Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty. Part II: Enhanced hybrid bi-level decomposition

Identifieur interne : 000954 ( PascalFrancis/Corpus ); précédent : 000953; suivant : 000955

Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty. Part II: Enhanced hybrid bi-level decomposition

Auteurs : Sumit Mitra ; Jose M. Pinto ; Ignacio E. Grossmann

Source :

RBID : Pascal:14-0165507

Descripteurs français

English descriptors

Abstract

We describe a hybrid bi-level decomposition scheme that addresses the challenge of solving a large-scale two-stage stochastic programming problem with mixed-integer recourse, which results from a multi-scale capacity planning problem as described in Part I of this paper series. The decomposition scheme combines bi-level decomposition with Benders decomposition, and relies on additional strengthening cuts from a Lagrangean-type relaxation and subset-type cuts from structure in the linking constraints between investment and operational variables. The application of the scheme with a parallel implementation to an industrial case study reduces the computational time by two orders of magnitude when compared with the time required for the solution of the full-space model.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0098-1354
A02 01      @0 CCENDW
A03   1    @0 Comput. chem. eng.
A05       @2 65
A08 01  1  ENG  @1 Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty. Part II: Enhanced hybrid bi-level decomposition
A11 01  1    @1 MITRA (Sumit)
A11 02  1    @1 PINTO (Jose M.)
A11 03  1    @1 GROSSMANN (Ignacio E.)
A14 01      @1 Center for Advanced Process Decision-making, Department of Chemical Engineering, Carnegie Mellon University @2 Pittsburgh, PA 15213 @3 USA @Z 1 aut. @Z 3 aut.
A14 02      @1 Praxair, Inc. @2 Danbury, CT 06810 @3 USA @Z 2 aut.
A20       @1 102-111
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 16409 @5 354000503228000100
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 1/4 p.
A47 01  1    @0 14-0165507
A60       @1 P
A61       @0 A
A64 01  1    @0 Computers & chemical engineering
A66 01      @0 GBR
C01 01    ENG  @0 We describe a hybrid bi-level decomposition scheme that addresses the challenge of solving a large-scale two-stage stochastic programming problem with mixed-integer recourse, which results from a multi-scale capacity planning problem as described in Part I of this paper series. The decomposition scheme combines bi-level decomposition with Benders decomposition, and relies on additional strengthening cuts from a Lagrangean-type relaxation and subset-type cuts from structure in the linking constraints between investment and operational variables. The application of the scheme with a parallel implementation to an industrial case study reduces the computational time by two orders of magnitude when compared with the time required for the solution of the full-space model.
C02 01  X    @0 001D01A13
C02 02  X    @0 001D05I01H
C02 03  X    @0 001D01A03
C02 04  X    @0 001D06A
C02 05  X    @0 230
