Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reversible-Deactivation Radical Polymerization of Methyl Methacrylate and Styrene Mediated by Alkyl Dithiocarbamates and Copper Acetylacetonates

Identifieur interne : 001C19 ( PascalFrancis/Corpus ); précédent : 001C18; suivant : 001C20

Reversible-Deactivation Radical Polymerization of Methyl Methacrylate and Styrene Mediated by Alkyl Dithiocarbamates and Copper Acetylacetonates

Auteurs : YAOZHONG ZHANG ; Kristin Schröder ; Yungwan Kwak ; Pawel Krys ; Aurélie N. Morin ; Tomislav Pintauer ; Rinaldo Poli ; Krzysztof Matyjaszewski

Source :

RBID : Pascal:13-0278832

Descripteurs français

English descriptors

Abstract

Reversible-deactivation radical polymerization (RDRP) of methyl methacrylate (MMA) and styrene (St) was successfully mediated by copper(II) acetylacetonate, [Cu-(acac)2], or copper(II) hexafluoroacetylacetonate, [Cu(hfa)2], in conjunction with 1-cyano-1-methylethyl diethyldithiocarbamate (MAN-DC) or 2-(N,N-diethyldithiocarbamyl)ethyl isobutyrate (EMA-DC) initiators/transfer agents in the absence of additional reducing agents. Linear first-order kinetic plots were obtained for the polymerization of MMA in the presence of [Cu(hfa)2] or [Cu(acac)2] and MAN-DC. [Cu(hfa)2] provided better control than [Cu(acac)2] for the polymerization of MMA, leading to PMMA with narrow molecular weight distribution, Mw/Mn ∼ 1.1. Polymerization of St was successfully carried out with either MAN-DC or EMA-DC in the presence of [Cu(hfa)2], also resulting in polymers with low Mw/Mn values. In the absence of alkyl dithiocarbamates or copper acetylacetonates, the polymerizations resulted in only trace amounts of polymers or polymers with high values of Mw/Mn. Thus, the combination of alkyl dithiocarbamates and copper(II) acetylacetonates provides a convenient way to prepare well-controlled PMMA and PSt. NMR analysis of low-MW polymers reveals the presence of DC groups as chain ends. DFT calculations show that DC group transfer from a H-MMA-DC model of the growing chain to the Cu(II) complexes is energetically accessible and more favorable than Br atom transfer, thus rationalizing the need for the Cu(II)/dithiocarbamate combination for successful control and suggesting that the process takes place by reversible DC group transfer involving a CuII/CuIII couple. Attempts to synthesize complexes [Cu(acac)2(DC)] and [Cu(hfa)2(DC)], in combination with DFT calculations, suggest that these complexes are thermodynamically unstable relative to the bis(diketonate)copper(II) and dithiuram disulfide, but this does not preclude the involvement of the Cu(III) species as a spin trap in RDRP controlled by DC group transfer.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0024-9297
A02 01      @0 MAMOBX
A03   1    @0 Macromolecules : (Print)
A05       @2 46
A06       @2 14
A08 01  1  ENG  @1 Reversible-Deactivation Radical Polymerization of Methyl Methacrylate and Styrene Mediated by Alkyl Dithiocarbamates and Copper Acetylacetonates
A11 01  1    @1 YAOZHONG ZHANG
A11 02  1    @1 SCHRÖDER (Kristin)
A11 03  1    @1 KWAK (Yungwan)
A11 04  1    @1 KRYS (Pawel)
A11 05  1    @1 MORIN (Aurélie N.)
A11 06  1    @1 PINTAUER (Tomislav)
A11 07  1    @1 POLI (Rinaldo)
A11 08  1    @1 MATYJASZEWSKI (Krzysztof)
A14 01      @1 Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue @2 Pittsburgh, Pennsylvania 15213 @3 USA @Z 1 aut. @Z 2 aut. @Z 4 aut. @Z 8 aut.
A14 02      @1 Silberline Manufacturing Co., Inc., 36 Progressive Avenue @2 Tamaqua, Pennsylvania 18252 @3 USA @Z 3 aut.
A14 03      @1 Laboratoire de Chimie de Coordination (LCC), CNRS 8241, Université de Toulouse, UPS, INPT, 205 Route de Narbonne @2 31077 Toulouse @3 FRA @Z 5 aut. @Z 6 aut. @Z 7 aut.
