−10</td>
<td rowspan="1" colspan="1">Left thalamus</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">26.45</td>
<td rowspan="1" colspan="1">1.39×10
<sup>−5</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">−22</td>
<td rowspan="1" colspan="1">−2</td>
<td rowspan="1" colspan="1">68</td>
<td rowspan="1" colspan="1">Left superior and middle frontal gyrus</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">25.97</td>
<td rowspan="1" colspan="1">1.21×10
<sup>−5</sup>
</td>
</tr>
<tr>
<td colspan="8" rowspan="1">Main effect of diagnosis</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1-back</td>
<td rowspan="1" colspan="1">−62</td>
<td rowspan="1" colspan="1">−36</td>
<td rowspan="1" colspan="1">34</td>
<td rowspan="1" colspan="1">Left inferior parietal lobule</td>
<td rowspan="1" colspan="1">40</td>
<td rowspan="1" colspan="1">13.92</td>
<td rowspan="1" colspan="1">.001</td>
</tr>
<tr>
<td rowspan="1" colspan="1">2-back</td>
<td rowspan="1" colspan="1">−62</td>
<td rowspan="1" colspan="1">−18</td>
<td rowspan="1" colspan="1">8</td>
<td rowspan="1" colspan="1">Left transverse temporal and superior temporal gyrus</td>
<td rowspan="1" colspan="1">22, 41, 42</td>
<td rowspan="1" colspan="1">25.02</td>
<td rowspan="1" colspan="1">1.83×10
<sup>−5</sup>
</td>
</tr>
<tr>
<td colspan="8" rowspan="1">Pooled sample of SZ and HC (HSV1
<sup>+</sup>
> HSV1
<sup></sup>
)</td>
</tr>
<tr>
<td valign="top" rowspan="2" colspan="1">1-back</td>
<td rowspan="1" colspan="1">−4</td>
<td rowspan="1" colspan="1">26</td>
<td rowspan="1" colspan="1">64</td>
<td rowspan="1" colspan="1">Left superior and medial frontal gyrus, anterior cingulate</td>
<td rowspan="1" colspan="1">6, 8, 32</td>
<td rowspan="1" colspan="1">
<bold>4.23</bold>
</td>
<td rowspan="1" colspan="1">8.79×10
<sup>−5</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">−2</td>
<td rowspan="1" colspan="1">−26</td>
<td rowspan="1" colspan="1">8</td>
<td rowspan="1" colspan="1">Left thalamus</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">2.89</td>
<td rowspan="1" colspan="1">.003</td>
</tr>
<tr>
<td valign="top" rowspan="2" colspan="1">2-back</td>
<td rowspan="1" colspan="1">−12</td>
<td rowspan="1" colspan="1">22</td>
<td rowspan="1" colspan="1">−10</td>
<td rowspan="1" colspan="1">Left thalamus, substantia nigra, and bilateral red nucleus</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">5.10</td>
<td rowspan="1" colspan="1">6.94×10
<sup>−6</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">−22</td>
<td rowspan="1" colspan="1">−2</td>
<td rowspan="1" colspan="1">68</td>
<td rowspan="1" colspan="1">Left frontal lobe, superior frontal gyrus</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">5.14</td>
<td rowspan="1" colspan="1">6.06×10
<sup>−6</sup>
</td>
</tr>
<tr>
<td colspan="8" rowspan="1">Within SZ subjects (HSV1
<sup>+</sup>
> HSV1
<sup></sup>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1-back</td>
<td rowspan="1" colspan="1">20</td>
<td rowspan="1" colspan="1">22</td>
<td rowspan="1" colspan="1">66</td>
<td rowspan="1" colspan="1">Right middle frontal gyrus and right superior frontal gyrus</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">4.61</td>
<td rowspan="1" colspan="1">2.90×10
<sup>−5</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">2-back</td>
<td rowspan="1" colspan="1">−2</td>
<td rowspan="1" colspan="1">−20</td>
<td rowspan="1" colspan="1">−12</td>
<td rowspan="1" colspan="1">Bilateral red nucleus, brainstem, and midbrain</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">4.17</td>
<td rowspan="1" colspan="1">1.02×10
<sup>−4</sup>
</td>
</tr>
<tr>
<td colspan="8" rowspan="1">Within HC subjects (HSV1
<sup>+</sup>
> HSV1
<sup></sup>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1-back</td>
<td rowspan="1" colspan="1">−2</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">38</td>
<td rowspan="1" colspan="1">Bilateral cingulate gyrus</td>
<td rowspan="1" colspan="1">24, 32</td>
<td rowspan="1" colspan="1">3.24</td>
<td rowspan="1" colspan="1">.001</td>
</tr>
<tr>
<td valign="top" rowspan="3" colspan="1">2-back</td>
<td rowspan="1" colspan="1">62</td>
<td rowspan="1" colspan="1">−58</td>
<td rowspan="1" colspan="1">12</td>
<td rowspan="1" colspan="1">Right superior temporal gyrus, right middle temporal gyrus</td>