C03 01  X  FRE  @0 Planification optimale @5 06
C03 01  X  ENG  @0 Optimal planning @5 06
C03 01  X  SPA  @0 Planificación óptima @5 06
C03 02  X  FRE  @0 Méthode échelle multiple @5 07
C03 02  X  ENG  @0 Multiscale method @5 07
C03 02  X  SPA  @0 Método escala múltiple @5 07
C03 03  X  FRE  @0 Capacité production @5 08
C03 03  X  ENG  @0 Production capacity @5 08
C03 03  X  SPA  @0 Capacidad producción @5 08
C03 04  X  FRE  @0 Gestion production @5 09
C03 04  X  ENG  @0 Production management @5 09
C03 04  X  SPA  @0 Gestión producción @5 09
C03 05  X  FRE  @0 Réseau électrique @5 10
C03 05  X  ENG  @0 Electrical network @5 10
C03 05  X  SPA  @0 Red eléctrica @5 10
C03 06  X  FRE  @0 En continu @5 11
C03 06  X  ENG  @0 Continuous process @5 11
C03 06  X  SPA  @0 En continuo @5 11
C03 07  X  FRE  @0 Temps continu @5 12
C03 07  X  ENG  @0 Continuous time @5 12
C03 07  X  SPA  @0 Tiempo continuo @5 12
C03 08  X  FRE  @0 Offre et demande @5 13
C03 08  X  ENG  @0 Supply demand balance @5 13
C03 08  X  SPA  @0 Oferta y demanda @5 13
C03 09  X  FRE  @0 Prix vente @5 14
C03 09  X  ENG  @0 Selling price @5 14
C03 09  X  SPA  @0 Precio venta @5 14
C03 10  X  FRE  @0 Système incertain @5 15
C03 10  X  ENG  @0 Uncertain system @5 15
C03 10  X  SPA  @0 Sistema incierto @5 15
C03 11  X  FRE  @0 Echelle grande @5 16
C03 11  X  ENG  @0 Large scale @5 16
C03 11  X  SPA  @0 Escala grande @5 16
C03 12  X  FRE  @0 Programmation stochastique @5 17
C03 12  X  ENG  @0 Stochastic programming @5 17
C03 12  X  SPA  @0 Programación estocástica @5 17
C03 13  X  FRE  @0 Fonction pénalité @5 18
C03 13  X  ENG  @0 Penalty function @5 18
C03 13  X  SPA  @0 Función penalidad @5 18
C03 14  X  FRE  @0 Programmation partiellement en nombres entiers @5 19
C03 14  X  ENG  @0 Mixed integer programming @5 19
C03 14  X  SPA  @0 Programación mixta entera @5 19
C03 15  X  FRE  @0 Problème mixte @5 20
C03 15  X  ENG  @0 Mixed problem @5 20
C03 15  X  SPA  @0 Problema mixto @5 20
C03 16  X  FRE  @0 Méthode partition @5 21
C03 16  X  ENG  @0 Partition method @5 21
C03 16  X  SPA  @0 Método partición @5 21
C03 17  X  FRE  @0 Programmation linéaire @5 22
C03 17  X  ENG  @0 Linear programming @5 22
C03 17  X  SPA  @0 Programación lineal @5 22
C03 18  X  FRE  @0 Multiplicateur Lagrange @5 23
C03 18  X  ENG  @0 Lagrange multiplier @5 23
C03 18  X  SPA  @0 Multiplicador Lagrange @5 23
C03 19  X  FRE  @0 Investissement @5 24
C03 19  X  ENG  @0 Investment @5 24
C03 19  X  SPA  @0 Inversión @5 24
C03 20  X  FRE  @0 Algorithme parallèle @5 25
C03 20  X  ENG  @0 Parallel algorithm @5 25
C03 20  X  SPA  @0 Algoritmo paralelo @5 25
C03 21  X  FRE  @0 Modélisation @5 26
C03 21  X  ENG  @0 Modeling @5 26
C03 21  X  SPA  @0 Modelización @5 26
C03 22  X  FRE  @0 Etude cas @5 27
C03 22  X  ENG  @0 Case study @5 27
C03 22  X  SPA  @0 Estudio caso @5 27
C03 23  X  FRE  @0 Economies d'énergie @5 41
C03 23  X  ENG  @0 Energy savings @5 41
C03 23  X  SPA  @0 Ahorros energía @5 41
C03 24  X  FRE  @0 . @4 INC @5 82
C03 25  X  FRE  @0 Réseau électrique intelligent @4 CD @5 96