A14 04      @1 Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, 308 Mellon Hall @2 Pittsburgh, Pennsylvania 15282 @3 USA @Z 6 aut.
A14 05      @1 Institut Universitaire de France, 103, bd Saint-Michel @2 75005 Paris @3 FRA @Z 7 aut.
A20       @1 5512-5519
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 13789 @5 354000506569750130
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 37 ref.
A47 01  1    @0 13-0278832
A60       @1 P
A61       @0 A
A64 01  1    @0 Macromolecules : (Print)
A66 01      @0 USA
C01 01    ENG  @0 Reversible-deactivation radical polymerization (RDRP) of methyl methacrylate (MMA) and styrene (St) was successfully mediated by copper(II) acetylacetonate, [Cu-(acac)2], or copper(II) hexafluoroacetylacetonate, [Cu(hfa)2], in conjunction with 1-cyano-1-methylethyl diethyldithiocarbamate (MAN-DC) or 2-(N,N-diethyldithiocarbamyl)ethyl isobutyrate (EMA-DC) initiators/transfer agents in the absence of additional reducing agents. Linear first-order kinetic plots were obtained for the polymerization of MMA in the presence of [Cu(hfa)2] or [Cu(acac)2] and MAN-DC. [Cu(hfa)2] provided better control than [Cu(acac)2] for the polymerization of MMA, leading to PMMA with narrow molecular weight distribution, Mw/Mn ∼ 1.1. Polymerization of St was successfully carried out with either MAN-DC or EMA-DC in the presence of [Cu(hfa)2], also resulting in polymers with low Mw/Mn values. In the absence of alkyl dithiocarbamates or copper acetylacetonates, the polymerizations resulted in only trace amounts of polymers or polymers with high values of Mw/Mn. Thus, the combination of alkyl dithiocarbamates and copper(II) acetylacetonates provides a convenient way to prepare well-controlled PMMA and PSt. NMR analysis of low-MW polymers reveals the presence of DC groups as chain ends. DFT calculations show that DC group transfer from a H-MMA-DC model of the growing chain to the Cu(II) complexes is energetically accessible and more favorable than Br atom transfer, thus rationalizing the need for the Cu(II)/dithiocarbamate combination for successful control and suggesting that the process takes place by reversible DC group transfer involving a CuII/CuIII couple. Attempts to synthesize complexes [Cu(acac)2(DC)] and [Cu(hfa)2(DC)], in combination with DFT calculations, suggest that these complexes are thermodynamically unstable relative to the bis(diketonate)copper(II) and dithiuram disulfide, but this does not preclude the involvement of the Cu(III) species as a spin trap in RDRP controlled by DC group transfer.
C02 01  X    @0 001D09D02B
C03 01  X  FRE  @0 Méthacrylate de méthyle polymère @2 NK @5 01
C03 01  X  ENG  @0 Methyl methacrylate polymer @2 NK @5 01
C03 01  X  SPA  @0 Metacrilato de metilo polímero @2 NK @5 01
C03 02  X  FRE  @0 Styrène polymère @2 NK @5 02
C03 02  X  ENG  @0 Styrene polymer @2 NK @5 02
C03 02  X  SPA  @0 Estireno polímero @2 NK @5 02
C03 03  X  FRE  @0 Polymère vivant @5 03
C03 03  X  ENG  @0 Living polymer @5 03
C03 03  X  SPA  @0 Polímero viviente @5 03
C03 04  X  FRE  @0 Polymérisation radicalaire @5 06
C03 04  X  ENG  @0 Free radical polymerization @5 06
C03 04  X  SPA  @0 Polimerización radicalar @5 06
C03 05  X  FRE  @0 Polymérisation masse @5 07
C03 05  X  ENG  @0 Bulk polymerization @5 07
C03 05  X  SPA  @0 Polimerización masa @5 07
C03 06  X  FRE  @0 Transfert chaîne @5 08
C03 06  X  ENG  @0 Chain transfer @5 08
C03 06  X  SPA  @0 Transferencia en cadena @5 08
C03 07  X  FRE  @0 Dithiocarbamate organique @1 ACT @5 09
C03 07  X  ENG  @0 Organic dithiocarbamate @1 ACT @5 09
C03 07  X  SPA  @0 Ditiocarbamato orgánico @1 ACT @5 09
C03 08  X  FRE  @0 Complexe de cuivre @1 ACT @5 10
C03 08  X  ENG  @0 Copper complex @1 ACT @5 10
C03 08  X  SPA  @0 Cobre complejo @1 ACT @5 10
C03 09  X  FRE  @0 Cinétique chimique @5 12
C03 09  X  ENG  @0 Chemical reaction kinetics @5 12