<td rowspan="1" colspan="1">21,22,39</td>
<td rowspan="1" colspan="1">4.51</td>
<td rowspan="1" colspan="1">3.86×10
<sup>−5</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">−20</td>
<td rowspan="1" colspan="1">−4</td>
<td rowspan="1" colspan="1">70</td>
<td rowspan="1" colspan="1">Left superior frontal gyrus</td>
<td rowspan="1" colspan="1">6, 9, 32</td>
<td rowspan="1" colspan="1">3.73</td>
<td rowspan="1" colspan="1">3.32×10
<sup>−4</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">−10</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">Left medial dorsal, ventral lateral, and anterior nuclei of thalamus</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">3.73</td>
<td rowspan="1" colspan="1">3.64×10
<sup>−4</sup>
</td>
</tr>
<tr>
<td colspan="8" rowspan="1">Between HSV1
<sup>+</sup>
SZ and HSV1
<sup>+</sup>
HC (HSV1
<sup>+</sup>
SZ > HC)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1-back</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">−76</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">Right cuneus and lingual</td>
<td rowspan="1" colspan="1">17, 18, 23, 30</td>
<td rowspan="1" colspan="1">3.76</td>
<td rowspan="1" colspan="1">3.31×10
<sup>−4</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">2-back</td>
<td rowspan="1" colspan="1">26</td>
<td rowspan="1" colspan="1">−70</td>
<td rowspan="1" colspan="1">−10</td>
<td rowspan="1" colspan="1">Right fusiform gyrus and lingual gyrus</td>
<td rowspan="1" colspan="1">18, 19</td>
<td rowspan="1" colspan="1">4.24</td>
<td rowspan="1" colspan="1">8.55×10
<sup>−5</sup>
</td>
</tr>
<tr>
<td colspan="8" rowspan="1">Between HSV1
<sup>+</sup>
SZ and HSV1
<sup>+</sup>
HC (HSV1
<sup>+</sup>
SZ < HC)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">2-back</td>
<td rowspan="1" colspan="1">−24</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">56</td>
<td rowspan="1" colspan="1">Left superior and middle frontal gyrus</td>
<td rowspan="1" colspan="1">6, 24, 32</td>
<td rowspan="1" colspan="1">3.26</td>
<td rowspan="1" colspan="1">.001</td>
</tr>
<tr>
<td colspan="8" rowspan="1">Between HSV1
<sup></sup>
SZ and HSV1
<sup></sup>
HC (HSV1
<sup></sup>
SZ > HC)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1-back</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">−4</td>
<td rowspan="1" colspan="1">30</td>
<td rowspan="1" colspan="1">Bilateral limbic lobe, bilateral cingulate gyrus</td>
<td rowspan="1" colspan="1">24</td>
<td rowspan="1" colspan="1">4.07</td>
<td rowspan="1" colspan="1">1.36×10
<sup>−4</sup>
</td>
</tr>
<tr>
<td valign="top" rowspan="4" colspan="1">2-back</td>
<td rowspan="1" colspan="1">−60</td>
<td rowspan="1" colspan="1">−26</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">Left superior temporal gyrus, left middle temporal gyrus</td>
<td rowspan="1" colspan="1">21, 22, 41, 42</td>
<td rowspan="1" colspan="1">3.63</td>
<td rowspan="1" colspan="1">4.71×10
<sup>−4</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">34</td>
<td rowspan="1" colspan="1">54</td>
<td rowspan="1" colspan="1">30</td>
<td rowspan="1" colspan="1">Right superior frontal gyrus, right middle frontal gyrus
<sup>a</sup>
</td>
<td rowspan="1" colspan="1">9, 10</td>
<td rowspan="1" colspan="1">3.69</td>
<td rowspan="1" colspan="1">3.97×10
<sup>−4</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">8</td>
<td rowspan="1" colspan="1">−12</td>
<td rowspan="1" colspan="1">60</td>
<td rowspan="1" colspan="1">Right medial frontal gyrus</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">3.53</td>
<td rowspan="1" colspan="1">.001</td>
</tr>
<tr>
<td rowspan="1" colspan="1">60</td>
<td rowspan="1" colspan="1">−58</td>
<td rowspan="1" colspan="1">10</td>
<td rowspan="1" colspan="1">Right superior temporal gyrus, right middle temporal gyrus</td>
<td rowspan="1" colspan="1">21, 22, 39</td>
<td rowspan="1" colspan="1">3.39</td>
<td rowspan="1" colspan="1">.001</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn fn-type="other">
<p>
<italic>Note:</italic>
BA, Brodmann area; fMRI, functional magnetic resonance imaging; HC, healthy control; HSV1, herpes simplex virus, type 1; SZ, schizophrenia.</p>
</fn>
<fn fn-type="other">
<p>
<sup>a</sup>
BA 9 and 10 was significant when the cluster size was reduced to 1343 voxels that corresponded to corrected
