Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structurally-Constrained Relationships between Cognitive States in the Human Brain

Identifieur interne : 000257 ( Pmc/Corpus ); précédent : 000256; suivant : 000258

Structurally-Constrained Relationships between Cognitive States in the Human Brain

Auteurs : Ann M. Hermundstad ; Kevin S. Brown ; Danielle S. Bassett ; Elissa M. Aminoff ; Amy Frithsen ; Arianne Johnson ; Christine M. Tipper ; Michael B. Miller ; Scott T. Grafton ; Jean M. Carlson

Source :

RBID : PMC:4022461

Abstract

The anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD) signals. Functional connectivity is separately measured at rest, during an attention task, and during a memory task. We assess these structural and functional measures within previously-identified resting-state functional networks, denoted task-positive and task-negative networks, that have been independently shown to be strongly anticorrelated at rest but also involve regions of the brain that routinely increase and decrease in activity during task-driven processes. We find that the density of anatomical connections within and between task-positive and task-negative networks is differentially related to strong, task-dependent correlations in neural activity. The space mapped out by the observed structure-function relationships is used to define a quantitative measure of separation between resting, attention, and memory states. We find that the degree of separation between states is related to both general measures of behavioral performance and relative differences in task-specific measures of attention versus memory performance. These findings suggest that the observed separation between cognitive states reflects underlying organizational principles of human brain structure and function.


Url:
DOI: 10.1371/journal.pcbi.1003591
PubMed: 24830758
PubMed Central: 4022461

Links to Exploration step

PMC:4022461

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structurally-Constrained Relationships between Cognitive States in the Human Brain</title>
<author>
<name sortKey="Hermundstad, Ann M" sort="Hermundstad, Ann M" uniqKey="Hermundstad A" first="Ann M." last="Hermundstad">Ann M. Hermundstad</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brown, Kevin S" sort="Brown, Kevin S" uniqKey="Brown K" first="Kevin S." last="Brown">Kevin S. Brown</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Department of Biomedical Engineering, University of Connecticut, Storrs, Conneticutt, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Department of Physics, University of Connecticut, Storrs, Conneticutt, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<addr-line>Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Conneticutt, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Department of Marine Sciences, University of Connecticut, Groton, Conneticutt, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bassett, Danielle S" sort="Bassett, Danielle S" uniqKey="Bassett D" first="Danielle S." last="Bassett">Danielle S. Bassett</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7">
<addr-line>Sage Center for the Study of the Mind, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff9">
<addr-line>Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Aminoff, Elissa M" sort="Aminoff, Elissa M" uniqKey="Aminoff E" first="Elissa M." last="Aminoff">Elissa M. Aminoff</name>
<affiliation>
<nlm:aff id="aff10">
<addr-line>Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Frithsen, Amy" sort="Frithsen, Amy" uniqKey="Frithsen A" first="Amy" last="Frithsen">Amy Frithsen</name>
<affiliation>
<nlm:aff id="aff11">
<addr-line>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Arianne" sort="Johnson, Arianne" uniqKey="Johnson A" first="Arianne" last="Johnson">Arianne Johnson</name>
<affiliation>
<nlm:aff id="aff11">
<addr-line>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tipper, Christine M" sort="Tipper, Christine M" uniqKey="Tipper C" first="Christine M." last="Tipper">Christine M. Tipper</name>
<affiliation>
<nlm:aff id="aff12">
<addr-line>Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Miller, Michael B" sort="Miller, Michael B" uniqKey="Miller M" first="Michael B." last="Miller">Michael B. Miller</name>
<affiliation>
<nlm:aff id="aff11">
<addr-line>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Grafton, Scott T" sort="Grafton, Scott T" uniqKey="Grafton S" first="Scott T." last="Grafton">Scott T. Grafton</name>
<affiliation>
<nlm:aff id="aff11">
<addr-line>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Carlson, Jean M" sort="Carlson, Jean M" uniqKey="Carlson J" first="Jean M." last="Carlson">Jean M. Carlson</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24830758</idno>
<idno type="pmc">4022461</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022461</idno>
<idno type="RBID">PMC:4022461</idno>
<idno type="doi">10.1371/journal.pcbi.1003591</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000257</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000257</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Structurally-Constrained Relationships between Cognitive States in the Human Brain</title>
<author>
<name sortKey="Hermundstad, Ann M" sort="Hermundstad, Ann M" uniqKey="Hermundstad A" first="Ann M." last="Hermundstad">Ann M. Hermundstad</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brown, Kevin S" sort="Brown, Kevin S" uniqKey="Brown K" first="Kevin S." last="Brown">Kevin S. Brown</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Department of Biomedical Engineering, University of Connecticut, Storrs, Conneticutt, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<addr-line>Department of Physics, University of Connecticut, Storrs, Conneticutt, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<addr-line>Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Conneticutt, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">
<addr-line>Department of Marine Sciences, University of Connecticut, Groton, Conneticutt, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bassett, Danielle S" sort="Bassett, Danielle S" uniqKey="Bassett D" first="Danielle S." last="Bassett">Danielle S. Bassett</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7">
<addr-line>Sage Center for the Study of the Mind, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff8">
<addr-line>Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff9">
<addr-line>Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Aminoff, Elissa M" sort="Aminoff, Elissa M" uniqKey="Aminoff E" first="Elissa M." last="Aminoff">Elissa M. Aminoff</name>
<affiliation>
<nlm:aff id="aff10">
<addr-line>Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Frithsen, Amy" sort="Frithsen, Amy" uniqKey="Frithsen A" first="Amy" last="Frithsen">Amy Frithsen</name>
<affiliation>
<nlm:aff id="aff11">
<addr-line>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Arianne" sort="Johnson, Arianne" uniqKey="Johnson A" first="Arianne" last="Johnson">Arianne Johnson</name>
<affiliation>
<nlm:aff id="aff11">
<addr-line>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tipper, Christine M" sort="Tipper, Christine M" uniqKey="Tipper C" first="Christine M." last="Tipper">Christine M. Tipper</name>
<affiliation>
<nlm:aff id="aff12">
<addr-line>Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Miller, Michael B" sort="Miller, Michael B" uniqKey="Miller M" first="Michael B." last="Miller">Michael B. Miller</name>
<affiliation>
<nlm:aff id="aff11">
<addr-line>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Grafton, Scott T" sort="Grafton, Scott T" uniqKey="Grafton S" first="Scott T." last="Grafton">Scott T. Grafton</name>
<affiliation>
<nlm:aff id="aff11">
<addr-line>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Carlson, Jean M" sort="Carlson, Jean M" uniqKey="Carlson J" first="Jean M." last="Carlson">Jean M. Carlson</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Computational Biology</title>
<idno type="ISSN">1553-734X</idno>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD) signals. Functional connectivity is separately measured at rest, during an attention task, and during a memory task. We assess these structural and functional measures within previously-identified resting-state functional networks, denoted task-positive and task-negative networks, that have been independently shown to be strongly anticorrelated at rest but also involve regions of the brain that routinely increase and decrease in activity during task-driven processes. We find that the density of anatomical connections within and between task-positive and task-negative networks is differentially related to strong, task-dependent correlations in neural activity. The space mapped out by the observed structure-function relationships is used to define a quantitative measure of separation between resting, attention, and memory states. We find that the degree of separation between states is related to both general measures of behavioral performance and relative differences in task-specific measures of attention versus memory performance. These findings suggest that the observed separation between cognitive states reflects underlying organizational principles of human brain structure and function.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Raichle, Me" uniqKey="Raichle M">ME Raichle</name>
</author>
<author>
<name sortKey="Macleod, Am" uniqKey="Macleod A">AM MacLeod</name>
</author>
<author>
<name sortKey="Snyder, Az" uniqKey="Snyder A">AZ Snyder</name>
</author>
<author>
<name sortKey="Powers, Wj" uniqKey="Powers W">WJ Powers</name>
</author>
<author>
<name sortKey="Gusnard, Da" uniqKey="Gusnard D">DA Gusnard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fox, Md" uniqKey="Fox M">MD Fox</name>
</author>
<author>
<name sortKey="Raichle, Me" uniqKey="Raichle M">ME Raichle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greicius, Md" uniqKey="Greicius M">MD Greicius</name>
</author>
<author>
<name sortKey="Krasnow, B" uniqKey="Krasnow B">B Krasnow</name>
</author>
<author>
<name sortKey="Reiss, Al" uniqKey="Reiss A">AL Reiss</name>
</author>
<author>
<name sortKey="Menon, V" uniqKey="Menon V">V Menon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Damoiseaux, Js" uniqKey="Damoiseaux J">JS Damoiseaux</name>
</author>
<author>
<name sortKey="Rombouts, Sarb" uniqKey="Rombouts S">SARB Rombouts</name>
</author>
<author>
<name sortKey="Barkhof, F" uniqKey="Barkhof F">F Barkhof</name>
</author>
<author>
<name sortKey="Scheltens, P" uniqKey="Scheltens P">P Scheltens</name>
</author>
<author>
<name sortKey="Stam, Cj" uniqKey="Stam C">CJ Stam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Long, Xy" uniqKey="Long X">XY Long</name>
</author>
<author>
<name sortKey="Zuo, Xn" uniqKey="Zuo X">XN Zuo</name>
</author>
<author>
<name sortKey="Kiviniemi, V" uniqKey="Kiviniemi V">V Kiviniemi</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Zou, Qh" uniqKey="Zou Q">QH Zou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shehzad, Z" uniqKey="Shehzad Z">Z Shehzad</name>
</author>
<author>
<name sortKey="Kelly, Amc" uniqKey="Kelly A">AMC Kelly</name>
</author>
<author>
<name sortKey="Reiss, Pt" uniqKey="Reiss P">PT Reiss</name>
</author>
<author>
<name sortKey="Gee, Dg" uniqKey="Gee D">DG Gee</name>
</author>
<author>
<name sortKey="Gotimer, K" uniqKey="Gotimer K">K Gotimer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fox, Md" uniqKey="Fox M">MD Fox</name>
</author>
<author>
<name sortKey="Snyder, Az" uniqKey="Snyder A">AZ Snyder</name>
</author>
<author>
<name sortKey="Vincent, Jl" uniqKey="Vincent J">JL Vincent</name>
</author>
<author>
<name sortKey="Corbetta, M" uniqKey="Corbetta M">M Corbetta</name>
</author>
<author>
<name sortKey="Essen, Dcv" uniqKey="Essen D">DCV Essen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fox, Md" uniqKey="Fox M">MD Fox</name>
</author>
<author>
<name sortKey="Corbetta, M" uniqKey="Corbetta M">M Corbetta</name>
</author>
<author>
<name sortKey="Snyder, Az" uniqKey="Snyder A">AZ Snyder</name>
</author>
<author>
<name sortKey="Vincent, Jl" uniqKey="Vincent J">JL Vincent</name>
</author>
<author>
<name sortKey="Raichle, Me" uniqKey="Raichle M">ME Raichle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seeley, Ww" uniqKey="Seeley W">WW Seeley</name>
</author>
<author>
<name sortKey="Menon, V" uniqKey="Menon V">V Menon</name>
</author>
<author>
<name sortKey="Schatzberg, Af" uniqKey="Schatzberg A">AF Schatzberg</name>
</author>
<author>
<name sortKey="Keller, J" uniqKey="Keller J">J Keller</name>
</author>
<author>
<name sortKey="Glover, Gh" uniqKey="Glover G">GH Glover</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Power, Jd" uniqKey="Power J">JD Power</name>
</author>
<author>
<name sortKey="Cohen, Al" uniqKey="Cohen A">AL Cohen</name>
</author>
<author>
<name sortKey="Nelson, Sm" uniqKey="Nelson S">SM Nelson</name>
</author>
<author>
<name sortKey="Wig, Gs" uniqKey="Wig G">GS Wig</name>
</author>
<author>
<name sortKey="Barnes, Ka" uniqKey="Barnes K">KA Barnes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mennes, M" uniqKey="Mennes M">M Mennes</name>
</author>
<author>
<name sortKey="Kelly, C" uniqKey="Kelly C">C Kelly</name>
</author>
<author>
<name sortKey="Zuo, Xn" uniqKey="Zuo X">XN Zuo</name>
</author>
<author>
<name sortKey="Martino, Ad" uniqKey="Martino A">AD Martino</name>
</author>
<author>
<name sortKey="Biswal, Bb" uniqKey="Biswal B">BB Biswal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hampson, M" uniqKey="Hampson M">M Hampson</name>
