Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of Rotation on Detailed Heat Transfer Distribution for Various Rib Geometries in Developing Channel Flow

Identifieur interne : 003B28 ( PascalFrancis/Curation ); précédent : 003B27; suivant : 003B29

Effect of Rotation on Detailed Heat Transfer Distribution for Various Rib Geometries in Developing Channel Flow

Auteurs : Justin A. Lamont ; Srinath V. Ekkad [États-Unis] ; Mary Anne Alvin [États-Unis]

Source :

RBID : Pascal:14-0138167

Descripteurs français

English descriptors

Abstract

The effects of Coriolis force and centrifugal buoyancy have a significant impact on heat transfer behavior inside rotating internal serpentine coolant channels for turbine blades. Due to the complexity of added rotation inside such channels, detailed knowledge of the heat transfer will greatly enhance the blade designer's ability to predict hot spots so coolant may be distributed more effectively. The effects of high rotation numbers are investigated on the heat transfer distributions for different rib types in near entrance and entrance region of the channels. It is important to determine the actual enhancement derived from turbulating channel entrances where heat transfer is already high due to entrance effects and boundary layer growth. A transient liquid crystal technique is used to measure detailed heat transfer coefficients (htc) for a rotating, short length, radially outward coolant channel with rib turbulators. Different rib types such as 90deg, W, and M-shaped ribs are used to roughen the walls to enhance heat transfer. The channel Reynolds number is held constant at 12,000 while the rotation number is increased up to 0.5. Results show that in the near entrance region, the high performance W and M-shaped ribs are just as effective as the simple 90deg ribs in enhancing heat transfer. The entrance effect in the developing region causes significantly high baseline heat transfer coefficients thus reducing the effective of the ribs to further enhance heat transfer. Rotation causes increase in heat transfer on the trailing side, while the leading side remains relatively constant limiting the decrement in leading side heat transfer. For all rotational cases, the W and M-shaped ribs show significant effect of rotation with large differences between leading and trailing side heat transfer.
pA  
A01 01  1    @0 0022-1481
A02 01      @0 JHTRAO
A03   1    @0 J. heat transf.
A05       @2 136
A06       @2 1
A08 01  1  ENG  @1 Effect of Rotation on Detailed Heat Transfer Distribution for Various Rib Geometries in Developing Channel Flow
A11 01  1    @1 LAMONT (Justin A.)
A11 02  1    @1 EKKAD (Srinath V.)
A11 03  1    @1 ALVIN (Mary Anne)
A14 01      @1 Department of Mechanical Engineering, Virginia Tech @2 Blacksburg, VA 24061 @3 USA @Z 2 aut.
A14 02      @1 DOE-National Energy Technology Laboratory @2 Pittsburgh, PA 15236 @3 USA @Z 3 aut.
A20       @2 011901.1-011901.10
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 6120C @5 354000503219840060
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 20 ref.
A47 01  1    @0 14-0138167
A60       @1 P @3 PR
A61       @0 A
A64 01  1    @0 Journal of heat transfer
A66 01      @0 USA
C01 01    ENG  @0 The effects of Coriolis force and centrifugal buoyancy have a significant impact on heat transfer behavior inside rotating internal serpentine coolant channels for turbine blades. Due to the complexity of added rotation inside such channels, detailed knowledge of the heat transfer will greatly enhance the blade designer's ability to predict hot spots so coolant may be distributed more effectively. The effects of high rotation numbers are investigated on the heat transfer distributions for different rib types in near entrance and entrance region of the channels. It is important to determine the actual enhancement derived from turbulating channel entrances where heat transfer is already high due to entrance effects and boundary layer growth. A transient liquid crystal technique is used to measure detailed heat transfer coefficients (htc) for a rotating, short length, radially outward coolant channel with rib turbulators. Different rib types such as 90deg, W, and M-shaped ribs are used to roughen the walls to enhance heat transfer. The channel Reynolds number is held constant at 12,000 while the rotation number is increased up to 0.5. Results show that in the near entrance region, the high performance W and M-shaped ribs are just as effective as the simple 90deg ribs in enhancing heat transfer. The entrance effect in the developing region causes significantly high baseline heat transfer coefficients thus reducing the effective of the ribs to further enhance heat transfer. Rotation causes increase in heat transfer on the trailing side, while the leading side remains relatively constant limiting the decrement in leading side heat transfer. For all rotational cases, the W and M-shaped ribs show significant effect of rotation with large differences between leading and trailing side heat transfer.
C02 01  X    @0 001D06D03D
C02 02  X    @0 230
C03 01  X  FRE  @0 Turbine gaz @5 08
C03 01  X  ENG  @0 Gas turbine @5 08
C03 01  X  SPA  @0 Turbina gas @5 08
C03 02  X  FRE  @0 Aube turbine @5 09
C03 02  X  ENG  @0 Turbine blade @5 09
C03 02  X  SPA  @0 Paleta turbina @5 09
C03 03  X  FRE  @0 Tube nervuré @5 10
C03 03  X  ENG  @0 Ribbed tube @5 10
C03 03  X  SPA  @0 Tubo nervado @5 10
C03 04  X  FRE  @0 Etude expérimentale @5 15
C03 04  X  ENG  @0 Experimental study @5 15
C03 04  X  SPA  @0 Estudio experimental @5 15
C03 05  3  FRE  @0 Dispositif cristaux liquides @5 17
C03 05  3  ENG  @0 Liquid crystal devices @5 17
C03 06  X  FRE  @0 Installation essai @5 18
C03 06  X  ENG  @0 Test facility @5 18
C03 06  X  SPA  @0 Instalación ensayo @5 18
C03 07  X  FRE  @0 Transfert chaleur @5 23
C03 07  X  ENG  @0 Heat transfer @5 23
C03 07  X  SPA  @0 Transferencia térmica @5 23
C03 08  X  FRE  @0 Système refroidissement @5 24
C03 08  X  ENG  @0 Cooling system @5 24
C03 08  X  SPA  @0 Sistema enfriamiento @5 24
C03 09  X  FRE  @0 Nombre Nusselt @5 25
C03 09  X  ENG  @0 Nusselt number @5 25
C03 09  X  SPA  @0 Número Nusselt @5 25
N21       @1 174