<italic>P</italic>
< .06. All other regions were examined at cluster size of 1385 that corresponded to corrected
<italic>P</italic>
< .05.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
</sec>
<sec id="s31">
<title>BOLD Responses Within and Across Schizophrenia/HC Groups, Grouped by Serological Status.</title>
<p>Within schizophrenia subjects, HSV-1 exposure was associated with increased BOLD responses in the BA 6, and the red nucleus, the substantia nigra, the left parahippocampal regions for 1-back and 2-back tasks, respectively (
<ext-link ext-link-type="uri" xlink:href="http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu032/-/DC1">supplementary table 1</ext-link>
). In contrast, HSV-1–exposed HC showed increased BOLD responses in the anterior cingulate gyrus (BA 24 and 32), prefrontal (BA 6, 9), and temporal cortices compared with HSV1
<sup></sup>
HC. The BOLD responses were decreased in the anterior cingulate region (BA 24 and 32) and BA 6 among HSV1
<sup>+</sup>
schizophrenia subjects compared with HSV1
<sup>+</sup>
HCs for the 2-back task. schizophrenia-HC comparisons among HSV-1–negative individuals showed increased BOLD responses in schizophrenia subjects in the anterior cingulate (BA 24) for the 1-back and in BA 9, 10 and bilateral superior temporal gyri for the 2-back tasks.</p>
</sec>
</sec>
</sec>
<sec id="s32">
<title>Discussion</title>
<p>The iPSC-derived neurons recapitulate lytic HSV-1 infection and can be induced into a quiescent, persistent, reactivable infection. Like established animal models, quiescent infection is accompanied by reduced viral replication, retention of the viral genome in the nucleus, lack of infectious virions, expression of LATs
<sup>
<xref rid="CIT0019" ref-type="bibr">19–21</xref>
,
<xref rid="CIT0033" ref-type="bibr">33</xref>
–38</sup>
in neurons. Quiescent infection was not observed in NPCs. During lytic infection, microarray analyses showed extensive changes in cognition-related pathways, such as glutamate and cAMP response element-binding protein (CREB) signaling. Fewer changes occurred in quiescent infection, but they too included cognition-relevant glutamate receptor and ion channel genes. We therefore propose a model in which persistent infection occurs in brain neurons similar to that in sensory ganglia, and over time impairs neuronal function (suggested by altered gene expression) without producing florid encephalitis; the altered function may underlie observed cognitive deficits. The relatively high sensitivity of NPCs to HSV-1 infection also suggests that individuals infected in childhood can experience cognitive impairment secondary to altered NPC proliferation and differentiation
<sup>
<xref rid="CIT0039" ref-type="bibr">39</xref>
</sup>
suggesting the neurodevelopmental implications of HSV-1 exposure. This model needs to be tested and immunological/glial responses explored; simultaneous in vitro and MRI studies in the same persons may also be worthwhile.</p>
<p content-type="indent">The fMRI results suggest increased processing time for working memory performance associated with schizophrenia and HSV-1 exposure. The 2-back mean response time showed a trend toward significance for the diagnosis, HSV-1 status, and diagnosis-by-HSV-1 exposure interaction, with nonsignificant differences in accuracy of performance. fMRI data mainly showed increased BOLD responses among both schizophrenia and HSV-1–exposed individuals suggesting that an increased neurobiological effort in the prefrontal cortex (PFC), posterior parietal cortex, hippocampus/parahippocampus, thalamus, substantia nigra, and superior temporal lobes is needed to achieve accuracy of working memory performance comparable to unexposed participants. Notably, the HSV-1-exposed individuals showed BOLD responses in the midbrain regions and thalamus. The trigeminal nucleus that receives neuronal inputs from the trigeminal ganglion is situated close to the red nucleus and substantia nigra, and projects to the thalamus. Increased BOLD response in these regions raises the possibility of altered dopamine transmission among HSV-1–exposed subjects. The increased activation in the STG is notable since this region is markedly affected during HSV-1 encephalitis.