</author>
<author>
<name sortKey="Driesen, Nr" uniqKey="Driesen N">NR Driesen</name>
</author>
<author>
<name sortKey="Roth, Jk" uniqKey="Roth J">JK Roth</name>
</author>
<author>
<name sortKey="Gore, Jc" uniqKey="Gore J">JC Gore</name>
</author>
<author>
<name sortKey="Constable, Rt" uniqKey="Constable R">RT Constable</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, H" uniqKey="Kim H">H Kim</name>
</author>
<author>
<name sortKey="Daselaar, Sm" uniqKey="Daselaar S">SM Daselaar</name>
</author>
<author>
<name sortKey="Cabeza, R" uniqKey="Cabeza R">R Cabeza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greicius, Md" uniqKey="Greicius M">MD Greicius</name>
</author>
<author>
<name sortKey="Supekar, K" uniqKey="Supekar K">K Supekar</name>
</author>
<author>
<name sortKey="Menon, V" uniqKey="Menon V">V Menon</name>
</author>
<author>
<name sortKey="Dougherty, Rf" uniqKey="Dougherty R">RF Dougherty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Broyd, Sj" uniqKey="Broyd S">SJ Broyd</name>
</author>
<author>
<name sortKey="Demanuele, C" uniqKey="Demanuele C">C Demanuele</name>
</author>
<author>
<name sortKey="Debener, S" uniqKey="Debener S">S Debener</name>
</author>
<author>
<name sortKey="Helps, Sk" uniqKey="Helps S">SK Helps</name>
</author>
<author>
<name sortKey="James, Cj" uniqKey="James C">CJ James</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kennedy, Dp" uniqKey="Kennedy D">DP Kennedy</name>
</author>
<author>
<name sortKey="Courchesne, E" uniqKey="Courchesne E">E Courchesne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Kaneko, Y" uniqKey="Kaneko Y">Y Kaneko</name>
</author>
<author>
<name sortKey="Ouyang, X" uniqKey="Ouyang X">X Ouyang</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Hao, Y" uniqKey="Hao Y">Y Hao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Daitch, Al" uniqKey="Daitch A">AL Daitch</name>
</author>
<author>
<name sortKey="Sharma, M" uniqKey="Sharma M">M Sharma</name>
</author>
<author>
<name sortKey="Roland, Jl" uniqKey="Roland J">JL Roland</name>
</author>
<author>
<name sortKey="Astafiev, Sv" uniqKey="Astafiev S">SV Astafiev</name>
</author>
<author>
<name sortKey="Bundy, Dt" uniqKey="Bundy D">DT Bundy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fornito, A" uniqKey="Fornito A">A Fornito</name>
</author>
<author>
<name sortKey="Harrison, Bj" uniqKey="Harrison B">BJ Harrison</name>
</author>
<author>
<name sortKey="Zalesky, A" uniqKey="Zalesky A">A Zalesky</name>
</author>
<author>
<name sortKey="Simons, Js" uniqKey="Simons J">JS Simons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bassett, Ds" uniqKey="Bassett D">DS Bassett</name>
</author>
<author>
<name sortKey="Wymbs, Nf" uniqKey="Wymbs N">NF Wymbs</name>
</author>
<author>
<name sortKey="Porter, Ma" uniqKey="Porter M">MA Porter</name>
</author>
<author>
<name sortKey="Mucha, Pj" uniqKey="Mucha P">PJ Mucha</name>
</author>
<author>
<name sortKey="Carlson, Jm" uniqKey="Carlson J">JM Carlson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bassett, Ds" uniqKey="Bassett D">DS Bassett</name>
</author>
<author>
<name sortKey="Wymbs, Nf" uniqKey="Wymbs N">NF Wymbs</name>
</author>
<author>
<name sortKey="Rombach, Mp" uniqKey="Rombach M">MP Rombach</name>
</author>
<author>
<name sortKey="Porter, Ma" uniqKey="Porter M">MA Porter</name>
</author>
<author>
<name sortKey="Mucha, Pj" uniqKey="Mucha P">PJ Mucha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hermundstad, Am" uniqKey="Hermundstad A">AM Hermundstad</name>
</author>
<author>
<name sortKey="Bassett, Ds" uniqKey="Bassett D">DS Bassett</name>
</author>
<author>
<name sortKey="Brown, Ks" uniqKey="Brown K">KS Brown</name>
</author>
<author>
<name sortKey="Aminoff, Em" uniqKey="Aminoff E">EM Aminoff</name>
</author>
<author>
<name sortKey="Freeman, S" uniqKey="Freeman S">S Freeman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bullmore, E" uniqKey="Bullmore E">E Bullmore</name>
</author>
<author>
<name sortKey="Sporns, O" uniqKey="Sporns O">O Sporns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bullmore, E" uniqKey="Bullmore E">E Bullmore</name>
</author>
<author>
<name sortKey="Bassett, Ds" uniqKey="Bassett D">DS Bassett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tzourio Mazoyer Landeau, B" uniqKey="Tzourio Mazoyer Landeau B">B Tzourio-Mazoyer, Landeau</name>
</author>
<author>
<name sortKey="Papathanassiou, D" uniqKey="Papathanassiou D">D Papathanassiou</name>
</author>
<author>
<name sortKey="Crivello, F" uniqKey="Crivello F">F Crivello</name>
</author>
<author>
<name sortKey="Etard, O" uniqKey="Etard O">O Etard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aminoff, Em" uniqKey="Aminoff E">EM Aminoff</name>
</author>
<author>
<name sortKey="Clewett, D" uniqKey="Clewett D">D Clewett</name>
</author>
<author>
<name sortKey="Freeman, S" uniqKey="Freeman S">S Freeman</name>
</author>
<author>
<name sortKey="Frithsen, A" uniqKey="Frithsen A">A Frithsen</name>
</author>
<author>
<name sortKey="Tipper, C" uniqKey="Tipper C">C Tipper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raichle, Me" uniqKey="Raichle M">ME Raichle</name>
</author>
<author>
<name sortKey="Minturn, Ma" uniqKey="Minturn M">MA Minturn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Achard, S" uniqKey="Achard S">S Achard</name>
</author>
<author>
<name sortKey="Salvador, R" uniqKey="Salvador R">R Salvador</name>
</author>
<author>
<name sortKey="Whitcher, B" uniqKey="Whitcher B">B Whitcher</name>
</author>
<author>
<name sortKey="Suckling, J" uniqKey="Suckling J">J Suckling</name>
</author>
<author>
<name sortKey="Bullmore, E" uniqKey="Bullmore E">E Bullmore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simpson, S" uniqKey="Simpson S">S Simpson</name>
</author>
<author>
<name sortKey="Moussa, M" uniqKey="Moussa M">M Moussa</name>
</author>
<author>
<name sortKey="Laurienti, P" uniqKey="Laurienti P">P Laurienti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bassett, Ds" uniqKey="Bassett D">DS Bassett</name>
</author>
<author>
<name sortKey="Brown, Ja" uniqKey="Brown J">JA Brown</name>
</author>
<author>
<name sortKey="Deshpande, V" uniqKey="Deshpande V">V Deshpande</name>
</author>
<author>
<name sortKey="Carlson, Jm" uniqKey="Carlson J">JM Carlson</name>
</author>
<author>
<name sortKey="Grafton, St" uniqKey="Grafton S">ST Grafton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y He</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
<author>
<name sortKey="Evans, A" uniqKey="Evans A">A Evans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Archard, S" uniqKey="Archard S">S Archard</name>
</author>
<author>
<name sortKey="Bullmore, E" uniqKey="Bullmore E">E Bullmore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bassett, D" uniqKey="Bassett D">D Bassett</name>
</author>
<author>
<name sortKey="Bullmore, E" uniqKey="Bullmore E">E Bullmore</name>
</author>
<author>
<name sortKey="Verchinski, B" uniqKey="Verchinski B">B Verchinski</name>
</author>
<author>
<name sortKey="Mattay, V" uniqKey="Mattay V">V Mattay</name>
</author>
<author>
<name sortKey="Weinberger, D" uniqKey="Weinberger D">D Weinberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Repovs, G" uniqKey="Repovs G">G Repovs</name>
</author>
<author>
<name sortKey="Barch, Dm" uniqKey="Barch D">DM Barch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dosenbach, Nu" uniqKey="Dosenbach N">NU Dosenbach</name>
</author>
<author>
<name sortKey="Visscher, Km" uniqKey="Visscher K">KM Visscher</name>
</author>
<author>
<name sortKey="Palmer, Ed" uniqKey="Palmer E">ED Palmer</name>
</author>
<author>
<name sortKey="Miezin, Fm" uniqKey="Miezin F">FM Miezin</name>
</author>
<author>
<name sortKey="Wenger, Kk" uniqKey="Wenger K">KK Wenger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dosenbach, Nuf" uniqKey="Dosenbach N">NUF Dosenbach</name>
</author>
<author>
<name sortKey="Fair, Da" uniqKey="Fair D">DA Fair</name>
</author>
<author>
<name sortKey="Miezin, Fm" uniqKey="Miezin F">FM Miezin</name>
</author>
<author>
<name sortKey="Cohen, Al" uniqKey="Cohen A">AL Cohen</name>
</author>
<author>
<name sortKey="Wenger, Kk" uniqKey="Wenger K">KK Wenger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fair, Da" uniqKey="Fair D">DA Fair</name>
</author>
<author>
<name sortKey="Cohen, Al" uniqKey="Cohen A">AL Cohen</name>
</author>
<author>
<name sortKey="Power, Jd" uniqKey="Power J">JD Power</name>
</author>
<author>
<name sortKey="Dosenbach, Nuf" uniqKey="Dosenbach N">NUF Dosenbach</name>
</author>
<author>
<name sortKey="Church, Ja" uniqKey="Church J">JA Church</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Supekar, K" uniqKey="Supekar K">K Supekar</name>
</author>
<author>
<name sortKey="Musen, M" uniqKey="Musen M">M Musen</name>
</author>
<author>
<name sortKey="Menon, V" uniqKey="Menon V">V Menon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beason Held Ll Rs Kraut, Ma" uniqKey="Beason Held Ll Rs Kraut M">MA Beason-Held LL RS Kraut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parker, Gj" uniqKey="Parker G">GJ Parker</name>
</author>
<author>
<name sortKey="Alexander, Dc" uniqKey="Alexander D">DC Alexander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knock, S" uniqKey="Knock S">S Knock</name>
</author>
<author>
<name sortKey="Mcintosh, A" uniqKey="Mcintosh A">A McIntosh</name>
</author>
<author>
<name sortKey="Kotter, Osr" uniqKey="Kotter O">OSR Kotter</name>
</author>
<author>
<name sortKey="Hagmann, P" uniqKey="Hagmann P">P Hagmann</name>
</author>
<author>
<name sortKey="Jirsa, V" uniqKey="Jirsa V">V Jirsa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leon, Ps" uniqKey="Leon P">PS Leon</name>
</author>
<author>
<name sortKey="Knock, Sa" uniqKey="Knock S">SA Knock</name>
</author>
<author>
<name sortKey="Woodman, Mm" uniqKey="Woodman M">MM Woodman</name>
</author>
<author>
<name sortKey="Domide, L" uniqKey="Domide L">L Domide</name>
</author>
<author>
<name sortKey="Mersmann, J" uniqKey="Mersmann J">J Mersmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ritter, P" uniqKey="Ritter P">P Ritter</name>
</author>
<author>
<name sortKey="Schirner, M" uniqKey="Schirner M">M Schirner</name>
</author>
<author>
<name sortKey="Mcintosh, A" uniqKey="Mcintosh A">A McIntosh</name>
</author>
<author>
<name sortKey="Jirsa, V" uniqKey="Jirsa V">V Jirsa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, C" uniqKey="Chang C">C Chang</name>
</author>
<author>
<name sortKey="Glover, Gh" uniqKey="Glover G">GH Glover</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, J" uniqKey="Kang J">J Kang</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Yan, C" uniqKey="Yan C">C Yan</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Liang, X" uniqKey="Liang X">X Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kiviniemi, V" uniqKey="Kiviniemi V">V Kiviniemi</name>
</author>
<author>
<name sortKey="Vire, T" uniqKey="Vire T">T Vire</name>
</author>
<author>
<name sortKey="Remes, J" uniqKey="Remes J">J Remes</name>
</author>
<author>
<name sortKey="Elseoud, A" uniqKey="Elseoud A">A Elseoud</name>
</author>
<author>
<name sortKey="Starck, T" uniqKey="Starck T">T Starck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allen, Ea" uniqKey="Allen E">EA Allen</name>
</author>
<author>
<name sortKey="Damaraju, E" uniqKey="Damaraju E">E Damaraju</name>
</author>
<author>
<name sortKey="Plis, Sm" uniqKey="Plis S">SM Plis</name>
</author>
<author>
<name sortKey="Erhardt, Eb" uniqKey="Erhardt E">EB Erhardt</name>
</author>
<author>
<name sortKey="Eichele, T" uniqKey="Eichele T">T Eichele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
<author>
<name sortKey="Duyn, Jh" uniqKey="Duyn J">JH Duyn</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS Comput Biol</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS Comput. Biol</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">ploscomp</journal-id>
<journal-title-group>
<journal-title>PLoS Computational Biology</journal-title>
</journal-title-group>
<issn pub-type="ppub">1553-734X</issn>
<issn pub-type="epub">1553-7358</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24830758</article-id>
<article-id pub-id-type="pmc">4022461</article-id>
<article-id pub-id-type="publisher-id">PCOMPBIOL-D-13-01309</article-id>
<article-id pub-id-type="doi">10.1371/journal.pcbi.1003591</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Neuroscience</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Structurally-Constrained Relationships between Cognitive States in the Human Brain</article-title>
<alt-title alt-title-type="running-head">Structural Constraints on Human Cognitive Function</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Hermundstad</surname>
<given-names>Ann M.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Brown</surname>
<given-names>Kevin S.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bassett</surname>
<given-names>Danielle S.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff7">
<sup>7</sup>
</xref>
<xref ref-type="aff" rid="aff8">
<sup>8</sup>
</xref>
<xref ref-type="aff" rid="aff9">
<sup>9</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Aminoff</surname>
<given-names>Elissa M.</given-names>
</name>
<xref ref-type="aff" rid="aff10">
<sup>10</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Frithsen</surname>
<given-names>Amy</given-names>
</name>
<xref ref-type="aff" rid="aff11">
<sup>11</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Johnson</surname>
<given-names>Arianne</given-names>
</name>
<xref ref-type="aff" rid="aff11">
<sup>11</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tipper</surname>