C03 09  X  SPA  @0 Cinética química @5 12
C03 10  X  FRE  @0 Mécanisme réaction @5 13
C03 10  X  ENG  @0 Reaction mechanism @5 13
C03 10  X  SPA  @0 Mecanismo reacción @5 13
C03 11  X  FRE  @0 Modélisation @5 14
C03 11  X  ENG  @0 Modeling @5 14
C03 11  X  SPA  @0 Modelización @5 14
C03 12  3  FRE  @0 Méthode fonctionnelle densité @5 15
C03 12  3  ENG  @0 Density functional method @5 15
C03 13  X  FRE  @0 Etude expérimentale @5 17
C03 13  X  ENG  @0 Experimental study @5 17
C03 13  X  SPA  @0 Estudio experimental @5 17
C03 14  X  FRE  @0 Inifer @4 INC @5 32
C03 15  X  FRE  @0 Polymérisation radicalaire désactivation réversible @4 INC @5 33
N21       @1 266
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 13-0278832 INIST
ET : Reversible-Deactivation Radical Polymerization of Methyl Methacrylate and Styrene Mediated by Alkyl Dithiocarbamates and Copper Acetylacetonates
AU : YAOZHONG ZHANG; SCHRÖDER (Kristin); KWAK (Yungwan); KRYS (Pawel); MORIN (Aurélie N.); PINTAUER (Tomislav); POLI (Rinaldo); MATYJASZEWSKI (Krzysztof)
AF : Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue/Pittsburgh, Pennsylvania 15213/Etats-Unis (1 aut., 2 aut., 4 aut., 8 aut.); Silberline Manufacturing Co., Inc., 36 Progressive Avenue/Tamaqua, Pennsylvania 18252/Etats-Unis (3 aut.); Laboratoire de Chimie de Coordination (LCC), CNRS 8241, Université de Toulouse, UPS, INPT, 205 Route de Narbonne/31077 Toulouse/France (5 aut., 6 aut., 7 aut.); Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, 308 Mellon Hall/Pittsburgh, Pennsylvania 15282/Etats-Unis (6 aut.); Institut Universitaire de France, 103, bd Saint-Michel/75005 Paris/France (7 aut.)
DT : Publication en série; Niveau analytique
SO : Macromolecules : (Print); ISSN 0024-9297; Coden MAMOBX; Etats-Unis; Da. 2013; Vol. 46; No. 14; Pp. 5512-5519; Bibl. 37 ref.
LA : Anglais
EA : Reversible-deactivation radical polymerization (RDRP) of methyl methacrylate (MMA) and styrene (St) was successfully mediated by copper(II) acetylacetonate, [Cu-(acac)2], or copper(II) hexafluoroacetylacetonate, [Cu(hfa)2], in conjunction with 1-cyano-1-methylethyl diethyldithiocarbamate (MAN-DC) or 2-(N,N-diethyldithiocarbamyl)ethyl isobutyrate (EMA-DC) initiators/transfer agents in the absence of additional reducing agents. Linear first-order kinetic plots were obtained for the polymerization of MMA in the presence of [Cu(hfa)2] or [Cu(acac)2] and MAN-DC. [Cu(hfa)2] provided better control than [Cu(acac)2] for the polymerization of MMA, leading to PMMA with narrow molecular weight distribution, Mw/Mn ∼ 1.1. Polymerization of St was successfully carried out with either MAN-DC or EMA-DC in the presence of [Cu(hfa)2], also resulting in polymers with low Mw/Mn values. In the absence of alkyl dithiocarbamates or copper acetylacetonates, the polymerizations resulted in only trace amounts of polymers or polymers with high values of Mw/Mn. Thus, the combination of alkyl dithiocarbamates and copper(II) acetylacetonates provides a convenient way to prepare well-controlled PMMA and PSt. NMR analysis of low-MW polymers reveals the presence of DC groups as chain ends. DFT calculations show that DC group transfer from a H-MMA-DC model of the growing chain to the Cu(II) complexes is energetically accessible and more favorable than Br atom transfer, thus rationalizing the need for the Cu(II)/dithiocarbamate combination for successful control and suggesting that the process takes place by reversible DC group transfer involving a CuII/CuIII couple. Attempts to synthesize complexes [Cu(acac)2(DC)] and [Cu(hfa)2(DC)], in combination with DFT calculations, suggest that these complexes are thermodynamically unstable relative to the bis(diketonate)copper(II) and dithiuram disulfide, but this does not preclude the involvement of the Cu(III) species as a spin trap in RDRP controlled by DC group transfer.