<sup>
<xref rid="CIT0003" ref-type="bibr">3</xref>
</sup>
HSV-1–exposed HC showed activation differences in the classical working memory network that include prefrontal cortex and posterior parietal cortex, whereas HSV-1–exposed schizophrenia subjects recruited regions outside this network (substantia nigra where dopamine neurons are situated, red nucleus, thalamus, and superior temporal gyrus) to perform at the same level as HC. Besides, HSV-1-exposed schizophrenia subjects showed similar prefrontal activations compared to HSV-1 unexposed schizophrenia subjects while performing on par with them, possibly by recruiting other networks involving STG and subcortical structures.</p>
<p content-type="indent">Some shortcomings should be noted. Though functional,
<sup>
<xref rid="CIT0024" ref-type="bibr">24</xref>
</sup>
the iPS-derived neurons cannot completely recapitulate the milieu interior of the human brain. The fMRI studies did not show diagnosis effects at the PFC; possibly reflecting inadequate power since lowering the statistical threshold to
<italic>P</italic>
< .06 corrected for intensity and spatial extent shows diagnosis effect. Because HSV-1 virions are usually undetectable in serum,
<sup>
<xref rid="CIT0003" ref-type="bibr">3</xref>
</sup>
HSV-1 exposure was indexed through serum antibody assays in the fMRI studies.</p>
<p content-type="indent">In conclusion, HSV-1 induces quiescent infection in human iPSC-derived neurons that resembles animal models of latent infection. The fMRI studies indicate increased hemodynamic responses during working memory challenge among HSV-1–exposed individuals without prior encephalitis. We propose specific testable cellular and other models for the published HSV-1–associated cognitive dysfunction.</p>
</sec>
<sec id="s33">
<title>Supplementary Material</title>
<p>Supplementary material is available at
<ext-link ext-link-type="uri" xlink:href="http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu032/-/DC1">http:// schizophreniabulletin.oxfordjournals.org</ext-link>
.</p>
</sec>
<sec id="s34">
<title>Funding</title>
<p>
<award-id>MH 63480</award-id>
(V.L.N.);
<award-id>MH72995</award-id>
<award-id>MH 93540</award-id>
and the American Psychiatric Institute for Research and Education-Lilly Award (K.M.P.);
<award-id>EY08098</award-id>
(P.R.K.); and
<funding-source>Stanley Medical Research Institute</funding-source>
(
<award-id>07R-1712</award-id>
to V.L.N.).</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material id="PMC_1" content-type="local-data">
<caption>
<title>Supplementary Data</title>
</caption>
<media mimetype="text" mime-subtype="html" xlink:href="supp_41_1_123__index.html"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="msword" xlink:href="supp_sbu032_Supplementary_Information_S1.docx"></media>
<media xlink:role="associated-file" mimetype="image" mime-subtype="tiff" xlink:href="supp_sbu032_Figure_S1.tif"></media>
<media xlink:role="associated-file" mimetype="video" mime-subtype="quicktime" xlink:href="supp_sbu032_figure_S3b.mov"></media>
<media xlink:role="associated-file" mimetype="image" mime-subtype="tiff" xlink:href="supp_sbu032_Figure_S2.tif"></media>
<media xlink:role="associated-file" mimetype="video" mime-subtype="quicktime" xlink:href="supp_sbu032_figure_S3a.mov"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>We thank our study participants and research staff. Dr R.H.Y. is a member of the Stanley Medical Research Institute (SMRI) Board of Directors and Scientific Advisory Board. The terms of this arrangement are being managed by the Johns Hopkins University. The authors have declared that there are no conflicts of interest in relation to the subject of this study.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="CIT0001">
<label>1.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Warren</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wald</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Genital herpes</article-title>
.