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0138167

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of Rotation on Detailed Heat Transfer Distribution for Various Rib Geometries in Developing Channel Flow</title>
<author>
<name sortKey="Lamont, Justin A" sort="Lamont, Justin A" uniqKey="Lamont J" first="Justin A." last="Lamont">Justin A. Lamont</name>
</author>
<author>
<name sortKey="Ekkad, Srinath V" sort="Ekkad, Srinath V" uniqKey="Ekkad S" first="Srinath V." last="Ekkad">Srinath V. Ekkad</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Virginia Tech</s1>
<s2>Blacksburg, VA 24061</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Alvin, Mary Anne" sort="Alvin, Mary Anne" uniqKey="Alvin M" first="Mary Anne" last="Alvin">Mary Anne Alvin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>DOE-National Energy Technology Laboratory</s1>
<s2>Pittsburgh, PA 15236</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0138167</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0138167 INIST</idno>
<idno type="RBID">Pascal:14-0138167</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000B00</idno>
<idno type="wicri:Area/PascalFrancis/Curation">003B28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Effect of Rotation on Detailed Heat Transfer Distribution for Various Rib Geometries in Developing Channel Flow</title>
<author>
<name sortKey="Lamont, Justin A" sort="Lamont, Justin A" uniqKey="Lamont J" first="Justin A." last="Lamont">Justin A. Lamont</name>
</author>
<author>
<name sortKey="Ekkad, Srinath V" sort="Ekkad, Srinath V" uniqKey="Ekkad S" first="Srinath V." last="Ekkad">Srinath V. Ekkad</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Virginia Tech</s1>
<s2>Blacksburg, VA 24061</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Alvin, Mary Anne" sort="Alvin, Mary Anne" uniqKey="Alvin M" first="Mary Anne" last="Alvin">Mary Anne Alvin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>DOE-National Energy Technology Laboratory</s1>
<s2>Pittsburgh, PA 15236</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of heat transfer</title>
<title level="j" type="abbreviated">J. heat transf.</title>
<idno type="ISSN">0022-1481</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of heat transfer</title>
<title level="j" type="abbreviated">J. heat transf.</title>
<idno type="ISSN">0022-1481</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cooling system</term>
<term>Experimental study</term>
<term>Gas turbine</term>
<term>Heat transfer</term>
<term>Liquid crystal devices</term>
<term>Nusselt number</term>
<term>Ribbed tube</term>
<term>Test facility</term>
<term>Turbine blade</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Turbine gaz</term>
<term>Aube turbine</term>
<term>Tube nervuré</term>
<term>Etude expérimentale</term>
<term>Dispositif cristaux liquides</term>
<term>Installation essai</term>
<term>Transfert chaleur</term>
<term>Système refroidissement</term>
<term>Nombre Nusselt</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effects of Coriolis force and centrifugal buoyancy have a significant impact on heat transfer behavior inside rotating internal serpentine coolant channels for turbine blades. Due to the complexity of added rotation inside such channels, detailed knowledge of the heat transfer will greatly enhance the blade designer's ability to predict hot spots so coolant may be distributed more effectively. The effects of high rotation numbers are investigated on the heat transfer distributions for different rib types in near entrance and entrance region of the channels. It is important to determine the actual enhancement derived from turbulating channel entrances where heat transfer is already high due to entrance effects and boundary layer growth. A transient liquid crystal technique is used to measure detailed heat transfer coefficients (htc) for a rotating, short length, radially outward coolant channel with rib turbulators. Different rib types such as 90deg, W, and M-shaped ribs are used to roughen the walls to enhance heat transfer. The channel Reynolds number is held constant at 12,000 while the rotation number is increased up to 0.5. Results show that in the near entrance region, the high performance W and M-shaped ribs are just as effective as the simple 90deg ribs in enhancing heat transfer. The entrance effect in the developing region causes significantly high baseline heat transfer coefficients thus reducing the effective of the ribs to further enhance heat transfer. Rotation causes increase in heat transfer on the trailing side, while the leading side remains relatively constant limiting the decrement in leading side heat transfer. For all rotational cases, the W and M-shaped ribs show significant effect of rotation with large differences between leading and trailing side heat transfer.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-1481</s0>
</fA01>
<fA02 i1="01">
<s0>JHTRAO</s0>
</fA02>
<fA03 i2="1">
<s0>J. heat transf.</s0>
</fA03>
<fA05>