CC : 001D09D02B
FD : Méthacrylate de méthyle polymère; Styrène polymère; Polymère vivant; Polymérisation radicalaire; Polymérisation masse; Transfert chaîne; Dithiocarbamate organique; Complexe de cuivre; Cinétique chimique; Mécanisme réaction; Modélisation; Méthode fonctionnelle densité; Etude expérimentale; Inifer; Polymérisation radicalaire désactivation réversible
ED : Methyl methacrylate polymer; Styrene polymer; Living polymer; Free radical polymerization; Bulk polymerization; Chain transfer; Organic dithiocarbamate; Copper complex; Chemical reaction kinetics; Reaction mechanism; Modeling; Density functional method; Experimental study
SD : Metacrilato de metilo polímero; Estireno polímero; Polímero viviente; Polimerización radicalar; Polimerización masa; Transferencia en cadena; Ditiocarbamato orgánico; Cobre complejo; Cinética química; Mecanismo reacción; Modelización; Estudio experimental
LO : INIST-13789.354000506569750130
ID : 13-0278832

Links to Exploration step

Pascal:13-0278832

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Reversible-Deactivation Radical Polymerization of Methyl Methacrylate and Styrene Mediated by Alkyl Dithiocarbamates and Copper Acetylacetonates</title>
<author>
<name sortKey="Yaozhong Zhang" sort="Yaozhong Zhang" uniqKey="Yaozhong Zhang" last="Yaozhong Zhang">YAOZHONG ZHANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue</s1>
<s2>Pittsburgh, Pennsylvania 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schroder, Kristin" sort="Schroder, Kristin" uniqKey="Schroder K" first="Kristin" last="Schröder">Kristin Schröder</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue</s1>
<s2>Pittsburgh, Pennsylvania 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kwak, Yungwan" sort="Kwak, Yungwan" uniqKey="Kwak Y" first="Yungwan" last="Kwak">Yungwan Kwak</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Silberline Manufacturing Co., Inc., 36 Progressive Avenue</s1>
<s2>Tamaqua, Pennsylvania 18252</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Krys, Pawel" sort="Krys, Pawel" uniqKey="Krys P" first="Pawel" last="Krys">Pawel Krys</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue</s1>
<s2>Pittsburgh, Pennsylvania 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Morin, Aurelie N" sort="Morin, Aurelie N" uniqKey="Morin A" first="Aurélie N." last="Morin">Aurélie N. Morin</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Chimie de Coordination (LCC), CNRS 8241, Université de Toulouse, UPS, INPT, 205 Route de Narbonne</s1>
<s2>31077 Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pintauer, Tomislav" sort="Pintauer, Tomislav" uniqKey="Pintauer T" first="Tomislav" last="Pintauer">Tomislav Pintauer</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Chimie de Coordination (LCC), CNRS 8241, Université de Toulouse, UPS, INPT, 205 Route de Narbonne</s1>
<s2>31077 Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, 308 Mellon Hall</s1>
<s2>Pittsburgh, Pennsylvania 15282</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Poli, Rinaldo" sort="Poli, Rinaldo" uniqKey="Poli R" first="Rinaldo" last="Poli">Rinaldo Poli</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Chimie de Coordination (LCC), CNRS 8241, Université de Toulouse, UPS, INPT, 205 Route de Narbonne</s1>
<s2>31077 Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Institut Universitaire de France, 103, bd Saint-Michel</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Matyjaszewski, Krzysztof" sort="Matyjaszewski, Krzysztof" uniqKey="Matyjaszewski K" first="Krzysztof" last="Matyjaszewski">Krzysztof Matyjaszewski</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue</s1>
<s2>Pittsburgh, Pennsylvania 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0278832</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0278832 INIST</idno>
<idno type="RBID">Pascal:13-0278832</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001C19</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Reversible-Deactivation Radical Polymerization of Methyl Methacrylate and Styrene Mediated by Alkyl Dithiocarbamates and Copper Acetylacetonates</title>
<author>
<name sortKey="Yaozhong Zhang" sort="Yaozhong Zhang" uniqKey="Yaozhong Zhang" last="Yaozhong Zhang">YAOZHONG ZHANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue</s1>