<source>Lancet</source>
.
<year>2007</year>
;
<volume>370</volume>
:
<fpage>2127</fpage>
<lpage>2137</lpage>
.
<pub-id pub-id-type="pmid">18156035</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0002">
<label>2.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Flagg</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Weinstock</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Incidence of neonatal herpes simplex virus infections in the United States, 2006</article-title>
.
<source>Pediatrics</source>
.
<year>2011</year>
;
<volume>127</volume>
:
<fpage>e1</fpage>
<lpage>e8</lpage>
.
<pub-id pub-id-type="pmid">21149432</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0003">
<label>3.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Steiner</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kennedy</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Pachner</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>The neurotropic herpes viruses: herpes simplex and varicella-zoster</article-title>
.
<source>Lancet Neurol</source>
.
<year>2007</year>
;
<volume>6</volume>
:
<fpage>1015</fpage>
<lpage>1028</lpage>
.
<pub-id pub-id-type="pmid">17945155</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0004">
<label>4.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baringer</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Pisani</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Herpes simplex virus genomes in human nervous system tissue analyzed by polymerase chain reaction</article-title>
.
<source>Ann Neurol</source>
.
<year>1994</year>
;
<volume>36</volume>
:
<fpage>823</fpage>
<lpage>829</lpage>
.
<pub-id pub-id-type="pmid">7998767</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0005">
<label>5.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karatas</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Gurer</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pinar</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Investigation of HSV-1, HSV-2, CMV, HHV-6 and HHV-8 DNA by real-time PCR in surgical resection materials of epilepsy patients with mesial temporal lobe sclerosis</article-title>
.
<source>J Neurol Sci</source>
.
<year>2008</year>
;
<volume>264</volume>
:
<fpage>151</fpage>
<lpage>156</lpage>
.
<pub-id pub-id-type="pmid">17804017</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0006">
<label>6.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dickerson</surname>
<given-names>FB</given-names>
</name>
<name>
<surname>Boronow</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Stallings</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Origoni</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Ruslanova</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Yolken</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>Association of serum antibodies to herpes simplex virus 1 with cognitive deficits in individuals with schizophrenia</article-title>
.
<source>Arch Gen Psychiatry</source>
.
<year>2003</year>
;
<volume>60</volume>
:
<fpage>466</fpage>
<lpage>472</lpage>
.
<pub-id pub-id-type="pmid">12742867</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0007">
<label>7.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shirts</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Prasad</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Pogue-Geile</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Dickerson</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Yolken</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Nimgaonkar</surname>
<given-names>VL</given-names>
</name>
</person-group>
<article-title>Antibodies to cytomegalovirus and herpes simplex virus 1 associated with cognitive function in schizophrenia</article-title>
.
<source>Schizophr Res</source>
.
<year>2008</year>
;
<volume>106</volume>
:
<fpage>268</fpage>
<lpage>274</lpage>
.
<pub-id pub-id-type="pmid">18801645</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0008">
<label>8.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yolken</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Torrey</surname>
<given-names>EF</given-names>
</name>
<name>
<surname>Lieberman</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dickerson</surname>
<given-names>FB</given-names>
</name>
</person-group>
<article-title>Serological evidence of exposure to herpes simplex virus type 1 is associated with cognitive deficits in the CATIE schizophrenia sample</article-title>
.
<source>Schizophr Res</source>
.
<year>2011</year>
;
<volume>128</volume>
:
<fpage>61</fpage>
<lpage>65</lpage>
.
<pub-id pub-id-type="pmid">21353483</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0009">
<label>9.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schretlen</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Vannorsdall</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Winicki</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neuroanatomic and cognitive abnormalities related to herpes simplex virus type 1 in schizophrenia</article-title>
.
<source>Schizophr Res</source>
.
<year>2010</year>
;
<volume>118</volume>
:
<fpage>224</fpage>
<lpage>231</lpage>
.