<given-names>Christine M.</given-names>
</name>
<xref ref-type="aff" rid="aff12">
<sup>12</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Miller</surname>
<given-names>Michael B.</given-names>
</name>
<xref ref-type="aff" rid="aff11">
<sup>11</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Grafton</surname>
<given-names>Scott T.</given-names>
</name>
<xref ref-type="aff" rid="aff11">
<sup>11</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Carlson</surname>
<given-names>Jean M.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Department of Biomedical Engineering, University of Connecticut, Storrs, Conneticutt, United States of America</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>Department of Physics, University of Connecticut, Storrs, Conneticutt, United States of America</addr-line>
</aff>
<aff id="aff5">
<label>5</label>
<addr-line>Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Conneticutt, United States of America</addr-line>
</aff>
<aff id="aff6">
<label>6</label>
<addr-line>Department of Marine Sciences, University of Connecticut, Groton, Conneticutt, United States of America</addr-line>
</aff>
<aff id="aff7">
<label>7</label>
<addr-line>Sage Center for the Study of the Mind, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</aff>
<aff id="aff8">
<label>8</label>
<addr-line>Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America</addr-line>
</aff>
<aff id="aff9">
<label>9</label>
<addr-line>Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America</addr-line>
</aff>
<aff id="aff10">
<label>10</label>
<addr-line>Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America</addr-line>
</aff>
<aff id="aff11">
<label>11</label>
<addr-line>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America</addr-line>
</aff>
<aff id="aff12">
<label>12</label>
<addr-line>Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Hilgetag</surname>
<given-names>Claus C.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Hamburg University, Germany</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>annherm@physics.upenn.edu</email>
</corresp>
<fn fn-type="conflict">
<p>The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: AMH KSB DSB MBM STG JMC. Performed the experiments: AMH KSB DSB EMA AF AJ CMT. Analyzed the data: AMH KSB DSB EMA CMT. Contributed reagents/materials/analysis tools: AMH KSB DSB EMA AF AJ CMT MBM STG. Wrote the paper: AMH KSB DSB STG JMC.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<month>5</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>15</day>
<month>5</month>
<year>2014</year>
</pub-date>
<volume>10</volume>
<issue>5</issue>
<elocation-id>e1003591</elocation-id>
<history>
<date date-type="received">
<day>22</day>
<month>7</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>13</day>
<month>3</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© 2014 Hermundstad et al</copyright-statement>
<copyright-year>2014</copyright-year>
<copyright-holder>Hermundstad et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.</license-p>
</license>
</permissions>
<abstract>
<p>The anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD) signals. Functional connectivity is separately measured at rest, during an attention task, and during a memory task. We assess these structural and functional measures within previously-identified resting-state functional networks, denoted task-positive and task-negative networks, that have been independently shown to be strongly anticorrelated at rest but also involve regions of the brain that routinely increase and decrease in activity during task-driven processes. We find that the density of anatomical connections within and between task-positive and task-negative networks is differentially related to strong, task-dependent correlations in neural activity. The space mapped out by the observed structure-function relationships is used to define a quantitative measure of separation between resting, attention, and memory states. We find that the degree of separation between states is related to both general measures of behavioral performance and relative differences in task-specific measures of attention versus memory performance. These findings suggest that the observed separation between cognitive states reflects underlying organizational principles of human brain structure and function.</p>
</abstract>
<abstract abstract-type="summary">
<title>Author Summary</title>
<p>Human cognitive function is thought to be supported by patterns of correlated neural activity. While recent work has shown that such functional correlations are differentially supported by specific properties of anatomical brain connectivity, the extent to which brain anatomy shapes cognition is not understood. In this study, we develop new network-based approaches for relating anatomical connectivity, correlations in neural activity (functional connectivity), and behavioral task performance. We use noninvasive neuroimaging techniques to measure whole-brain connectivity in 71 subjects across three cognitive states: at rest, during an attention task, and during a memory task. By associating anatomical and functional connectivity with known functional brain networks, we show that the relative strength of inter- versus intra-network connectivity distinguishes between resting, attention, and memory states. When compared across subjects, we further show that the observed relationship between brain anatomy and function is predictive of individual differences in attention and memory task performance.</p>
</abstract>
<funding-group>
<funding-statement>This work was supported by the David and Lucile Packard Foundation and the Institute for Collaborative Biotechnologies through contract no. W911NF-09-D-0001 from the U.S. Army Research Office. AMH was also supported by the National Science Foundation through grants PHY-1058202 and EF-0928048. DSB was also supported by the Sage Center for the Study of the Mind, the Templeton Foundation, and the Errett Fisher Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="9"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>The brain is continually active, whether in a state of rest or during the performance of task-directed function. Despite predictions that resting-state neural activity would be noisy and unconstrained, the human brain has been shown to exhibit patterns of correlated neural activity even in the absence of any task-directed function
<xref rid="pcbi.1003591-Raichle1" ref-type="bibr">[1]</xref>
,
<xref rid="pcbi.1003591-Fox1" ref-type="bibr">[2]</xref>
. Such correlations in “default mode” activity, which have been consistently identified within a diffuse network of brain regions
<xref rid="pcbi.1003591-Greicius1" ref-type="bibr">[3]</xref>
<xref rid="pcbi.1003591-Shehzad1" ref-type="bibr">[6]</xref>
, are thought to support the functional organization of the brain
<xref rid="pcbi.1003591-Fox1" ref-type="bibr">[2]</xref>
.</p>
<p>Signatures of task-related function have similarly been identified in task-free states based on anticorrelations in spontaneous neural activity between default mode and task-related brain regions
<xref rid="pcbi.1003591-Fox2" ref-type="bibr">[7]</xref>
<xref rid="pcbi.1003591-Power1" ref-type="bibr">[10]</xref>
. Together, these sets of brain regions have widely been associated with two functional networks, denoted task-positive and task-negative, composed of regions known to become more (task-positive) and less (task-negative) active during the task performance relative to their behavior at rest
<xref rid="pcbi.1003591-Fox2" ref-type="bibr">[7]</xref>
. Correlations within these networks have been shown to support attention
<xref rid="pcbi.1003591-Mennes1" ref-type="bibr">[11]</xref>
and memory
<xref rid="pcbi.1003591-Hampson1" ref-type="bibr">[12]</xref>
,
<xref rid="pcbi.1003591-Kim1" ref-type="bibr">[13]</xref>
processes, and disruptions to these networks have been implicated in neurological disorders
<xref rid="pcbi.1003591-Greicius2" ref-type="bibr">[14]</xref>
<xref rid="pcbi.1003591-Liu1" ref-type="bibr">[17]</xref>
.</p>
<p>While such studies have characterized individual functional networks within single task domains, recent studies suggest that interactions between functional networks are important for shaping attention
<xref rid="pcbi.1003591-Daitch1" ref-type="bibr">[18]</xref>
, memory
<xref rid="pcbi.1003591-Fornito1" ref-type="bibr">[19]</xref>
, and motor learning
<xref rid="pcbi.1003591-Bassett1" ref-type="bibr">[20]</xref>
,
<xref rid="pcbi.1003591-Bassett2" ref-type="bibr">[21]</xref>
performance. Anatomical studies have additionally shown that structural measures, such as the length and number of white matter tracts linking brain regions, play important roles in distinguishing global task-dependent changes in functional correlations
<xref rid="pcbi.1003591-Hermundstad1" ref-type="bibr">[22]</xref>
. Together, these findings suggest that anatomy may be important for shaping task-dependent interactions between functional networks, and these interactions may in turn be important for shaping behavior. Such relationships, however, are not understood. Does functional connectivity between networks vary systematically across across resting and task-driven cognitive states? To what extent is such variation differentially supported by underlying anatomical organization? How do such relationships between anatomy and function shape behavior?</p>
<p>To address these questions, we examine whether patterns of anatomical connectivity relate to the task-dependent strength of correlated neural activity within and between task-positive and task-negative networks, and we examine the extent to which such relationships are linked to behavioral differences in attention and memory performance. Structural and functional connectivity are estimated in 71 subjects using noninvasive neuroimaging techniques, where functional connectivity is separately estimated in three cognitive states: (
<italic>i</italic>
) at rest, (
<italic>ii</italic>
) during an attention task, and (
<italic>iii</italic>
) during a memory task. Behavioral performance is assessed in the same subjects during both the attention and memory tasks.</p>
<p>In what follows, we uncover task-dependent links between human brain anatomy, function, and behavior both within individual subjects and across groups of subjects. We group brain regions based on their involvement in the task-positive and task-negative networks defined in
<xref rid="pcbi.1003591-Fox2" ref-type="bibr">[7]</xref>
, and we show that the strength of anatomical connectivity within versus between these networks differentially supports strong, task-dependent functional correlations. The space mapped out by the observed structure-function relationships can be used to quantify a measure of separation between cognitive states, and we show that individual variability in this separation is linked to behavioral performance during both attention and memory tasks. Together, these results reveal that cognitive states are differentially supported by specific patterns of anatomical connectivity, and the observed association between anatomy and function is predictive of behavior.</p>
</sec>
<sec sec-type="methods" id="s2">
<title>Methods</title>
<sec id="s2a">
<title>Ethics Statement</title>
<p>Informed written consent was obtained from each subject prior to experimental sessions. All procedures were approved by the University of California, Santa Barbara Human Subjects Committee.</p>
</sec>
<sec id="s2b">
<title>Network Models of Brain Connectivity</title>
<p>We consider a complex network description of the human brain in which localized brain regions are represented as nodes, and the strengths of structural or functional connectivity between brain regions are represented as weighted, undirected connections between nodes
<xref rid="pcbi.1003591-Bullmore1" ref-type="bibr">[23]</xref>
,
<xref rid="pcbi.1003591-Bullmore2" ref-type="bibr">[24]</xref>
.</p>
<p>A set of 600 cortical and subcortical regions roughly equal in size are chosen by upsampling anatomical regions within the Automated Anatomical Labeling (AAL) Atlas
<xref rid="pcbi.1003591-TzourioMazoyerLandeau1" ref-type="bibr">[25]</xref>
(
<xref ref-type="supplementary-material" rid="pcbi.1003591.s001">Text S1</xref>
). We identify a total of 368 regions in our atlas that overlap wholly or partially with regions in task-positive and task-negative networks (
<xref ref-type="supplementary-material" rid="pcbi.1003591.s001">Text S1</xref>
), and we refer to the remaining regions as “other” regions. We focus on three of the six possible couplings between these three region types: couplings between two task-positive regions (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e001.jpg"></inline-graphic>
</inline-formula>
), two task-negative regions (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e002.jpg"></inline-graphic>
</inline-formula>
), and one task-positive and one task-negative region (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e003.jpg"></inline-graphic>
</inline-formula>
). We then compare these couplings to the remaining set of couplings between task-positive and other regions (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e004.jpg"></inline-graphic>
</inline-formula>
), between task-negative and other regions (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e005.jpg"></inline-graphic>
</inline-formula>
), and between two other regions (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e006.jpg"></inline-graphic>
</inline-formula>
).