<s2>Pittsburgh, Pennsylvania 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schroder, Kristin" sort="Schroder, Kristin" uniqKey="Schroder K" first="Kristin" last="Schröder">Kristin Schröder</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue</s1>
<s2>Pittsburgh, Pennsylvania 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kwak, Yungwan" sort="Kwak, Yungwan" uniqKey="Kwak Y" first="Yungwan" last="Kwak">Yungwan Kwak</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Silberline Manufacturing Co., Inc., 36 Progressive Avenue</s1>
<s2>Tamaqua, Pennsylvania 18252</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Krys, Pawel" sort="Krys, Pawel" uniqKey="Krys P" first="Pawel" last="Krys">Pawel Krys</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue</s1>
<s2>Pittsburgh, Pennsylvania 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Morin, Aurelie N" sort="Morin, Aurelie N" uniqKey="Morin A" first="Aurélie N." last="Morin">Aurélie N. Morin</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Chimie de Coordination (LCC), CNRS 8241, Université de Toulouse, UPS, INPT, 205 Route de Narbonne</s1>
<s2>31077 Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pintauer, Tomislav" sort="Pintauer, Tomislav" uniqKey="Pintauer T" first="Tomislav" last="Pintauer">Tomislav Pintauer</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Chimie de Coordination (LCC), CNRS 8241, Université de Toulouse, UPS, INPT, 205 Route de Narbonne</s1>
<s2>31077 Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, 308 Mellon Hall</s1>
<s2>Pittsburgh, Pennsylvania 15282</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Poli, Rinaldo" sort="Poli, Rinaldo" uniqKey="Poli R" first="Rinaldo" last="Poli">Rinaldo Poli</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Chimie de Coordination (LCC), CNRS 8241, Université de Toulouse, UPS, INPT, 205 Route de Narbonne</s1>
<s2>31077 Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Institut Universitaire de France, 103, bd Saint-Michel</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Matyjaszewski, Krzysztof" sort="Matyjaszewski, Krzysztof" uniqKey="Matyjaszewski K" first="Krzysztof" last="Matyjaszewski">Krzysztof Matyjaszewski</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue</s1>
<s2>Pittsburgh, Pennsylvania 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Macromolecules : (Print)</title>
<title level="j" type="abbreviated">Macromolecules : (Print)</title>
<idno type="ISSN">0024-9297</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Macromolecules : (Print)</title>
<title level="j" type="abbreviated">Macromolecules : (Print)</title>
<idno type="ISSN">0024-9297</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bulk polymerization</term>
<term>Chain transfer</term>
<term>Chemical reaction kinetics</term>
<term>Copper complex</term>
<term>Density functional method</term>
<term>Experimental study</term>
<term>Free radical polymerization</term>
<term>Living polymer</term>
<term>Methyl methacrylate polymer</term>
<term>Modeling</term>
<term>Organic dithiocarbamate</term>
<term>Reaction mechanism</term>
<term>Styrene polymer</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthacrylate de méthyle polymère</term>
<term>Styrène polymère</term>
<term>Polymère vivant</term>
<term>Polymérisation radicalaire</term>
<term>Polymérisation masse</term>
<term>Transfert chaîne</term>
<term>Dithiocarbamate organique</term>
<term>Complexe de cuivre</term>
<term>Cinétique chimique</term>
<term>Mécanisme réaction</term>
<term>Modélisation</term>
<term>Méthode fonctionnelle densité</term>
<term>Etude expérimentale</term>
<term>Inifer</term>
<term>Polymérisation radicalaire désactivation réversible</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Reversible-deactivation radical polymerization (RDRP) of methyl methacrylate (MMA) and styrene (St) was successfully mediated by copper(II) acetylacetonate, [Cu-(acac)
<sub>2</sub>
], or copper(II) hexafluoroacetylacetonate, [Cu(hfa)
<sub>2</sub>
], in conjunction with 1-cyano-1-methylethyl diethyldithiocarbamate (MAN-DC) or 2-(N,N-diethyldithiocarbamyl)ethyl isobutyrate (EMA-DC) initiators/transfer agents in the absence of additional reducing agents. Linear first-order kinetic plots were obtained for the polymerization of MMA in the presence of [Cu(hfa)
<sub>2</sub>
] or [Cu(acac)
<sub>2</sub>
] and MAN-DC. [Cu(hfa)
<sub>2</sub>
] provided better control than [Cu(acac)
<sub>2</sub>