C03 25  X  ENG  @0 Smart grid @4 CD @5 96
C03 25  X  SPA  @0 Red eléctrica inteligente @4 CD @5 96
N21       @1 209
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 14-0165507 INIST
ET : Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty. Part II: Enhanced hybrid bi-level decomposition
AU : MITRA (Sumit); PINTO (Jose M.); GROSSMANN (Ignacio E.)
AF : Center for Advanced Process Decision-making, Department of Chemical Engineering, Carnegie Mellon University/Pittsburgh, PA 15213/Etats-Unis (1 aut., 3 aut.); Praxair, Inc./Danbury, CT 06810/Etats-Unis (2 aut.)
DT : Publication en série; Niveau analytique
SO : Computers & chemical engineering; ISSN 0098-1354; Coden CCENDW; Royaume-Uni; Da. 2014; Vol. 65; Pp. 102-111; Bibl. 1/4 p.
LA : Anglais
EA : We describe a hybrid bi-level decomposition scheme that addresses the challenge of solving a large-scale two-stage stochastic programming problem with mixed-integer recourse, which results from a multi-scale capacity planning problem as described in Part I of this paper series. The decomposition scheme combines bi-level decomposition with Benders decomposition, and relies on additional strengthening cuts from a Lagrangean-type relaxation and subset-type cuts from structure in the linking constraints between investment and operational variables. The application of the scheme with a parallel implementation to an industrial case study reduces the computational time by two orders of magnitude when compared with the time required for the solution of the full-space model.
CC : 001D01A13; 001D05I01H; 001D01A03; 001D06A; 230
FD : Planification optimale; Méthode échelle multiple; Capacité production; Gestion production; Réseau électrique; En continu; Temps continu; Offre et demande; Prix vente; Système incertain; Echelle grande; Programmation stochastique; Fonction pénalité; Programmation partiellement en nombres entiers; Problème mixte; Méthode partition; Programmation linéaire; Multiplicateur Lagrange; Investissement; Algorithme parallèle; Modélisation; Etude cas; Economies d'énergie; .; Réseau électrique intelligent
ED : Optimal planning; Multiscale method; Production capacity; Production management; Electrical network; Continuous process; Continuous time; Supply demand balance; Selling price; Uncertain system; Large scale; Stochastic programming; Penalty function; Mixed integer programming; Mixed problem; Partition method; Linear programming; Lagrange multiplier; Investment; Parallel algorithm; Modeling; Case study; Energy savings; Smart grid
SD : Planificación óptima; Método escala múltiple; Capacidad producción; Gestión producción; Red eléctrica; En continuo; Tiempo continuo; Oferta y demanda; Precio venta; Sistema incierto; Escala grande; Programación estocástica; Función penalidad; Programación mixta entera; Problema mixto; Método partición; Programación lineal; Multiplicador Lagrange; Inversión; Algoritmo paralelo; Modelización; Estudio caso; Ahorros energía; Red eléctrica inteligente
LO : INIST-16409.354000503228000100
ID : 14-0165507