<pub-id pub-id-type="pmid">20153952</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0010">
<label>10.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dickerson</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Stallings</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Origoni</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vaughan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Khushalani</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yolken</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Additive effects of elevated C-reactive protein and exposure to herpes simplex virus type 1 on cognitive impairment in individuals with schizophrenia</article-title>
.
<source>Schizophr Res</source>
.
<year>2012</year>
;
<volume>134</volume>
:
<fpage>83</fpage>
<lpage>88</lpage>
.
<pub-id pub-id-type="pmid">22048011</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0011">
<label>11.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dickerson</surname>
<given-names>FB</given-names>
</name>
<name>
<surname>Boronow</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Stallings</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Infection with herpes simplex virus type 1 is associated with cognitive deficits in bipolar disorder</article-title>
.
<source>Biol Psychiatry</source>
.
<year>2004</year>
;
<volume>55</volume>
:
<fpage>588</fpage>
<lpage>593</lpage>
.
<pub-id pub-id-type="pmid">15013827</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0012">
<label>12.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Watson</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Prasad</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Klei</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Persistent infection with neurotropic herpes viruses and cognitive impairment</article-title>
.
<source>Psychol Med</source>
.
<year>2013</year>
;
<volume>43</volume>
:
<fpage>1023</fpage>
<lpage>1031</lpage>
.
<pub-id pub-id-type="pmid">22975221</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0013">
<label>13.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dickerson</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Stallings</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sullens</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Association between cognitive functioning, exposure to herpes simplex virus type 1, and the COMT Val158Met genetic polymorphism in adults without a psychiatric disorder</article-title>
.
<source>Brain Behav Immun</source>
.
<year>2008</year>
;
<volume>22</volume>
:
<fpage>1103</fpage>
<lpage>1107</lpage>
.
<pub-id pub-id-type="pmid">18571372</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0014">
<label>14.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prasad</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Dickerson</surname>
<given-names>FB</given-names>
</name>
<name>
<surname>Yolken</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Nimgaonkar</surname>
<given-names>VL</given-names>
</name>
</person-group>
<article-title>Exposure to herpes simplex virus type 1 and cognitive impairments in individuals with schizophrenia</article-title>
.
<source>Schizophr Bull</source>
.
<year>2012</year>
;
<volume>38</volume>
:
<fpage>1137</fpage>
<lpage>1148</lpage>
.
<pub-id pub-id-type="pmid">22490995</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0015">
<label>15.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aiello</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Haan</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Pierce</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Simanek</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Persistent infection, inflammation, and functional impairment in older Latinos</article-title>
.
<source>J Gerontol A Biol Sci Med Sci</source>
.
<year>2008</year>
;
<volume>63</volume>
:
<fpage>610</fpage>
<lpage>618</lpage>
.
<pub-id pub-id-type="pmid">18559636</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0016">
<label>16.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prasad</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Shirts</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Yolken</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Keshavan</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Nimgaonkar</surname>
<given-names>VL</given-names>
</name>
</person-group>
<article-title>Brain morphological changes associated with exposure to HSV1 in first-episode schizophrenia</article-title>
.
<source>Mol Psychiatry</source>
.
<year>2007</year>
;
<volume>12</volume>
:
<fpage>105</fpage>
<lpage>13</lpage>
, 1.
<pub-id pub-id-type="pmid">17033628</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0017">
<label>17.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prasad</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Eack</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Goradia</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Progressive gray matter loss and changes in cognitive functioning associated with exposure to herpes simplex virus 1 in schizophrenia: a longitudinal study</article-title>
.
<source>Am J Psychiatry</source>
.
<year>2011</year>
;
<volume>168</volume>
:
<fpage>822</fpage>
<lpage>830</lpage>
.
<pub-id pub-id-type="pmid">21632649</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0018">
<label>18.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prasad</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Eack</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Keshavan</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Yolken</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Iyengar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nimgaonkar</surname>
<given-names>VL</given-names>
</name>
</person-group>
<article-title>Antiherpes virus-specific treatment and cognition in schizophrenia: a Test-of-Concept Randomized Double-Blind Placebo-Controlled Trial</article-title>
.
<source>Schizophr Bull</source>
.
<year>2012</year>
;
<volume>39</volume>
:
<fpage>857</fpage>
<lpage>866</lpage>
.
<pub-id pub-id-type="pmid">22446565</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0019">
<label>19.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bloom</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Giordani</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Kwiatkowski</surname>
<given-names>DL</given-names>
</name>
</person-group>
<article-title>Epigenetic regulation of latent HSV-1 gene expression</article-title>
.