] for the polymerization of MMA, leading to PMMA with narrow molecular weight distribution, M
<sub>w</sub>
/M
<sub>n</sub>
∼ 1.1. Polymerization of St was successfully carried out with either MAN-DC or EMA-DC in the presence of [Cu(hfa)
<sub>2</sub>
], also resulting in polymers with low M
<sub>w</sub>
/M
<sub>n</sub>
values. In the absence of alkyl dithiocarbamates or copper acetylacetonates, the polymerizations resulted in only trace amounts of polymers or polymers with high values of M
<sub>w</sub>
/M
<sub>n</sub>
. Thus, the combination of alkyl dithiocarbamates and copper(II) acetylacetonates provides a convenient way to prepare well-controlled PMMA and PSt. NMR analysis of low-MW polymers reveals the presence of DC groups as chain ends. DFT calculations show that DC group transfer from a H-MMA-DC model of the growing chain to the Cu(II) complexes is energetically accessible and more favorable than Br atom transfer, thus rationalizing the need for the Cu(II)/dithiocarbamate combination for successful control and suggesting that the process takes place by reversible DC group transfer involving a Cu
<sup>II</sup>
/Cu
<sup>III</sup>
couple. Attempts to synthesize complexes [Cu(acac)
<sub>2</sub>
(DC)] and [Cu(hfa)
<sub>2</sub>
(DC)], in combination with DFT calculations, suggest that these complexes are thermodynamically unstable relative to the bis(diketonate)copper(II) and dithiuram disulfide, but this does not preclude the involvement of the Cu(III) species as a spin trap in RDRP controlled by DC group transfer.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0024-9297</s0>
</fA01>
<fA02 i1="01">
<s0>MAMOBX</s0>
</fA02>
<fA03 i2="1">
<s0>Macromolecules : (Print)</s0>
</fA03>
<fA05>
<s2>46</s2>
</fA05>
<fA06>
<s2>14</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Reversible-Deactivation Radical Polymerization of Methyl Methacrylate and Styrene Mediated by Alkyl Dithiocarbamates and Copper Acetylacetonates</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YAOZHONG ZHANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHRÖDER (Kristin)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KWAK (Yungwan)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KRYS (Pawel)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MORIN (Aurélie N.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PINTAUER (Tomislav)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>POLI (Rinaldo)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MATYJASZEWSKI (Krzysztof)</s1>
</fA11>
<fA14 i1="01">
<s1>Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue</s1>
<s2>Pittsburgh, Pennsylvania 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Silberline Manufacturing Co., Inc., 36 Progressive Avenue</s1>
<s2>Tamaqua, Pennsylvania 18252</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratoire de Chimie de Coordination (LCC), CNRS 8241, Université de Toulouse, UPS, INPT, 205 Route de Narbonne</s1>
<s2>31077 Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, 308 Mellon Hall</s1>
<s2>Pittsburgh, Pennsylvania 15282</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institut Universitaire de France, 103, bd Saint-Michel</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>5512-5519</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13789</s2>
<s5>354000506569750130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>37 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0278832</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Macromolecules : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Reversible-deactivation radical polymerization (RDRP) of methyl methacrylate (MMA) and styrene (St) was successfully mediated by copper(II) acetylacetonate, [Cu-(acac)
<sub>2</sub>
], or copper(II) hexafluoroacetylacetonate, [Cu(hfa)
<sub>2</sub>
], in conjunction with 1-cyano-1-methylethyl diethyldithiocarbamate (MAN-DC) or 2-(N,N-diethyldithiocarbamyl)ethyl isobutyrate (EMA-DC) initiators/transfer agents in the absence of additional reducing agents. Linear first-order kinetic plots were obtained for the polymerization of MMA in the presence of [Cu(hfa)
<sub>2</sub>
] or [Cu(acac)
<sub>2</sub>
] and MAN-DC. [Cu(hfa)
<sub>2</sub>
] provided better control than [Cu(acac)
<sub>2</sub>
] for the polymerization of MMA, leading to PMMA with narrow molecular weight distribution, M
<sub>w</sub>
/M
<sub>n</sub>