Links to Exploration step

Pascal:14-0165507

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty. Part II: Enhanced hybrid bi-level decomposition</title>
<author>
<name sortKey="Mitra, Sumit" sort="Mitra, Sumit" uniqKey="Mitra S" first="Sumit" last="Mitra">Sumit Mitra</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Advanced Process Decision-making, Department of Chemical Engineering, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pinto, Jose M" sort="Pinto, Jose M" uniqKey="Pinto J" first="Jose M." last="Pinto">Jose M. Pinto</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Praxair, Inc.</s1>
<s2>Danbury, CT 06810</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Grossmann, Ignacio E" sort="Grossmann, Ignacio E" uniqKey="Grossmann I" first="Ignacio E." last="Grossmann">Ignacio E. Grossmann</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Advanced Process Decision-making, Department of Chemical Engineering, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0165507</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0165507 INIST</idno>
<idno type="RBID">Pascal:14-0165507</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000954</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty. Part II: Enhanced hybrid bi-level decomposition</title>
<author>
<name sortKey="Mitra, Sumit" sort="Mitra, Sumit" uniqKey="Mitra S" first="Sumit" last="Mitra">Sumit Mitra</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Advanced Process Decision-making, Department of Chemical Engineering, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pinto, Jose M" sort="Pinto, Jose M" uniqKey="Pinto J" first="Jose M." last="Pinto">Jose M. Pinto</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Praxair, Inc.</s1>
<s2>Danbury, CT 06810</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Grossmann, Ignacio E" sort="Grossmann, Ignacio E" uniqKey="Grossmann I" first="Ignacio E." last="Grossmann">Ignacio E. Grossmann</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Advanced Process Decision-making, Department of Chemical Engineering, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Computers & chemical engineering</title>
<title level="j" type="abbreviated">Comput. chem. eng.</title>
<idno type="ISSN">0098-1354</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Computers & chemical engineering</title>
<title level="j" type="abbreviated">Comput. chem. eng.</title>
<idno type="ISSN">0098-1354</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Case study</term>
<term>Continuous process</term>
<term>Continuous time</term>
<term>Electrical network</term>
<term>Energy savings</term>
<term>Investment</term>
<term>Lagrange multiplier</term>
<term>Large scale</term>
<term>Linear programming</term>
<term>Mixed integer programming</term>
<term>Mixed problem</term>
<term>Modeling</term>
<term>Multiscale method</term>
<term>Optimal planning</term>
<term>Parallel algorithm</term>
<term>Partition method</term>
<term>Penalty function</term>
<term>Production capacity</term>
<term>Production management</term>
<term>Selling price</term>
<term>Smart grid</term>
<term>Stochastic programming</term>
<term>Supply demand balance</term>
<term>Uncertain system</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Planification optimale</term>
<term>Méthode échelle multiple</term>
<term>Capacité production</term>
<term>Gestion production</term>
<term>Réseau électrique</term>
<term>En continu</term>
<term>Temps continu</term>
<term>Offre et demande</term>
<term>Prix vente</term>
<term>Système incertain</term>
<term>Echelle grande</term>
<term>Programmation stochastique</term>
<term>Fonction pénalité</term>
<term>Programmation partiellement en nombres entiers</term>
<term>Problème mixte</term>
<term>Méthode partition</term>
<term>Programmation linéaire</term>
<term>Multiplicateur Lagrange</term>
<term>Investissement</term>
<term>Algorithme parallèle</term>
<term>Modélisation</term>
<term>Etude cas</term>
<term>Economies d'énergie</term>
<term>.</term>
<term>Réseau électrique intelligent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We describe a hybrid bi-level decomposition scheme that addresses the challenge of solving a large-scale two-stage stochastic programming problem with mixed-integer recourse, which results from a multi-scale capacity planning problem as described in Part I of this paper series. The decomposition scheme combines bi-level decomposition with Benders decomposition, and relies on additional strengthening cuts from a Lagrangean-type relaxation and subset-type cuts from structure in the linking constraints between investment and operational variables. The application of the scheme with a parallel implementation to an industrial case study reduces the computational time by two orders of magnitude when compared with the time required for the solution of the full-space model.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0098-1354</s0>
</fA01>
<fA02 i1="01">
<s0>CCENDW</s0>
</fA02>
<fA03 i2="1">
<s0>Comput. chem. eng.</s0>
</fA03>
<fA05>
<s2>65</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty. Part II: Enhanced hybrid bi-level decomposition</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MITRA (Sumit)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PINTO (Jose M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GROSSMANN (Ignacio E.)</s1>
</fA11>
<fA14 i1="01">
<s1>Center for Advanced Process Decision-making, Department of Chemical Engineering, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Praxair, Inc.</s1>
<s2>Danbury, CT 06810</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>102-111</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16409</s2>
<s5>354000503228000100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0165507</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Computers & chemical engineering</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We describe a hybrid bi-level decomposition scheme that addresses the challenge of solving a large-scale two-stage stochastic programming problem with mixed-integer recourse, which results from a multi-scale capacity planning problem as described in Part I of this paper series. The decomposition scheme combines bi-level decomposition with Benders decomposition, and relies on additional strengthening cuts from a Lagrangean-type relaxation and subset-type cuts from structure in the linking constraints between investment and operational variables. The application of the scheme with a parallel implementation to an industrial case study reduces the computational time by two orders of magnitude when compared with the time required for the solution of the full-space model.