<xref ref-type="fig" rid="pcbi-1003591-g001">Figure 1a</xref>
shows a schematic of possible couplings.</p>
<fig id="pcbi-1003591-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pcbi.1003591.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Identifying structure-function relationships in task-related networks.</title>
<p>(a) In both representative and subject-specific brain networks, we identify brain regions that belong to the task-positive and task-negative network described in
<xref rid="pcbi.1003591-Fox2" ref-type="bibr">[7]</xref>
, and we label all remaining regions as “other” regions. There are six possible types of couplings between these three types of regions. We focus on three of these couplings: those between two task-negative regions (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e007.jpg"></inline-graphic>
</inline-formula>
), between two task-positive regions (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e008.jpg"></inline-graphic>
</inline-formula>
), and between a task-positive and a task-negative region (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e009.jpg"></inline-graphic>
</inline-formula>
). These couplings are highlighted in the axial view of the representative brain network. (b) We compute measures of structural (SC) and functional (FC) connectivity between each pair of regions by measuring the number of white matter streamlines linking two regions (SC) and the task-dependent strength of functional correlation between BOLD time series measured within regions (FC). The pie chart shows the decomposition of all structural connections into those that link two task-positive (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e010.jpg"></inline-graphic>
</inline-formula>
), two task-negative (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e011.jpg"></inline-graphic>
</inline-formula>
), one task-positive and one task-negative (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e012.jpg"></inline-graphic>
</inline-formula>
), and all other regions (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e013.jpg"></inline-graphic>
</inline-formula>
). (c) We assess variations
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e014.jpg"></inline-graphic>
</inline-formula>
in these number densities as we bias toward increasingly strong functional correlations. This relationship is illustrated here for the representative brain network, where variations
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e015.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e016.jpg"></inline-graphic>
</inline-formula>
, and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e017.jpg"></inline-graphic>
</inline-formula>
are shown as a function of the resting-state threshold
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e018.jpg"></inline-graphic>
</inline-formula>
. This can be understood as computing the change in composition of the pie chart shown in (b) while incrementally biasing toward strongly-correlated region pairs with functional correlations above the threshold value
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e019.jpg"></inline-graphic>
</inline-formula>
. Inset: complementary cumulative distribution function (cCDF) of FC
<italic>
<sub>R</sub>
</italic>
computed for
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e020.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e021.jpg"></inline-graphic>
</inline-formula>
, and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e022.jpg"></inline-graphic>
</inline-formula>
couplings, where the
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e023.jpg"></inline-graphic>
</inline-formula>
) measures the probability of finding
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e024.jpg"></inline-graphic>
</inline-formula>
for every value of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e025.jpg"></inline-graphic>
</inline-formula>
. The variable threshold
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e026.jpg"></inline-graphic>
</inline-formula>
selects the subset of connections with
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e027.jpg"></inline-graphic>
</inline-formula>
. (d) The changes in
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e028.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e029.jpg"></inline-graphic>
</inline-formula>
, and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e030.jpg"></inline-graphic>
</inline-formula>
densities can be compactly represented by comparing the degree of within-network coupling, quantified by the relative change in
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e031.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e032.jpg"></inline-graphic>
</inline-formula>
densities (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e033.jpg"></inline-graphic>
</inline-formula>
), with the degree of between-network coupling, quantified by the change in
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e034.jpg"></inline-graphic>
</inline-formula>
density (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e035.jpg"></inline-graphic>
</inline-formula>
). This representation reveals that strong resting-state FC is supported by strong local coupling within the task-negative network, represented by the increase in
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e036.jpg"></inline-graphic>
</inline-formula>
relative to
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e037.jpg"></inline-graphic>
</inline-formula>
density, and weak coupling between task-positive and task-negative networks, represented by the decrease in
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e038.jpg"></inline-graphic>
</inline-formula>
density.</p>
</caption>
<graphic xlink:href="pcbi.1003591.g001"></graphic>
</fig>
<p>To construct brain networks from this set of regions, we weight connections between regions by measures of structural and functional connectivity. Structural connectivity (SC) is obtained from diffusion tensor imaging (DTI) measurements via a tractography algorithm used to identify the number of white matter streamlines linking two regions
<xref rid="pcbi.1003591-Hermundstad1" ref-type="bibr">[22]</xref>
. Functional connectivity (FC) is obtained from functional magnetic resonance imaging (fMRI) measurements by computing Pearson's correlations between regional mean blood oxygen level dependent (BOLD) time series. FC is separately estimated (
<italic>i</italic>
) at rest (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e039.jpg"></inline-graphic>
</inline-formula>
), (
<italic>ii</italic>
) during the performance of an attention task (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e040.jpg"></inline-graphic>
</inline-formula>
), and (
<italic>iii</italic>
) during the performance of a memory task (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e041.jpg"></inline-graphic>
</inline-formula>
)
<xref rid="pcbi.1003591-Aminoff1" ref-type="bibr">[26]</xref>
. As task-based fluctuations in BOLD signals are small in comparison to resting-state values
<xref rid="pcbi.1003591-Raichle2" ref-type="bibr">[27]</xref>
, task-based FC is computed in deviations
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e042.jpg"></inline-graphic>
</inline-formula>
) from rest
<xref rid="pcbi.1003591-Hermundstad1" ref-type="bibr">[22]</xref>
. See
<xref ref-type="supplementary-material" rid="pcbi.1003591.s001">Text S1</xref>
and
<xref rid="pcbi.1003591-Hermundstad1" ref-type="bibr">[22]</xref>
for details regarding task design, connectivity estimates, and methodological considerations.</p>
<p>Each subject is described by a structural and functional brain network whose connections are weighted by subject-specific values of SC and FC. Group-level properties can similarly be described by a “representative” brain network that combines information across all subjects. We construct two representative networks, one structural and one functional, by averaging the corresponding sets of connection weights across subject-specific networks, such that the representative connection weights correspond to the group mean values of SC and FC, consistent with previous studies
<xref rid="pcbi.1003591-Hermundstad1" ref-type="bibr">[22]</xref>
,
<xref rid="pcbi.1003591-Achard1" ref-type="bibr">[28]</xref>
. Note that alternative techniques for constructing group-based connectivity networks may capture slightly different aspects of subject-specific network topology
<xref rid="pcbi.1003591-Simpson1" ref-type="bibr">[29]</xref>
.</p>
<p>The assessment of group-level properties requires that we consider the degree to which SC is reliably present across subjects. While FC is typically non-sparse, SC can be both sparse and variable across subjects
<xref rid="pcbi.1003591-Hermundstad1" ref-type="bibr">[22]</xref>
,
<xref rid="pcbi.1003591-Bassett3" ref-type="bibr">[30]</xref>
. We therefore restrict all subsequent analyses to the subset of region pairs that are consistently linked by one or more white matter streamlines in at least 80% of subjects. We confirm that the observed structural and functional properties of the set of thresholded connections are robust to our specific choice of thresholding values (
<xref ref-type="supplementary-material" rid="pcbi.1003591.s001">Text S1</xref>
).</p>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<sec id="s3a">
<title>Couplings between Task-Positive and Task-Negative Networks Differentiate Cognitive States</title>
<p>Functional correlations within task-positive and task-negative networks have been separately linked to attention and memory processes, but the integrated function of these networks is, as of yet, unclear. Should we view these networks as distinct modules that compartmentalize function, or as integrated networks that couple together in a task-dependent manner to shape cognitive function?</p>
<p>To address this question, we examine the extent to which couplings within and between task-positive and task-negative networks differentially shape task-dependent distributions of functional connectivity. We first assess the distributions of resting-, attention-, and memory-state functional connectivity within the sets of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e043.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e044.jpg"></inline-graphic>
</inline-formula>
, and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e045.jpg"></inline-graphic>
</inline-formula>
couplings. These distributions exhibit features that are consistent with known properties of task-positive and task-negative networks. In the resting state, both
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e046.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e047.jpg"></inline-graphic>
</inline-formula>
couplings exhibit stronger correlations than
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e048.jpg"></inline-graphic>
</inline-formula>
couplings (inset of
<xref ref-type="fig" rid="pcbi-1003591-g001">Figure 1c</xref>
), consistent with the definition of task-positive and task-negative networks based on strong correlations within each network and anticorrelations between networks
<xref rid="pcbi.1003591-Fox2" ref-type="bibr">[7]</xref>
(note that anticorrelations are manifested here as weaker correlations between
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e049.jpg"></inline-graphic>
</inline-formula>
relative to
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e050.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e051.jpg"></inline-graphic>
</inline-formula>
region pairs). Similarly, in the attention state,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e052.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e053.jpg"></inline-graphic>
</inline-formula>
couplings respectively exhibit larger increases and decreases in FC relative to the distribution of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e054.jpg"></inline-graphic>
</inline-formula>
couplings (
<xref ref-type="supplementary-material" rid="pcbi.1003591.s001">Text S1</xref>
), consistent with known attention-driven increases and decreases in task-positive versus task-negative network activity.</p>
<p>Given that strong functional correlations are hypothesized to support state-dependent cognitive function, we focus our analysis on the strong values of FC within the leading edges of the resting-, attention-, and memory-state distributions. To isolate strong correlations in each cognitive state, we apply a variable threshold to each distribution of FC. The thresholding process, which selects connections above a specified threshold value of connectivity strength, is common to graph theoretic analyses
<xref rid="pcbi.1003591-Bullmore2" ref-type="bibr">[24]</xref>
and can be used to assess network properties at a fixed threshold value (e.g.
<xref rid="pcbi.1003591-Achard1" ref-type="bibr">[28]</xref>
,
<xref rid="pcbi.1003591-He1" ref-type="bibr">[31]</xref>
) or across variations in threshold values (e.g.