∼ 1.1. Polymerization of St was successfully carried out with either MAN-DC or EMA-DC in the presence of [Cu(hfa)
<sub>2</sub>
], also resulting in polymers with low M
<sub>w</sub>
/M
<sub>n</sub>
values. In the absence of alkyl dithiocarbamates or copper acetylacetonates, the polymerizations resulted in only trace amounts of polymers or polymers with high values of M
<sub>w</sub>
/M
<sub>n</sub>
. Thus, the combination of alkyl dithiocarbamates and copper(II) acetylacetonates provides a convenient way to prepare well-controlled PMMA and PSt. NMR analysis of low-MW polymers reveals the presence of DC groups as chain ends. DFT calculations show that DC group transfer from a H-MMA-DC model of the growing chain to the Cu(II) complexes is energetically accessible and more favorable than Br atom transfer, thus rationalizing the need for the Cu(II)/dithiocarbamate combination for successful control and suggesting that the process takes place by reversible DC group transfer involving a Cu
<sup>II</sup>
/Cu
<sup>III</sup>
couple. Attempts to synthesize complexes [Cu(acac)
<sub>2</sub>
(DC)] and [Cu(hfa)
<sub>2</sub>
(DC)], in combination with DFT calculations, suggest that these complexes are thermodynamically unstable relative to the bis(diketonate)copper(II) and dithiuram disulfide, but this does not preclude the involvement of the Cu(III) species as a spin trap in RDRP controlled by DC group transfer.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D09D02B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Méthacrylate de méthyle polymère</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Methyl methacrylate polymer</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Metacrilato de metilo polímero</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Styrène polymère</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Styrene polymer</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estireno polímero</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Polymère vivant</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Living polymer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Polímero viviente</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Polymérisation radicalaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Free radical polymerization</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Polimerización radicalar</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Polymérisation masse</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Bulk polymerization</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Polimerización masa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Transfert chaîne</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Chain transfer</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Transferencia en cadena</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dithiocarbamate organique</s0>
<s1>ACT</s1>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Organic dithiocarbamate</s0>
<s1>ACT</s1>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Ditiocarbamato orgánico</s0>
<s1>ACT</s1>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Complexe de cuivre</s0>
<s1>ACT</s1>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Copper complex</s0>
<s1>ACT</s1>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cobre complejo</s0>
<s1>ACT</s1>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Cinétique chimique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Chemical reaction kinetics</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Cinética química</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Mécanisme réaction</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Reaction mechanism</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mecanismo reacción</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Inifer</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Polymérisation radicalaire désactivation réversible</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fN21>
<s1>266</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 13-0278832 INIST</NO>
<ET>Reversible-Deactivation Radical Polymerization of Methyl Methacrylate and Styrene Mediated by Alkyl Dithiocarbamates and Copper Acetylacetonates</ET>
<AU>YAOZHONG ZHANG; SCHRÖDER (Kristin); KWAK (Yungwan); KRYS (Pawel); MORIN (Aurélie N.); PINTAUER (Tomislav); POLI (Rinaldo); MATYJASZEWSKI (Krzysztof)</AU>