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D01A13</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I01H</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D01A03</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D06A</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Planification optimale</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Optimal planning</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Planificación óptima</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Méthode échelle multiple</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Multiscale method</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Método escala múltiple</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Capacité production</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Production capacity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Capacidad producción</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Gestion production</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Production management</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Gestión producción</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Réseau électrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Electrical network</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Red eléctrica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>En continu</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Continuous process</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>En continuo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Temps continu</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Continuous time</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Tiempo continuo</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Offre et demande</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Supply demand balance</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Oferta y demanda</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Prix vente</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Selling price</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Precio venta</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Système incertain</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Uncertain system</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Sistema incierto</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Echelle grande</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Large scale</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Escala grande</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Programmation stochastique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Stochastic programming</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Programación estocástica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Fonction pénalité</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Penalty function</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Función penalidad</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Programmation partiellement en nombres entiers</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Mixed integer programming</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Programación mixta entera</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Problème mixte</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Mixed problem</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Problema mixto</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Méthode partition</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Partition method</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Método partición</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Programmation linéaire</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Linear programming</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Programación lineal</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Multiplicateur Lagrange</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Lagrange multiplier</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Multiplicador Lagrange</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Investissement</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Investment</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Inversión</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Algorithme parallèle</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Parallel algorithm</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Algoritmo paralelo</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Etude cas</s0>
<s5>27</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Case study</s0>
<s5>27</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Estudio caso</s0>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Economies d'énergie</s0>
<s5>41</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Energy savings</s0>
<s5>41</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Ahorros energía</s0>
<s5>41</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Réseau électrique intelligent</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Smart grid</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Red eléctrica inteligente</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>209</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 14-0165507 INIST</NO>
<ET>Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty. Part II: Enhanced hybrid bi-level decomposition</ET>
<AU>MITRA (Sumit); PINTO (Jose M.); GROSSMANN (Ignacio E.)</AU>
<AF>Center for Advanced Process Decision-making, Department of Chemical Engineering, Carnegie Mellon University/Pittsburgh, PA 15213/Etats-Unis (1 aut., 3 aut.); Praxair, Inc./Danbury, CT 06810/Etats-Unis (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Computers & chemical engineering; ISSN 0098-1354; Coden CCENDW; Royaume-Uni; Da. 2014; Vol. 65; Pp. 102-111; Bibl. 1/4 p.</SO>
<LA>Anglais</LA>
<EA>We describe a hybrid bi-level decomposition scheme that addresses the challenge of solving a large-scale two-stage stochastic programming problem with mixed-integer recourse, which results from a multi-scale capacity planning problem as described in Part I of this paper series. The decomposition scheme combines bi-level decomposition with Benders decomposition, and relies on additional strengthening cuts from a Lagrangean-type relaxation and subset-type cuts from structure in the linking constraints between investment and operational variables. The application of the scheme with a parallel implementation to an industrial case study reduces the computational time by two orders of magnitude when compared with the time required for the solution of the full-space model.</EA>
<CC>001D01A13; 001D05I01H; 001D01A03; 001D06A; 230</CC>
<FD>Planification optimale; Méthode échelle multiple; Capacité production; Gestion production; Réseau électrique; En continu; Temps continu; Offre et demande; Prix vente; Système incertain; Echelle grande; Programmation stochastique; Fonction pénalité; Programmation partiellement en nombres entiers; Problème mixte; Méthode partition; Programmation linéaire; Multiplicateur Lagrange; Investissement; Algorithme parallèle; Modélisation; Etude cas; Economies d'énergie; .; Réseau électrique intelligent</FD>
<ED>Optimal planning; Multiscale method; Production capacity; Production management; Electrical network; Continuous process; Continuous time; Supply demand balance; Selling price; Uncertain system; Large scale; Stochastic programming; Penalty function; Mixed integer programming; Mixed problem; Partition method; Linear programming; Lagrange multiplier; Investment; Parallel algorithm; Modeling; Case study; Energy savings; Smart grid</ED>
<SD>Planificación óptima; Método escala múltiple; Capacidad producción; Gestión producción; Red eléctrica; En continuo; Tiempo continuo; Oferta y demanda; Precio venta; Sistema incierto; Escala grande; Programación estocástica; Función penalidad; Programación mixta entera; Problema mixto; Método partición; Programación lineal; Multiplicador Lagrange; Inversión; Algoritmo paralelo; Modelización; Estudio caso; Ahorros energía; Red eléctrica inteligente</SD>
<LO>INIST-16409.354000503228000100</LO>
<ID>14-0165507</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000954 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000954 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:14-0165507
   |texte=   Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty. Part II: Enhanced hybrid bi-level decomposition
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021