<source>Biochim Biophys Acta</source>
.
<year>2010</year>
;
<volume>1799</volume>
:
<fpage>246</fpage>
<lpage>256</lpage>
.
<pub-id pub-id-type="pmid">20045093</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0020">
<label>20.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nicoll</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Proença</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Efstathiou</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>The molecular basis of herpes simplex virus latency</article-title>
.
<source>FEMS Microbiol Rev</source>
.
<year>2012</year>
;
<volume>36</volume>
:
<fpage>684</fpage>
<lpage>705</lpage>
.
<pub-id pub-id-type="pmid">22150699</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0021">
<label>21.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giordani</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Neumann</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Kwiatkowski</surname>
<given-names>DL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>During herpes simplex virus type 1 infection of rabbits, the ability to express the latency-associated transcript increases latent-phase transcription of lytic genes</article-title>
.
<source>J Virol</source>
.
<year>2008</year>
;
<volume>82</volume>
:
<fpage>6056</fpage>
<lpage>6060</lpage>
.
<pub-id pub-id-type="pmid">18400860</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0022">
<label>22.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carter</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Perlstein</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Ganguli</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Brar</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mintun</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>JD</given-names>
</name>
</person-group>
<article-title>Functional hypofrontality and working memory dysfunction in schizophrenia</article-title>
.
<source>Am J Psychiatry</source>
.
<year>1998</year>
;
<volume>155</volume>
:
<fpage>1285</fpage>
<lpage>1287</lpage>
.
<pub-id pub-id-type="pmid">9734557</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0023">
<label>23.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friedman</surname>
<given-names>HR</given-names>
</name>
<name>
<surname>Goldman-Rakic</surname>
<given-names>PS</given-names>
</name>
</person-group>
<article-title>Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey</article-title>
.
<source>J Neurosci</source>
.
<year>1994</year>
;
<volume>14</volume>
:
<fpage>2775</fpage>
<lpage>2788</lpage>
.
<pub-id pub-id-type="pmid">8182439</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0024">
<label>24.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>D’Aiuto</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Di Maio</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Heath</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells</article-title>
.
<source>PLoS One</source>
.
<year>2012</year>
;
<volume>7</volume>
:
<fpage>e49700</fpage>
.
<pub-id pub-id-type="pmid">23209593</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0025">
<label>25.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramachandran</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Knickelbein</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Ferko</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hendricks</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Kinchington</surname>
<given-names>PR</given-names>
</name>
</person-group>
<article-title>Development and pathogenic evaluation of recombinant herpes simplex virus type 1 expressing two fluorescent reporter genes from different lytic promoters</article-title>
.
<source>Virology</source>
.
<year>2008</year>
;
<volume>378</volume>
:
<fpage>254</fpage>
<lpage>264</lpage>
.
<pub-id pub-id-type="pmid">18619637</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0026">
<label>26.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Talkowski</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>McCann</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fine-mapping reveals novel alternative splicing of the dopamine transporter</article-title>
.
<source>Am J Med Genet B Neuropsychiatr Genet</source>
.
<year>2010</year>
;
<volume>153B</volume>
:
<fpage>1434</fpage>
<lpage>1447</lpage>
.
<pub-id pub-id-type="pmid">20957647</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0027">
<label>27.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cremer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Köhler</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Brero</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Solovei</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Cell preparation and multicolor FISH in 3D preserved cultured mammalian cells</article-title>
.
<source>CSH Protoc</source>
.
<year>2007</year>
;
<volume>2007</volume>
:
<fpage>pdb.prot4723</fpage>
.
<pub-id pub-id-type="pmid">21357073</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0028">
<label>28.</label>
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>First</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Spitzer</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Gibbon</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>JBW</given-names>
</name>
</person-group>
<source>Structured Clinical Interview for DSM-IV Axis I Disorders -- Clinical Version (SCID -- I/CV)</source>
.
<publisher-loc>Washington, DC</publisher-loc>
:
<publisher-name>American Psychiatric Press</publisher-name>
;
<year>1997</year>
.</mixed-citation>
</ref>
<ref id="CIT0029">
<label>29.</label>
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hollingshead</surname>
<given-names>AB</given-names>
</name>
</person-group>
<source>Four-Factor Index of Social Status</source>
.