<xref rid="pcbi.1003591-Bassett3" ref-type="bibr">[30]</xref>
,
<xref rid="pcbi.1003591-Archard1" ref-type="bibr">[32]</xref>
,
<xref rid="pcbi.1003591-Bassett4" ref-type="bibr">[33]</xref>
). Here, we apply a threshold to the distribution of FC, and we examine changes in network connectivity across variations in this threshold value. The use of a variable threshold enables us to isolate structural network properties that support increasingly strong functional correlations.</p>
<p>We characterize changes in network connectivity by examining the distribution of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e055.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e056.jpg"></inline-graphic>
</inline-formula>
, and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e057.jpg"></inline-graphic>
</inline-formula>
couplings that support functional correlations above a variable threshold
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e058.jpg"></inline-graphic>
</inline-formula>
. A given threshold value
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e059.jpg"></inline-graphic>
</inline-formula>
will select the set of region pairs with
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e060.jpg"></inline-graphic>
</inline-formula>
. Within this set of region pairs, we measure the fractional number density
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e061.jpg"></inline-graphic>
</inline-formula>
of all structural connections that couple a given pair of regions
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e062.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e063.jpg"></inline-graphic>
</inline-formula>
, with region labels
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e064.jpg"></inline-graphic>
</inline-formula>
. This process can be viewed as assessing the FC-dependent connectivity of a weighted structural network in which connections, defined by the reliable presence of SC in 80% of subjects, are weighted by the number of fiber tracts linking a given pair of regions. Qualitatively similar results are achieved by analyzing the connectivity of an unweighted structural network. However, we find that weighted networks better distinguish strong FC between different cognitive states than do unweighted networks, suggesting that both the presence and degree of structural connectivity play important roles in supporting strong state-dependent FC (see
<xref ref-type="supplementary-material" rid="pcbi.1003591.s001">Text S1</xref>
for comparison of weighted and unweighted network analyses).</p>
<p>We vary the functional threshold
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e065.jpg"></inline-graphic>
</inline-formula>
and compute the change
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e066.jpg"></inline-graphic>
</inline-formula>
in number density relative to baseline (with baseline computed in the absence of any threshold). We find that the relative changes in
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e067.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e068.jpg"></inline-graphic>
</inline-formula>
, and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e069.jpg"></inline-graphic>
</inline-formula>
densities vary systematically across resting, attention, and memory states. In the resting state, for example, we find that strongly-correlated region pairs are supported by a high density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e070.jpg"></inline-graphic>
</inline-formula>
connections (positive
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e071.jpg"></inline-graphic>
</inline-formula>
) and a low density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e072.jpg"></inline-graphic>
</inline-formula>
connections (negative
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e073.jpg"></inline-graphic>
</inline-formula>
) relative to their baseline values (
<xref ref-type="fig" rid="pcbi-1003591-g001">Figure 1c</xref>
).</p>
<p>To compare these relationships across cognitive states, we examine two quantities: the change in
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e074.jpg"></inline-graphic>
</inline-formula>
density (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e075.jpg"></inline-graphic>
</inline-formula>
) and the relative changes in
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e076.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e077.jpg"></inline-graphic>
</inline-formula>
densities (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e078.jpg"></inline-graphic>
</inline-formula>
). Both quantities are evaluated as a function of the task-dependent thresholds
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e079.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e080.jpg"></inline-graphic>
</inline-formula>
, and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e081.jpg"></inline-graphic>
</inline-formula>
. The quantity
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e082.jpg"></inline-graphic>
</inline-formula>
measures the degree of coupling between task-positive and task-negative networks, with positive (negative) values of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e083.jpg"></inline-graphic>
</inline-formula>
indicating increased (decreased) coupling relative to baseline. In comparison, the quantity
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e084.jpg"></inline-graphic>
</inline-formula>
measures the degree of localized coupling within either the task-positive or task-negative network, with positive (negative) values indicating localized coupling within the task-positive (task-negative) network.</p>
<p>
<xref ref-type="fig" rid="pcbi-1003591-g001">Figure 1d</xref>
illustrates the relationship between these two quantities in the resting state (note that this is a condensed representation of the information shown in
<xref ref-type="fig" rid="pcbi-1003591-g001">Figure 1c</xref>
). We refer to this representation as a “state-space” mapping, as it enables us to isolate the structure-function relationships that characterize each cognitive state.</p>
<p>Comparison across cognitive states reveals that resting, attention, and memory states occupy distinct regions of this state space, differing from one another in the types of connection densities that support strong functional correlations (
<xref ref-type="fig" rid="pcbi-1003591-g002">Figure 2</xref>
). Strong resting-state correlations are supported by a decreased density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e085.jpg"></inline-graphic>
</inline-formula>
connections and an increased density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e086.jpg"></inline-graphic>
</inline-formula>
relative to
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e087.jpg"></inline-graphic>
</inline-formula>
connections, reflecting strong localization within the task-negative network and weak coupling between the task-positive and task-negative networks. Strong attention-state correlations, in comparison, are supported by an increased density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e088.jpg"></inline-graphic>
</inline-formula>
connections and an increased density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e089.jpg"></inline-graphic>
</inline-formula>
relative to
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e090.jpg"></inline-graphic>
</inline-formula>
connections, reflecting strong localization with the task-positive network and strong coupling between the task-positive and task-negative networks. Finally, strong memory-state correlations share features of both attention and rest, as they are supported by an increased density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e091.jpg"></inline-graphic>
</inline-formula>
relative to
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e092.jpg"></inline-graphic>
</inline-formula>
connections and an increased density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e093.jpg"></inline-graphic>
</inline-formula>
connections.</p>
<fig id="pcbi-1003591-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pcbi.1003591.g002</object-id>
<label>Figure 2</label>
<caption>
<title>State-space mapping of structure-function relationships.</title>
<p>Density of between-network couplings (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e094.jpg"></inline-graphic>
</inline-formula>
) versus within-network couplings (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e095.jpg"></inline-graphic>
</inline-formula>
) are shown as a function of the increasing functional threshold
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e096.jpg"></inline-graphic>
</inline-formula>
in the representative brain network for the resting (circular markers), attention (square markers), and memory (triangular markers) states. Comparison of these network couplings reveals a large degree of separation between rest, attention, and memory states, with the degree of separation increasing as a function of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e097.jpg"></inline-graphic>
</inline-formula>
. The resting state is characterized by an increased density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e098.jpg"></inline-graphic>
</inline-formula>
relative to
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e099.jpg"></inline-graphic>
</inline-formula>
connections and a decreased density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e100.jpg"></inline-graphic>
</inline-formula>
contributions. In comparison, the attention state is characterized by an increased density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e101.jpg"></inline-graphic>
</inline-formula>
relative to
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e102.jpg"></inline-graphic>
</inline-formula>
connections. The memory state shares features of both the resting and attention states, showing an increased density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e103.jpg"></inline-graphic>
</inline-formula>
relative to
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e104.jpg"></inline-graphic>
</inline-formula>
connections and an increased density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e105.jpg"></inline-graphic>
</inline-formula>
connections.</p>
</caption>
<graphic xlink:href="pcbi.1003591.g002"></graphic>
</fig>
<p>These findings are consistent with known properties of task-positive and task-negative networks. The anticorrelation between the task-positive and task-negative networks manifests here as a decreased density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e106.jpg"></inline-graphic>
</inline-formula>
connections supporting strong resting-state correlations. Similarly, the known importance of task-positive brain regions in attention tasks manifests here as an increased density of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e107.jpg"></inline-graphic>
</inline-formula>
relative to
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e108.jpg"></inline-graphic>
</inline-formula>
connections supporting strong attention-state correlations. Lastly, memory-state functional networks are known to overlap with both resting- and attention-state functional networks
<xref rid="pcbi.1003591-Kim1" ref-type="bibr">[13]</xref>
. We similarly find that the types of connection densities that support strong memory-state FC are similar to those connection densities that support strong resting- and attention-state FC.</p>
<p>Together, these results show that structural connections between task-related functional networks distinguish strong functional correlations measured in different cognitive states.</p>
</sec>
<sec id="s3b">
<title>Individuals Can Be Grouped Based on Similarities in State-Space Relationships</title>
<p>The state-space description shown in
<xref ref-type="fig" rid="pcbi-1003591-g002">Figure 2</xref>
reveals that cognitive states differ from one another in the structural features that support strong functional correlations. We investigate whether the observed separation between cognitive states, as quantified by differences in such structure-function relationships, is a general feature of subject-specific networks.</p>
<p>Each subject-specific brain network can be remapped onto a state-space, analogous to that shown in
<xref ref-type="fig" rid="pcbi-1003591-g002">Figure 2</xref>
, that compares subject-specific values
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e109.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e110.jpg"></inline-graphic>
</inline-formula>
across resting, attention, and memory states. To compare across subjects, we compactly represent each subject by a triad of resting- (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e111.jpg"></inline-graphic>
</inline-formula>
), attention- (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e112.jpg"></inline-graphic>
</inline-formula>
), and memory-state (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e113.jpg"></inline-graphic>
</inline-formula>
) distribution averages of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e114.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e115.jpg"></inline-graphic>
</inline-formula>
(
<xref ref-type="fig" rid="pcbi-1003591-g003">Figure 3a</xref>
). The degree of separation between cognitive states can then be quantified by the angular separation
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e116.jpg"></inline-graphic>
</inline-formula>
between distribution averages.</p>
<fig id="pcbi-1003591-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pcbi.1003591.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Individual variability in state-space relationships.</title>
<p>Subject-specific relationships between resting (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e117.jpg"></inline-graphic>
</inline-formula>
), attention (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e118.jpg"></inline-graphic>
</inline-formula>
), and memory (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e119.jpg"></inline-graphic>
</inline-formula>
) states shown for a single subject (upper row) and for the entire set of subjects (lower row). (a) Subject-specific brain networks can each be described by a state-space of network couplings, quantified by
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e120.jpg"></inline-graphic>
</inline-formula>
versus
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e121.jpg"></inline-graphic>
</inline-formula>
, that is analogous to the state space shown in
<xref ref-type="fig" rid="pcbi-1003591-g002">Figure 2</xref>
for the representative brain network. Each subject can then be compactly described by a triad of points, one each for resting (circular marker), attention (square marker), and memory (triangular marker) states, that marks the distribution averages
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e122.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e123.jpg"></inline-graphic>
</inline-formula>
for each cognitive state. (b) The separation between two states can be quantified by the angular separation
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e124.jpg"></inline-graphic>
</inline-formula>
between distribution averages, with
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e125.jpg"></inline-graphic>
</inline-formula>
. (c) To isolate the angular separation between states, we perform a remapping of the state space in which we represent each individual by a triangle whose vertices are defined by cyclical permutations of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e126.jpg"></inline-graphic>
</inline-formula>
. Each vertex is visually indicated by the superposition of markers that denote the two cognitive states related by
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e127.jpg"></inline-graphic>
</inline-formula>
(e.g.
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e128.jpg"></inline-graphic>
</inline-formula>
is denoted by the superposition of a circular (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e129.jpg"></inline-graphic>
</inline-formula>
) and square (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e130.jpg"></inline-graphic>
</inline-formula>
) marker). This remapping reveals a high degree of inter-subject consistency in the relative separation between states, as noted by the clusters of markers of a given type and the highly overlapping triangles linking these clusters. (d) Subjects can be grouped according to the rank order of angular separations. This method naturally isolates one primary group of subjects who show the smallest separation between attention and memory states. The subject shown in the upper row falls into this primary group, as indicated by the proximity of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e131.jpg"></inline-graphic>
</inline-formula>
(superposition of triangular and square markers) to the vertical dotted line marking
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e132.jpg"></inline-graphic>
</inline-formula>
. The remaining two secondary groups show the smallest separation between rest and memory (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e133.jpg"></inline-graphic>
</inline-formula>
closest to
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e134.jpg"></inline-graphic>
</inline-formula>
) and between attention and memory (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e135.jpg"></inline-graphic>
</inline-formula>
closest to
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e136.jpg"></inline-graphic>
</inline-formula>
).</p>
</caption>
<graphic xlink:href="pcbi.1003591.g003"></graphic>
</fig>
<p>To isolate inter-subject variations in angular separation, we perform a remapping of the state space in which we represent each individual by a triangle whose vertices are defined by cyclical permutations of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e137.jpg"></inline-graphic>
</inline-formula>
, where
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e138.jpg"></inline-graphic>
</inline-formula>
quantifies the angular separation between states
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e139.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e140.jpg"></inline-graphic>
</inline-formula>
(
<xref ref-type="fig" rid="pcbi-1003591-g003">Figure 3b</xref>
). In this representation, the size of a given triangle captures the degree of symmetric separation between cognitive states, with smaller triangles indicating that states are separated from one another by nearly equal angular distances. Similarly, the rotation of a given triangle captures the rank-ordering of angular separations.</p>
<p>This remapping, shown in
<xref ref-type="fig" rid="pcbi-1003591-g003">Figure 3b–c</xref>
, reveals that the degree of separation between cognitive states is highly consistent across subjects. This consistency is illustrated by the clustering of points of the same color, and similarly by the largely overlapping sets of triangles that link these clusters. In a majority of subjects, attention and memory occupy similar regions of state space, as quantified by small values of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e141.jpg"></inline-graphic>
</inline-formula>
and as illustrated by the clustering of green points near the center vertical axis. In these same subjects, rest occupies a distinct region of state space far from both attention and memory, as quantified by large values of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e142.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e143.jpg"></inline-graphic>
</inline-formula>