<s2>136</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of Rotation on Detailed Heat Transfer Distribution for Various Rib Geometries in Developing Channel Flow</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LAMONT (Justin A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EKKAD (Srinath V.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ALVIN (Mary Anne)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mechanical Engineering, Virginia Tech</s1>
<s2>Blacksburg, VA 24061</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>DOE-National Energy Technology Laboratory</s1>
<s2>Pittsburgh, PA 15236</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>011901.1-011901.10</s2>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>6120C</s2>
<s5>354000503219840060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0138167</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of heat transfer</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The effects of Coriolis force and centrifugal buoyancy have a significant impact on heat transfer behavior inside rotating internal serpentine coolant channels for turbine blades. Due to the complexity of added rotation inside such channels, detailed knowledge of the heat transfer will greatly enhance the blade designer's ability to predict hot spots so coolant may be distributed more effectively. The effects of high rotation numbers are investigated on the heat transfer distributions for different rib types in near entrance and entrance region of the channels. It is important to determine the actual enhancement derived from turbulating channel entrances where heat transfer is already high due to entrance effects and boundary layer growth. A transient liquid crystal technique is used to measure detailed heat transfer coefficients (htc) for a rotating, short length, radially outward coolant channel with rib turbulators. Different rib types such as 90deg, W, and M-shaped ribs are used to roughen the walls to enhance heat transfer. The channel Reynolds number is held constant at 12,000 while the rotation number is increased up to 0.5. Results show that in the near entrance region, the high performance W and M-shaped ribs are just as effective as the simple 90deg ribs in enhancing heat transfer. The entrance effect in the developing region causes significantly high baseline heat transfer coefficients thus reducing the effective of the ribs to further enhance heat transfer. Rotation causes increase in heat transfer on the trailing side, while the leading side remains relatively constant limiting the decrement in leading side heat transfer. For all rotational cases, the W and M-shaped ribs show significant effect of rotation with large differences between leading and trailing side heat transfer.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06D03D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Turbine gaz</s0>
<s5>08</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Gas turbine</s0>
<s5>08</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Turbina gas</s0>
<s5>08</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Aube turbine</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Turbine blade</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Paleta turbina</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Tube nervuré</s0>
<s5>10</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Ribbed tube</s0>
<s5>10</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Tubo nervado</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>15</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>15</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>15</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Dispositif cristaux liquides</s0>
<s5>17</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Liquid crystal devices</s0>
<s5>17</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Installation essai</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Test facility</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Instalación ensayo</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Transfert chaleur</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Heat transfer</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Transferencia térmica</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Système refroidissement</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Cooling system</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Sistema enfriamiento</s0>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Nombre Nusselt</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Nusselt number</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Número Nusselt</s0>
<s5>25</s5>
</fC03>
<fN21>
<s1>174</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003B28 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 003B28 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:14-0138167
   |texte=   Effect of Rotation on Detailed Heat Transfer Distribution for Various Rib Geometries in Developing Channel Flow
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021