<publisher-loc>New Haven, CT</publisher-loc>
:
<publisher-name>Yale University</publisher-name>
;
<year>1975</year>
.</mixed-citation>
</ref>
<ref id="CIT0030">
<label>30.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stolz</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Pancholi</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Goradia</surname>
<given-names>DD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Brain activation patterns during visual episodic memory processing among first-degree relatives of schizophrenia subjects</article-title>
.
<source>Neuroimage</source>
.
<year>2012</year>
;
<volume>63</volume>
:
<fpage>1154</fpage>
<lpage>1161</lpage>
.
<pub-id pub-id-type="pmid">22992490</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0031">
<label>31.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maldjian</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Laurienti</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Kraft</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Burdette</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets</article-title>
.
<source>Neuroimage</source>
.
<year>2003</year>
;
<volume>19</volume>
:
<fpage>1233</fpage>
<lpage>1239</lpage>
.
<pub-id pub-id-type="pmid">12880848</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0032">
<label>32.</label>
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Ward</surname>
<given-names>BD</given-names>
</name>
</person-group>
<source>Simultaneous Inference for fMRI Data</source>
.
<publisher-loc>Milwaukee, WI</publisher-loc>
:
<publisher-name>University of Wisconsin</publisher-name>
;
<year>2000</year>
.</mixed-citation>
</ref>
<ref id="CIT0033">
<label>33.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Margolis</surname>
<given-names>TP</given-names>
</name>
<name>
<surname>Elfman</surname>
<given-names>FL</given-names>
</name>
<name>
<surname>Leib</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Spontaneous reactivation of herpes simplex virus type 1 in latently infected murine sensory ganglia</article-title>
.
<source>J Virol</source>
.
<year>2007</year>
;
<volume>81</volume>
:
<fpage>11069</fpage>
<lpage>11074</lpage>
.
<pub-id pub-id-type="pmid">17686862</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0034">
<label>34.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Khanna</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Fink</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Hendricks</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons</article-title>
.
<source>J Exp Med</source>
.
<year>2000</year>
;
<volume>191</volume>
:
<fpage>1459</fpage>
<lpage>1466</lpage>
.
<pub-id pub-id-type="pmid">10790421</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0035">
<label>35.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matthews</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Terry</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Field</surname>
<given-names>AK</given-names>
</name>
</person-group>
<article-title>The structure and function of the HSV DNA replication proteins: defining novel antiviral targets</article-title>
.
<source>Antiviral Res</source>
.
<year>1993</year>
;
<volume>20</volume>
:
<fpage>89</fpage>
<lpage>114</lpage>
.
<pub-id pub-id-type="pmid">8384825</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0036">
<label>36.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Clercq</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>(E)-5-(2-bromovinyl)-2’-deoxyuridine (BVDU)</article-title>
.
<source>Med Res Rev</source>
.
<year>2005</year>
;
<volume>25</volume>
:
<fpage>1</fpage>
<lpage>20</lpage>
.
<pub-id pub-id-type="pmid">15389733</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0037">
<label>37.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kramer</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Roth</surname>
<given-names>FP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Latent herpes simplex virus infection of sensory neurons alters neuronal gene expression</article-title>
.
<source>J Virol</source>
.
<year>2003</year>
;
<volume>77</volume>
:
<fpage>9533</fpage>
<lpage>9541</lpage>
.
<pub-id pub-id-type="pmid">12915567</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0038">
<label>38.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kosz-Vnenchak</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Coen</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Knipe</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Restricted expression of herpes simplex virus lytic genes during establishment of latent infection by thymidine kinase-negative mutant viruses</article-title>
.
<source>J Virol</source>
.
<year>1990</year>
;
<volume>64</volume>
:
<fpage>5396</fpage>
<lpage>5402</lpage>
.
<pub-id pub-id-type="pmid">2170678</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0039">
<label>39.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Regnell</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Hildrestrand</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Sejersted</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hippocampal adult neurogenesis is maintained by Neil3-dependent repair of oxidative DNA lesions in neural progenitor cells</article-title>
.
<source>Cell Rep</source>
.
<year>2012</year>
;
<volume>2</volume>
:
<fpage>503</fpage>
<lpage>510</lpage>
.
<pub-id pub-id-type="pmid">22959434</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E09  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001E09  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021