and as illustrated by the clustering of blue and red points near the left and right vertical axes. The observed organization is not an artifact of our analysis techniques, as confirmed via comparison with a null model in which “task-positive,” “task-negative,” and “other” region labels are randomly reassigned (
<xref ref-type="supplementary-material" rid="pcbi.1003591.s001">Text S1</xref>
).</p>
<p>This representation naturally organizes subjects into three distinct groups based on the relative degree of separation between cognitive states (
<xref ref-type="fig" rid="pcbi-1003591-g003">Figure 3d</xref>
). The primary group (66% of subjects) exhibits less separation between the two task states than between task and resting states. These separations indicate that similar structural connections support large changes in both attention and memory FC, and these structural connections differ from those that support strong resting-state FC. The remaining subjects comprise two secondary groups, the first exhibiting the least separation between resting and memory states (23% of subjects), and the second exhibiting the least separation between resting and attention states (11% of subjects). Small separations between resting and task states indicate that task-dependent changes in FC, measured either during attention or memory tasks, are supported by similar structural connections as those that support strong resting-state FC.</p>
<p>Importantly, the primary and secondary groups identified here are statistically similar to those groups identified from clustering algorithms (
<xref ref-type="supplementary-material" rid="pcbi.1003591.s001">Text S1</xref>
), confirming that the separation between cognitive states captures communities of subjects with similar structure-function relationships. However, the methodology developed here differs from such data-driven clustering algorithms in that it provides an intuitive framework for understanding relationships between cognitive states based on similarities in the underlying structural features that support these states.</p>
</sec>
<sec id="s3c">
<title>State-Space Relationships Predict Deviations in Behavioral Performance</title>
<p>The organization of subjects based on the separation between cognitive states raises two important questions about the potential relationships between structure, function, and behavior. First, do primary and secondary groups, as identified by the structure-function relationships that distinguish between cognitive states, show absolute differences in attention and memory performance? Second, is the degree of separation between attention and memory states, being the property that distinguishes between primary and secondary groups, indicative of relative differences between attention and memory performance?</p>
<p>We address both questions by comparing the behavioral performance of subjects within the primary versus secondary groups. We first assess whether the secondary groups, being outliers in the state-space mapping of structure-function relationships, are also outliers in absolute measures of attention and memory performance. We then assess whether the secondary groups, showing larger separations between attention and memory states in the state-space mapping, also show larger differences in attention versus memory performance.</p>
<p>Both the attention and memory tasks were designed to measure subjects' ability to flexibly switch between decision strategies based on probabilistic information about the (
<italic>i</italic>
) likely position of a visual cue to be identified during the attention task, or (
<italic>ii</italic>
) the likelihood that a visual cue had been previously presented during a memory task
<xref rid="pcbi.1003591-Hermundstad1" ref-type="bibr">[22]</xref>
,
<xref rid="pcbi.1003591-Aminoff1" ref-type="bibr">[26]</xref>
.</p>
<p>Based on the design of these tasks, we focus on three relevant measures of task performance: the criterion switch score (CS), the d-prime (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e144.jpg"></inline-graphic>
</inline-formula>
) score, and the average reaction time (RT). CS measures strategic flexibility in switching between decision making strategies, with higher values indicating the ability to more readily switch strategies. The measure
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e145.jpg"></inline-graphic>
</inline-formula>
assesses perceptual (attention task) or mnemonic (memory task) sensitivity as related to accuracy, with higher values indicating higher sensitivity and therefore higher accuracy. Lastly, average RT measures the average time between the appearance of a stimulus and a subject's response (via a button press) to that stimulus. A more detailed discussion of these performance measures can be found in
<xref rid="pcbi.1003591-Aminoff1" ref-type="bibr">[26]</xref>
.</p>
<p>We assess absolute performance by computing the deviation
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e146.jpg"></inline-graphic>
</inline-formula>
of a given measure
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e147.jpg"></inline-graphic>
</inline-formula>
from the group average value
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e148.jpg"></inline-graphic>
</inline-formula>
. We find that the secondary groups, being outliers by the measure of relative separation between cognitive states, are also outliers in attention and memory RT (
<xref ref-type="fig" rid="pcbi-1003591-g004">Figure 4a</xref>
). The observed difference between primary and secondary groups is statistically significant (a one-tailed
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e149.jpg"></inline-graphic>
</inline-formula>
-test of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e150.jpg"></inline-graphic>
</inline-formula>
gives
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e151.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e152.jpg"></inline-graphic>
</inline-formula>
). We similarly assess relative performance by computing the relative difference
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e153.jpg"></inline-graphic>
</inline-formula>
between a given measure assessed during attention (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e154.jpg"></inline-graphic>
</inline-formula>
) versus memory (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e155.jpg"></inline-graphic>
</inline-formula>
) tasks. We find that the secondary groups, exhibiting larger separations between attention and memory states, also show larger differences between the values of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e156.jpg"></inline-graphic>
</inline-formula>
and CS measured during attention versus memory tasks (
<xref ref-type="fig" rid="pcbi-1003591-g004">Figure 4b</xref>
). The observed difference between primary and secondary groups is again statistically significant (a one-tailed
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e157.jpg"></inline-graphic>
</inline-formula>
-test of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e158.jpg"></inline-graphic>
</inline-formula>
gives
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e159.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e160.jpg"></inline-graphic>
</inline-formula>
). Note that
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e161.jpg"></inline-graphic>
</inline-formula>
and CS have previously been shown to be strongly correlated with one another
<xref rid="pcbi.1003591-Aminoff1" ref-type="bibr">[26]</xref>
, such that relative differences in one measure may drive relative differences in the other. A repeated measures analysis of variance (ANOVA; with two state-space groupings, primary and secondary, as categorical measures and with nine behavioral variables [
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e162.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e163.jpg"></inline-graphic>
</inline-formula>
for
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e164.jpg"></inline-graphic>
</inline-formula>
{RT, CS,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e165.jpg"></inline-graphic>
</inline-formula>
}] as repeated measures) further confirms that the observed differences between primary and secondary groups are statistically significant, with a main effect of grouping of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e166.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e167.jpg"></inline-graphic>
</inline-formula>
(see
<xref ref-type="supplementary-material" rid="pcbi.1003591.s001">Text S1</xref>
for full table of ANOVA results).</p>
<fig id="pcbi-1003591-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pcbi.1003591.g004</object-id>
<label>Figure 4</label>
<caption>
<title>Behavioral performance of primary versus secondary groups.</title>
<p>Absolute (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e168.jpg"></inline-graphic>
</inline-formula>
) and relative (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e169.jpg"></inline-graphic>
</inline-formula>
) differences in performance measures
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e170.jpg"></inline-graphic>
</inline-formula>
for attention (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e171.jpg"></inline-graphic>
</inline-formula>
) and memory (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e172.jpg"></inline-graphic>
</inline-formula>
) tasks, where
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e173.jpg"></inline-graphic>
</inline-formula>
denotes the group average value of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e174.jpg"></inline-graphic>
</inline-formula>
. Performance differences are reported as means and standard errors for subjects within the primary (gray) and secondary (red) groups. (a) The secondary groups show larger absolute differences in reaction time (RT) for both attention and memory tasks. (b) The secondary groups show larger relative differences between attention and memory tasks for both the criterion switch score (CS) and the d-prime (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e175.jpg"></inline-graphic>
</inline-formula>
) score.</p>
</caption>
<graphic xlink:href="pcbi.1003591.g004"></graphic>
</fig>
<p>These results show that the observed separations between cognitive states, which arise from differences in the patterns of structural connectivity that support strong functional correlations, are linked to both absolute differences in overall performance and relative differences between attention and memory performance. Interestingly, the primary and secondary groups differ from one another in absolute measures of RT but relative measures of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e176.jpg"></inline-graphic>
</inline-formula>
and CS. Given that RT is a more general performance measure, while
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e177.jpg"></inline-graphic>
</inline-formula>
and CS are targeted by the attention and memory tasks under consideration, this suggests that individual differences in the rank-ordering of separations between cognitive states are manifested in general measures of performance, while individual differences in the degree of separation between two states are manifested in task-specific measures pertaining to those states.</p>
</sec>
</sec>
<sec id="s4">
<title>Discussion</title>
<p>Anatomical connectivity plays an important role in shaping human cognitive function. To systematically probe relationships between neural anatomy, function, and behavior, we examine structural and functional connectivity within and between two functional networks, task-positive and task-negative, that have been implicated in a wide range of task-free and task-driven studies of brain function
<xref rid="pcbi.1003591-Fox2" ref-type="bibr">[7]</xref>
,
<xref rid="pcbi.1003591-Seeley1" ref-type="bibr">[9]</xref>
,
<xref rid="pcbi.1003591-Mennes1" ref-type="bibr">[11]</xref>
<xref rid="pcbi.1003591-Kim1" ref-type="bibr">[13]</xref>
. We develop an intuitive framework for understanding how structural connectivity within and between these networks shapes task-dependent correlations in neural activity. Within this framework, cognitive states can be characterized by patterns of structural connectivity that support strong functional correlations. When examined across many subjects, differences between cognitive states are linked to differences in behavioral task performance.</p>
<p>We find that the relative number of structural connections between task-positive and task-negative networks differentially supports strong, task-dependent functional connectivity, suggesting that task performance modulates interactions within task-based networks by altering the strength of the strongest interactions. The finding that strong resting-state FC is supported by increased coupling within the task-negative network but decreased coupling between the task-positive and task-negative networks supports the view of default mode function described in a wide range of studies
<xref rid="pcbi.1003591-Fox1" ref-type="bibr">[2]</xref>
,
<xref rid="pcbi.1003591-Long1" ref-type="bibr">[5]</xref>
<xref rid="pcbi.1003591-Fox2" ref-type="bibr">[7]</xref>
. Similarly, the increased coupling within the task-positive network during attention and within the task-negative network during memory supports previously identified task-positive regions important for attention
<xref rid="pcbi.1003591-Fox2" ref-type="bibr">[7]</xref>
and task-negative regions important for memory
<xref rid="pcbi.1003591-Hampson1" ref-type="bibr">[12]</xref>
,
<xref rid="pcbi.1003591-Kim1" ref-type="bibr">[13]</xref>
. It has additionally been suggested that the task-positive network can be decomposed into three subnetworks
<xref rid="pcbi.1003591-Power1" ref-type="bibr">[10]</xref>
, and separate examination of structural and functional features within these subnetworks may further delineate the structure-function relationships that distinguish between different task states.</p>
<p>The space mapped out by couplings within and between the task-positive and task-negative networks can be used to assign a quantitative measure to the separation between resting, attention, and memory states. When compared across subjects, we find a high degree of consistency in the relative separation between states, with a majority of subjects showing small separations between attention and memory states but large separations in these two states from rest. This suggests that, within individual subjects, strong task-dependent changes in FC are supported by similar patterns of SC.</p>
<p>We do find subjects who deviate from this pattern of organization, exhibiting large separations between attention and memory states. Such large separations indicate that changes in the strength of functional correlations associated with attention versus memory tasks are supported by different patterns of structural connectivity. The deviation of these subjects from the majority, as measured by structural and functional connectivity, has two important consequences for behavioral performance. First, the subjects who differ from the majority in relative separation between cognitive states also differ from the majority in general measures of behavioral performance. Second, the way in which these subjects differ from the majority, namely by exhibiting larger separations between attention and memory states, matches the way in which they differ from the majority in behavioral performance, in that they exhibit larger relative differences in task-specific measures of attention and memory performance. These findings suggest that the overall organization of rest and task states is predictive of general performance, while the degree of separation between two task states is predictive of relative differences in performance between the two tasks.</p>
<p>These findings build upon known structure-function relationships in the human brain. Previous work has shown that structural properties shape global patterns of functional connectivity in a task-dependent manner
<xref rid="pcbi.1003591-Hermundstad1" ref-type="bibr">[22]</xref>
. Our results show that these global changes are modulated by regional changes in connectivity patterns within and between functional networks. These findings are compatible with previous studies of default-mode (task-negative) and fronto-parietal (task-positive) networks, which found increases in intra-network connectivity during memory tasks relative to rest, and increases in inter-network connectivity with memory load
<xref rid="pcbi.1003591-Repovs1" ref-type="bibr">[34]</xref>
. However, our results provide a modified view of the role of network connectivity: within the set of strongest connections, relative differences between inter- versus intra-network connectivity not only distinguish between cognitive states, but they also predict individual performance differences within and across tasks. A growing number of recent studies have found similar links between dynamic changes in functional connectivity and behavioral performance within single task domains
<xref rid="pcbi.1003591-Daitch1" ref-type="bibr">[18]</xref>
<xref rid="pcbi.1003591-Bassett2" ref-type="bibr">[21]</xref>
. This study builds on these ideas by examining the degree to which state-dependent changes in connectivity, characterized by a measure of separation between cognitive states, is predictive of state-dependent behavior. Together, these findings suggest an important role for dynamic reconfiguration of brain networks not only within individual cognitive states, as has been observed previously, but also across different states.</p>
<sec id="s4a">
<title>Methodological Considerations</title>
<p>This work examined couplings within and between the task-positive and task-negative networks identified in
<xref rid="pcbi.1003591-Fox2" ref-type="bibr">[7]</xref>
. However, a wide range of different functional networks have been identified in the human brain and have been linked to both resting-state and task-driven neural activity (e.g.
<xref rid="pcbi.1003591-Power1" ref-type="bibr">[10]</xref>
,
<xref rid="pcbi.1003591-Dosenbach1" ref-type="bibr">[35]</xref>
,
<xref rid="pcbi.1003591-Dosenbach2" ref-type="bibr">[36]</xref>
). A more detailed comparison of such functional networks could provide further insight into the structure-function relationships that distinguish between different cognitive states. Furthermore, interactions within and between these networks have been shown to change throughout development
<xref rid="pcbi.1003591-Fair1" ref-type="bibr">[37]</xref>
,
<xref rid="pcbi.1003591-Supekar1" ref-type="bibr">[38]</xref>
and aging
<xref rid="pcbi.1003591-BeasonHeldLLRSKraut1" ref-type="bibr">[39]</xref>
, suggesting that the state-space of relationships found here could exhibit different characteristics across subjects of different ages.</p>
<p>We demonstrated that patterns of structural connectivity within and between task-positive and task-negative networks differentially support task-dependent FC. The observed separation between cognitive states was measured as a function of the relative number of structural connections linking a given region pair, but qualitatively consistent results were observed when structural connectivity was defined in a binary manner based on the reliable presence of structural connections across a majority of subjects (
<xref ref-type="supplementary-material" rid="pcbi.1003591.s001">Text S1</xref>
). Probabilistic tractography algorithms (e.g.
<xref rid="pcbi.1003591-Parker1" ref-type="bibr">[40]</xref>
), which can identify crossing or branching fibers that would not be identified by the deterministic tractography algorithms used here, could improve estimates of structural connectivity and are therefore expected to further strengthen these results. Recent advances in computational platforms (e.g.