<AF>Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue/Pittsburgh, Pennsylvania 15213/Etats-Unis (1 aut., 2 aut., 4 aut., 8 aut.); Silberline Manufacturing Co., Inc., 36 Progressive Avenue/Tamaqua, Pennsylvania 18252/Etats-Unis (3 aut.); Laboratoire de Chimie de Coordination (LCC), CNRS 8241, Université de Toulouse, UPS, INPT, 205 Route de Narbonne/31077 Toulouse/France (5 aut., 6 aut., 7 aut.); Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, 308 Mellon Hall/Pittsburgh, Pennsylvania 15282/Etats-Unis (6 aut.); Institut Universitaire de France, 103, bd Saint-Michel/75005 Paris/France (7 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Macromolecules : (Print); ISSN 0024-9297; Coden MAMOBX; Etats-Unis; Da. 2013; Vol. 46; No. 14; Pp. 5512-5519; Bibl. 37 ref.</SO>
<LA>Anglais</LA>
<EA>Reversible-deactivation radical polymerization (RDRP) of methyl methacrylate (MMA) and styrene (St) was successfully mediated by copper(II) acetylacetonate, [Cu-(acac)
<sub>2</sub>
], or copper(II) hexafluoroacetylacetonate, [Cu(hfa)
<sub>2</sub>
], in conjunction with 1-cyano-1-methylethyl diethyldithiocarbamate (MAN-DC) or 2-(N,N-diethyldithiocarbamyl)ethyl isobutyrate (EMA-DC) initiators/transfer agents in the absence of additional reducing agents. Linear first-order kinetic plots were obtained for the polymerization of MMA in the presence of [Cu(hfa)
<sub>2</sub>
] or [Cu(acac)
<sub>2</sub>
] and MAN-DC. [Cu(hfa)
<sub>2</sub>
] provided better control than [Cu(acac)
<sub>2</sub>
] for the polymerization of MMA, leading to PMMA with narrow molecular weight distribution, M
<sub>w</sub>
/M
<sub>n</sub>
∼ 1.1. Polymerization of St was successfully carried out with either MAN-DC or EMA-DC in the presence of [Cu(hfa)
<sub>2</sub>
], also resulting in polymers with low M
<sub>w</sub>
/M
<sub>n</sub>
values. In the absence of alkyl dithiocarbamates or copper acetylacetonates, the polymerizations resulted in only trace amounts of polymers or polymers with high values of M
<sub>w</sub>
/M
<sub>n</sub>
. Thus, the combination of alkyl dithiocarbamates and copper(II) acetylacetonates provides a convenient way to prepare well-controlled PMMA and PSt. NMR analysis of low-MW polymers reveals the presence of DC groups as chain ends. DFT calculations show that DC group transfer from a H-MMA-DC model of the growing chain to the Cu(II) complexes is energetically accessible and more favorable than Br atom transfer, thus rationalizing the need for the Cu(II)/dithiocarbamate combination for successful control and suggesting that the process takes place by reversible DC group transfer involving a Cu
<sup>II</sup>
/Cu
<sup>III</sup>
couple. Attempts to synthesize complexes [Cu(acac)
<sub>2</sub>
(DC)] and [Cu(hfa)
<sub>2</sub>
(DC)], in combination with DFT calculations, suggest that these complexes are thermodynamically unstable relative to the bis(diketonate)copper(II) and dithiuram disulfide, but this does not preclude the involvement of the Cu(III) species as a spin trap in RDRP controlled by DC group transfer.</EA>
<CC>001D09D02B</CC>
<FD>Méthacrylate de méthyle polymère; Styrène polymère; Polymère vivant; Polymérisation radicalaire; Polymérisation masse; Transfert chaîne; Dithiocarbamate organique; Complexe de cuivre; Cinétique chimique; Mécanisme réaction; Modélisation; Méthode fonctionnelle densité; Etude expérimentale; Inifer; Polymérisation radicalaire désactivation réversible</FD>
<ED>Methyl methacrylate polymer; Styrene polymer; Living polymer; Free radical polymerization; Bulk polymerization; Chain transfer; Organic dithiocarbamate; Copper complex; Chemical reaction kinetics; Reaction mechanism; Modeling; Density functional method; Experimental study</ED>
<SD>Metacrilato de metilo polímero; Estireno polímero; Polímero viviente; Polimerización radicalar; Polimerización masa; Transferencia en cadena; Ditiocarbamato orgánico; Cobre complejo; Cinética química; Mecanismo reacción; Modelización; Estudio experimental</SD>
<LO>INIST-13789.354000506569750130</LO>
<ID>13-0278832</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001C19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0278832
   |texte=   Reversible-Deactivation Radical Polymerization of Methyl Methacrylate and Styrene Mediated by Alkyl Dithiocarbamates and Copper Acetylacetonates
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021