<xref rid="pcbi.1003591-Knock1" ref-type="bibr">[41]</xref>
<xref rid="pcbi.1003591-Ritter1" ref-type="bibr">[43]</xref>
) provide additional model-based approaches for simulating brain dynamics using subject-specific patterns of anatomical connectivity. These platforms enable the identification of spatiotemporal motifs that support cognitive activity, as well as the biophysical parameters that constrain these motifs. Such anatomically-informed modeling approaches might help isolate features of structural brain architecture that shape the state-space mapping described here, such as transmission delays induced by long fiber tracts, or signal amplification due to large fiber bundles. Furthermore, such approaches might identify additional network motifs that distinguish state-dependent cognitive function. In combination with subject-specific anatomical constraints, these methods could help elucidate how individual variability in anatomical connectivity constrains functional interactions to ultimately shape behavioral performance.</p>
<p>In assessing state-space relationships, resting, attention, and memory functional scans were taken to represent individual cognitive states. However, there is evidence of spatial and temporal variability within single functional domains
<xref rid="pcbi.1003591-Chang1" ref-type="bibr">[44]</xref>
<xref rid="pcbi.1003591-Allen1" ref-type="bibr">[47]</xref>
, suggesting an interplay between multiple cognitive states that each become more or less active throughout the duration of a given scan. The framework presented here, when combined with approaches for assessing nonstationary correlational structure
<xref rid="pcbi.1003591-Liu2" ref-type="bibr">[48]</xref>
, could help uncover structural features that distinguish different dynamical patterns of activity observed within a given functional domain.</p>
</sec>
<sec id="s4b">
<title>Final Remarks</title>
<p>The observation that structure-function relationships between cognitive states exhibit common state-space features suggests that these features may reflect general organizational principles of the brain. The state-space representation may therefore be useful for defining normative bounds on large-scale patterns of brain organization. When the features of this space are probed using suitably large numbers of subjects, regions of this space not occupied by healthy individuals could be predictive of disrupted structural or functional connectivity. A further characterization of the observed structure-function relationships across different behavioral and genetic measures could potentially be used to develop objective diagnostic measures of disrupted functionality.</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="s5">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pcbi.1003591.s001">
<label>Text S1</label>
<caption>
<p>We first describe the experimental methods and participants of this study. We then describe the construction of task-positive and task-negative networks, and we highlight the specific anatomical regions of the brain involved in the task-related network couplings
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e178.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e179.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e180.jpg"></inline-graphic>
</inline-formula>
, and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e181.jpg"></inline-graphic>
</inline-formula>
. We then show the distributions of resting- (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e182.jpg"></inline-graphic>
</inline-formula>
), attention- (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e183.jpg"></inline-graphic>
</inline-formula>
), and memory-state (
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e184.jpg"></inline-graphic>
</inline-formula>
) functional correlations between
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e185.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e186.jpg"></inline-graphic>
</inline-formula>
, and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e187.jpg"></inline-graphic>
</inline-formula>
region pairs. By thresholding these distributions of FC, we show the resulting variations
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e188.jpg"></inline-graphic>
</inline-formula>
,
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e189.jpg"></inline-graphic>
</inline-formula>
, and
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e190.jpg"></inline-graphic>
</inline-formula>
in the number density of structural connections linking strongly-correlated region pairs. Together, these distributions of
<inline-formula>
<inline-graphic xlink:href="pcbi.1003591.e191.jpg"></inline-graphic>
</inline-formula>
were used to define the state-space mapping of resting, attention, and memory states shown in
<xref ref-type="fig" rid="pcbi-1003591-g002">Figure 2</xref>
of the main text. We show the observed separation between cognitive states is robust to the specific choices made in constructing the representative brain network and in thresholding the resulting distributions of FC. When compared across subjects, this state-space mapping revealed significant inter-subject organization in the relative separations between cognitive states, with subjects naturally organizing into primary and secondary groups (
<xref ref-type="fig" rid="pcbi-1003591-g003">Figure 3</xref>
of the main text). We show that the observed organization into such groups is not an artifact of our specific analysis techniques, and we confirm that the primary and secondary groups are statistically similar to the groups identified by a clustering algorithm. Lastly, these groups were shown to exhibit significant differences in behavioral task performance (
<xref ref-type="fig" rid="pcbi-1003591-g004">Figure 4</xref>
of the main text). We describe the full set of ANOVA results that were used to confirm the statistical significance of these performance differences.</p>
<p>(PDF)</p>
</caption>
<media xlink:href="pcbi.1003591.s001.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>We thank Mason Porter and Peter Mucha for valuable feedback.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pcbi.1003591-Raichle1">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Raichle</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>MacLeod</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Snyder</surname>
<given-names>AZ</given-names>
</name>
,
<name>
<surname>Powers</surname>
<given-names>WJ</given-names>
</name>
,
<name>
<surname>Gusnard</surname>
<given-names>DA</given-names>
</name>
,
<etal>et al</etal>
(
<year>2001</year>
)
<article-title>A default mode of brain function</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>98</volume>
:
<fpage>676</fpage>
<lpage>682</lpage>
.
<pub-id pub-id-type="pmid">11209064</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Fox1">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fox</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Raichle</surname>
<given-names>ME</given-names>
</name>
(
<year>2007</year>
)
<article-title>Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging</article-title>
.
<source>Nat Rev Neurosci</source>
<volume>8</volume>
:
<fpage>700</fpage>
<lpage>711</lpage>
.
<pub-id pub-id-type="pmid">17704812</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Greicius1">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Greicius</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Krasnow</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Reiss</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Menon</surname>
<given-names>V</given-names>
</name>
(
<year>2003</year>
)
<article-title>Functional connectivity in the resting brain: a network analysis of the default mode hypothesis</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>100</volume>
:
<fpage>253</fpage>
<lpage>258</lpage>
.
<pub-id pub-id-type="pmid">12506194</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Damoiseaux1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Damoiseaux</surname>
<given-names>JS</given-names>
</name>
,
<name>
<surname>Rombouts</surname>
<given-names>SARB</given-names>
</name>
,
<name>
<surname>Barkhof</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Scheltens</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Stam</surname>
<given-names>CJ</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Consistent resting-state networks across healthy subjects</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>103</volume>
:
<fpage>13848</fpage>
<lpage>13853</lpage>
.
<pub-id pub-id-type="pmid">16945915</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Long1">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Long</surname>
<given-names>XY</given-names>
</name>
,
<name>
<surname>Zuo</surname>
<given-names>XN</given-names>
</name>
,
<name>
<surname>Kiviniemi</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Zou</surname>
<given-names>QH</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Default mode network as revealed with multiple methods for resting-state functional mri analysis</article-title>
.
<source>J Neurosci Methods</source>
<volume>171</volume>
:
<fpage>349</fpage>
<lpage>355</lpage>
.
<pub-id pub-id-type="pmid">18486233</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Shehzad1">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shehzad</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Kelly</surname>
<given-names>AMC</given-names>
</name>
,
<name>
<surname>Reiss</surname>
<given-names>PT</given-names>
</name>
,
<name>
<surname>Gee</surname>
<given-names>DG</given-names>
</name>
,
<name>
<surname>Gotimer</surname>
<given-names>K</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>The resting brain: Uncon-strained yet reliable</article-title>
.
<source>Cereb Cortex</source>
<volume>19</volume>
:
<fpage>349</fpage>
<lpage>355</lpage>
.
<pub-id pub-id-type="pmid">18534992</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Fox2">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fox</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Snyder</surname>
<given-names>AZ</given-names>
</name>
,
<name>
<surname>Vincent</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Corbetta</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Essen</surname>
<given-names>DCV</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>The human brain is intrinsically organized into dynamic, anticorrelated functional networks</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>102</volume>
:
<fpage>9673</fpage>
<lpage>9678</lpage>
.
<pub-id pub-id-type="pmid">15976020</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Fox3">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fox</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Corbetta</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Snyder</surname>
<given-names>AZ</given-names>
</name>
,
<name>
<surname>Vincent</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Raichle</surname>
<given-names>ME</given-names>
</name>
(
<year>2006</year>
)
<article-title>Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>103</volume>
:
<fpage>10046</fpage>
<lpage>10051</lpage>
.
<pub-id pub-id-type="pmid">16788060</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Seeley1">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Seeley</surname>
<given-names>WW</given-names>
</name>
,
<name>
<surname>Menon</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Schatzberg</surname>
<given-names>AF</given-names>
</name>
,
<name>
<surname>Keller</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Glover</surname>
<given-names>GH</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Dissociable intrinsic connectivity networks for salience processing and executive control</article-title>
.
<source>J Neurosci</source>
<volume>27</volume>
:
<fpage>2349</fpage>
<lpage>2356</lpage>
.
<pub-id pub-id-type="pmid">17329432</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Power1">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Power</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Cohen</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Nelson</surname>
<given-names>SM</given-names>
</name>
,
<name>
<surname>Wig</surname>
<given-names>GS</given-names>
</name>
,
<name>
<surname>Barnes</surname>
<given-names>KA</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Functional network organization of the human brain</article-title>
.
<source>Neuron</source>
<volume>72</volume>
:
<fpage>665</fpage>
<lpage>678</lpage>
.
<pub-id pub-id-type="pmid">22099467</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Mennes1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mennes</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kelly</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Zuo</surname>
<given-names>XN</given-names>
</name>
,
<name>
<surname>Martino</surname>
<given-names>AD</given-names>
</name>
,
<name>
<surname>Biswal</surname>
<given-names>BB</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Inter-individual differences in resting-state functional connectivity predict task-induced bold activity</article-title>
.
<source>NeuroImage</source>
<volume>50</volume>
:
<fpage>1690</fpage>
<lpage>1701</lpage>
.
<pub-id pub-id-type="pmid">20079856</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Hampson1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hampson</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Driesen</surname>
<given-names>NR</given-names>
</name>
,
<name>
<surname>Roth</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Gore</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Constable</surname>
<given-names>RT</given-names>
</name>
(
<year>2010</year>
)
<article-title>Functional connectivity between task-positive and task-negative areas and its relation to working memory performance</article-title>
.
<source>Magnetic Resonance Imaging</source>
<volume>28</volume>
:
<fpage>1051</fpage>
<lpage>1057</lpage>
.
<pub-id pub-id-type="pmid">20409665</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Kim1">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kim</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Daselaar</surname>
<given-names>SM</given-names>
</name>
,
<name>
<surname>Cabeza</surname>
<given-names>R</given-names>
</name>
(
<year>2010</year>
)
<article-title>Overlapping brain activity between episodic memory encoding and retrieval: Roles of the task-positive and task-negative networks</article-title>
.
<source>NeuroImage</source>
<volume>49</volume>
:
<fpage>1045</fpage>
<lpage>1054</lpage>
.
<pub-id pub-id-type="pmid">19647800</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Greicius2">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Greicius</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Supekar</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Menon</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Dougherty</surname>
<given-names>RF</given-names>
</name>
(
<year>2009</year>
)
<article-title>Resting-state functional connectivity reects structural connectivity in the default mode network</article-title>
.
<source>Cereb Cortex</source>
<volume>19</volume>
:
<fpage>72</fpage>
<lpage>78</lpage>
.
<pub-id pub-id-type="pmid">18403396</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Broyd1">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Broyd</surname>
<given-names>SJ</given-names>
</name>
,
<name>
<surname>Demanuele</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Debener</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Helps</surname>
<given-names>SK</given-names>
</name>
,
<name>
<surname>James</surname>
<given-names>CJ</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Default-mode brain dysfunction in mental disorders: A systematic review</article-title>
.
<source>Neurosci, Biobehav Rev</source>
<volume>33</volume>
:
<fpage>279</fpage>
<lpage>296</lpage>
.
<pub-id pub-id-type="pmid">18824195</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Kennedy1">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kennedy</surname>
<given-names>DP</given-names>
</name>
,
<name>
<surname>Courchesne</surname>
<given-names>E</given-names>
</name>
(
<year>2008</year>
)
<article-title>The intrinsic functional organization of the brain is altered in autism</article-title>
.
<source>NeuroImage</source>
<volume>39</volume>
:
<fpage>1877</fpage>
<lpage>1885</lpage>
.
<pub-id pub-id-type="pmid">18083565</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Liu1">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Kaneko</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Ouyang</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Hao</surname>
<given-names>Y</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network</article-title>
.
<source>Schizoph bull</source>
<volume>38</volume>
:
<fpage>285</fpage>
<lpage>294</lpage>
.
<pub-id pub-id-type="pmid">20595202</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Daitch1">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Daitch</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Sharma</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Roland</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Astafiev</surname>
<given-names>SV</given-names>
</name>
,
<name>
<surname>Bundy</surname>
<given-names>DT</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Frequency-specific mechanism links human brain networks for spatial attention</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>110</volume>
:
<fpage>19585</fpage>
<lpage>19590</lpage>
.
<pub-id pub-id-type="pmid">24218604</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Fornito1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fornito</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Harrison</surname>
<given-names>BJ</given-names>
</name>
,
<name>
<surname>Zalesky</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Simons</surname>
<given-names>JS</given-names>
</name>
(
<year>2012</year>
)
<article-title>Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>109</volume>
:
<fpage>12788</fpage>
<lpage>12793</lpage>
.
<pub-id pub-id-type="pmid">22807481</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Bassett1">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bassett</surname>
<given-names>DS</given-names>
</name>
,
<name>
<surname>Wymbs</surname>
<given-names>NF</given-names>
</name>
,
<name>
<surname>Porter</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Mucha</surname>
<given-names>PJ</given-names>
</name>
,
<name>
<surname>Carlson</surname>
<given-names>JM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Dynamic reconfiguration of human brain networks during learning</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>108</volume>
:
<fpage>7641</fpage>
<lpage>7646</lpage>
.
<pub-id pub-id-type="pmid">21502525</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Bassett2">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bassett</surname>
<given-names>DS</given-names>
</name>
,
<name>
<surname>Wymbs</surname>
<given-names>NF</given-names>
</name>
,
<name>
<surname>Rombach</surname>
<given-names>MP</given-names>
</name>
,
<name>
<surname>Porter</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Mucha</surname>
<given-names>PJ</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Task-based coreperiphery organization of human brain dynamics</article-title>
.
<source>PLoS Comput Biol</source>
<volume>9</volume>
:
<fpage>e1003171</fpage>
.
<pub-id pub-id-type="pmid">24086116</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Hermundstad1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hermundstad</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Bassett</surname>
<given-names>DS</given-names>
</name>
,
<name>
<surname>Brown</surname>
<given-names>KS</given-names>
</name>
,
<name>
<surname>Aminoff</surname>
<given-names>EM</given-names>
</name>
,
<name>
<surname>Freeman</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Structural foundations of resting-state and task-based neural activity in the human brain</article-title>
.
<source>Proc Natl Acad Sci USA</source>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Bullmore1">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bullmore</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Sporns</surname>
<given-names>O</given-names>
</name>
(
<year>2009</year>
)
<article-title>Complex brain networks: graph theoretical analysis of structural and functional systems</article-title>
.
<source>Nat Rev Neurosci</source>
<volume>10</volume>
:
<fpage>186</fpage>
<lpage>198</lpage>
.
<pub-id pub-id-type="pmid">19190637</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Bullmore2">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bullmore</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Bassett</surname>
<given-names>DS</given-names>
</name>
(
<year>2011</year>
)
<article-title>Brain graphs: graphical models of the human brain connectome</article-title>
.
<source>AR Clinical Psychol</source>
<volume>7</volume>
:
<fpage>113</fpage>
<lpage>140</lpage>
.</mixed-citation>
</ref>
<ref id="pcbi.1003591-TzourioMazoyerLandeau1">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tzourio-Mazoyer, Landeau</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Papathanassiou</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Crivello</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Etard</surname>
<given-names>O</given-names>
</name>
,
<etal>et al</etal>
(
<year>2002</year>
)
<article-title>Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain</article-title>
.
<source>NeuroImage</source>
<volume>15</volume>
:
<fpage>273</fpage>
<lpage>289</lpage>
.
<pub-id pub-id-type="pmid">11771995</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Aminoff1">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Aminoff</surname>
<given-names>EM</given-names>
</name>
,
<name>
<surname>Clewett</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Freeman</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Frithsen</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Tipper</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Individual differences in shifting decision criterion: A recognition memory study</article-title>
.
<source>Mem Cogn</source>
<volume>40</volume>
:
<fpage>127</fpage>
<lpage>134</lpage>
.</mixed-citation>
</ref>
<ref id="pcbi.1003591-Raichle2">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Raichle</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>Minturn</surname>
<given-names>MA</given-names>
</name>
(
<year>2006</year>
)
<article-title>Brain work and brain imaging</article-title>
.
<source>Annu Rev Neurosci</source>
<volume>29</volume>
:
<fpage>449</fpage>
<lpage>476</lpage>
.
<pub-id pub-id-type="pmid">16776593</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Achard1">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Achard</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Salvador</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Whitcher</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Suckling</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Bullmore</surname>
<given-names>E</given-names>
</name>
(
<year>2006</year>
)
<article-title>A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs</article-title>
.
<source>J Neurosci</source>
<volume>26</volume>
:
<fpage>63</fpage>
<lpage>72</lpage>
.
<pub-id pub-id-type="pmid">16399673</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Simpson1">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Simpson</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Moussa</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Laurienti</surname>
<given-names>P</given-names>
</name>
(
<year>2012</year>
)
<article-title>An exponential random graph modeling approach to creating group-based representative connectivity networks</article-title>
.
<source>NeuroImage</source>
<volume>60</volume>
:
<fpage>1117</fpage>
<lpage>1126</lpage>
.
<pub-id pub-id-type="pmid">22281670</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Bassett3">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bassett</surname>
<given-names>DS</given-names>
</name>
,
<name>
<surname>Brown</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Deshpande</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Carlson</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Grafton</surname>
<given-names>ST</given-names>
</name>
(
<year>2011</year>
)
<article-title>Conserved and variable architecture of human white matter connectivity</article-title>
.
<source>NeuroImage</source>
<volume>54</volume>
:
<fpage>1262</fpage>
<lpage>1279</lpage>
.
<pub-id pub-id-type="pmid">20850551</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-He1">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>He</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Evans</surname>
<given-names>A</given-names>
</name>
(
<year>2007</year>
)
<article-title>Small-world anatomical networks in the human brain revealed by cortical thickness from mri</article-title>
.
<source>Cereb Cortex</source>
<volume>17</volume>
:
<fpage>2407</fpage>
<lpage>2419</lpage>
.
<pub-id pub-id-type="pmid">17204824</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Archard1">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Archard</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bullmore</surname>
<given-names>E</given-names>
</name>
(
<year>2007</year>
)
<article-title>Efficiency and cost of economical brain functional networks</article-title>
.
<source>PLoS Comput Biol</source>
<volume>3</volume>
:
<fpage>e17</fpage>
.
<pub-id pub-id-type="pmid">17274684</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Bassett4">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bassett</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Bullmore</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Verchinski</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Mattay</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Weinberger</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Hierarchical organization of human cortical networks in health and schizophrenia</article-title>
.
<source>J Neurosci</source>
<volume>28</volume>
:
<fpage>9239</fpage>
<lpage>9248</lpage>
.
<pub-id pub-id-type="pmid">18784304</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Repovs1">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Repovs</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Barch</surname>
<given-names>DM</given-names>
</name>
(
<year>2009</year>
)
<article-title>Working memory related brain network connectivity in individuals with schizophrenia and their siblings</article-title>
.
<source>Front Hum Neurosci</source>
<volume>6</volume>
:
<fpage>137</fpage>
.
<pub-id pub-id-type="pmid">22654746</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Dosenbach1">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dosenbach</surname>
<given-names>NU</given-names>
</name>
,
<name>
<surname>Visscher</surname>
<given-names>KM</given-names>
</name>
,
<name>
<surname>Palmer</surname>
<given-names>ED</given-names>
</name>
,
<name>
<surname>Miezin</surname>
<given-names>FM</given-names>
</name>
,
<name>
<surname>Wenger</surname>
<given-names>KK</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>A core system for the implementation of task sets</article-title>
.
<source>Neuron</source>
<volume>50</volume>
:
<fpage>799</fpage>
<lpage>812</lpage>
.
<pub-id pub-id-type="pmid">16731517</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Dosenbach2">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dosenbach</surname>
<given-names>NUF</given-names>
</name>
,
<name>
<surname>Fair</surname>
<given-names>DA</given-names>
</name>
,
<name>
<surname>Miezin</surname>
<given-names>FM</given-names>
</name>
,
<name>
<surname>Cohen</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Wenger</surname>
<given-names>KK</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Distinct brain networks for adaptive and stable task control in humans</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>104</volume>
:
<fpage>11073</fpage>
<lpage>11078</lpage>
.
<pub-id pub-id-type="pmid">17576922</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Fair1">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fair</surname>
<given-names>DA</given-names>
</name>
,
<name>
<surname>Cohen</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Power</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Dosenbach</surname>
<given-names>NUF</given-names>
</name>
,
<name>
<surname>Church</surname>
<given-names>JA</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Functional brain networks develop from a “local to distributed” organization</article-title>
.
<source>PloS Comput Biol</source>
<volume>5</volume>
:
<fpage>e1000381</fpage>
.
<pub-id pub-id-type="pmid">19412534</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Supekar1">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Supekar</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Musen</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Menon</surname>
<given-names>V</given-names>
</name>
(
<year>2009</year>
)
<article-title>Development of large-scale functional brain networks in children</article-title>
.
<source>PloS Biol</source>
<volume>7</volume>
:
<fpage>e1000157</fpage>
.
<pub-id pub-id-type="pmid">19621066</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-BeasonHeldLLRSKraut1">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Beason-Held LL RS Kraut</surname>
<given-names>MA</given-names>
</name>
(
<year>2009</year>
)
<article-title>Stability of default-mode network activity in the aging brain</article-title>
.
<source>Brain Imaging Behav</source>
<volume>3</volume>
:
<fpage>123</fpage>
<lpage>131</lpage>
.
<pub-id pub-id-type="pmid">19568331</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Parker1">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Parker</surname>
<given-names>GJ</given-names>
</name>
,
<name>
<surname>Alexander</surname>
<given-names>DC</given-names>
</name>
(
<year>2003</year>
)
<article-title>Probabilistic Monte Carlo based mapping of cerebral connections utilising whole-brain crossing fibre information</article-title>
.
<source>Information Processing in Medical Imaging</source>
<volume>18</volume>
:
<fpage>684</fpage>
<lpage>695</lpage>
.
<pub-id pub-id-type="pmid">15344498</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Knock1">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Knock</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>McIntosh</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kotter</surname>
<given-names>OSR</given-names>
</name>
,
<name>
<surname>Hagmann</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Jirsa</surname>
<given-names>V</given-names>
</name>
(
<year>2009</year>
)
<article-title>The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models</article-title>
.
<source>J Neurosci Methods</source>
<volume>183</volume>
:
<fpage>86</fpage>
<lpage>94</lpage>
.
<pub-id pub-id-type="pmid">19607860</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Leon1">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Leon</surname>
<given-names>PS</given-names>
</name>
,
<name>
<surname>Knock</surname>
<given-names>SA</given-names>
</name>
,
<name>
<surname>Woodman</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Domide</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Mersmann</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>The virtual brain: a simulator of primate brain network dynamics</article-title>
.
<source>Front Neuroinform</source>
<volume>7</volume>
:
<fpage>1</fpage>
<lpage>23</lpage>
.
<pub-id pub-id-type="pmid">23386828</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Ritter1">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ritter</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Schirner</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>McIntosh</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Jirsa</surname>
<given-names>V</given-names>
</name>
(
<year>2013</year>
)
<article-title>The virtual brain integrates computational modeling and multimodal neuroimaging</article-title>
.
<source>Brain Conn</source>
<volume>3</volume>
:
<fpage>121</fpage>
<lpage>145</lpage>
.</mixed-citation>
</ref>
<ref id="pcbi.1003591-Chang1">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chang</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Glover</surname>
<given-names>GH</given-names>
</name>
(
<year>2010</year>
)
<article-title>Time-frequency dynamics of resting-state brain connectivity measured with fmri</article-title>
.
<source>NeuroImage</source>
<volume>50</volume>
:
<fpage>81</fpage>
<lpage>98</lpage>
.
<pub-id pub-id-type="pmid">20006716</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Kang1">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kang</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Yan</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Liang</surname>
<given-names>X</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Characterizing dynamic functional con-nectivity in the resting brain using variable parameter regression and kalman filtering approaches</article-title>
.
<source>NeuroImage</source>
<volume>56</volume>
:
<fpage>1222</fpage>
<lpage>1234</lpage>
.
<pub-id pub-id-type="pmid">21420500</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Kiviniemi1">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kiviniemi</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Vire</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Remes</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Elseoud</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Starck</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>A sliding time-window ica reveals spatial variability of the default mode network in time</article-title>
.
<source>Brain Connect</source>
<volume>1</volume>
:
<fpage>339</fpage>
<lpage>347</lpage>
.
<pub-id pub-id-type="pmid">22432423</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Allen1">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Allen</surname>
<given-names>EA</given-names>
</name>
,
<name>
<surname>Damaraju</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Plis</surname>
<given-names>SM</given-names>
</name>
,
<name>
<surname>Erhardt</surname>
<given-names>EB</given-names>
</name>
,
<name>
<surname>Eichele</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Tracking whole-brain connectivity dynamics in the resting state</article-title>
.
<source>Cereb Cortex</source>
<volume>24</volume>
(
<issue>3</issue>
)
<fpage>663</fpage>
<lpage>76</lpage>
.
<pub-id pub-id-type="pmid">23146964</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1003591-Liu2">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Duyn</surname>
<given-names>JH</given-names>
</name>
(
<year>2013</year>
)
<article-title>Time-varying functional network information extracted from brief instances of spontaneous brain activity</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>110</volume>
:
<fpage>4392</fpage>
<lpage>4397</lpage>
.
<pub-id pub-id-type="pmid">23440216</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000257 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000257 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4022461
   |texte=   Structurally-Constrained Relationships between Cognitive States in the Human Brain
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:24830758" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021