Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of Lignin in Reducing Life-Cycle Carbon Emissions, Water Use, and Cost for United States Cellulosic Biofuels

Identifieur interne : 000050 ( PascalFrancis/Corpus ); précédent : 000049; suivant : 000051

Role of Lignin in Reducing Life-Cycle Carbon Emissions, Water Use, and Cost for United States Cellulosic Biofuels

Auteurs : Corinne D. Scown ; Amit A. Gokhale ; Paul A. Willems ; Arpad Horvath ; Thomas E. Mckone

Source :

RBID : Pascal:15-0038729

Descripteurs français

English descriptors

Abstract

Cellulosic ethanol can achieve estimated greenhouse gas (GHG) emission reductions greater than 80% relative to gasoline, largely as a result of the combustion of lignin for process heat and electricity in biorefineries. Most studies assume lignin is combusted onsite, but exporting lignin to be cofired at coal power plants has the potential to substantially reduce biorefinery capital costs. We assess the life-cycle GHG emissions, water use, and capital costs associated with four representative biorefinery test cases. Each case is evaluated in the context of a U.S. national scenario in which com stover, wheat straw, and Miscanthus are converted to 1.4 EJ (60 billion liters) of ethanol annually. Life-cycle GHG emissions range from 4.7 to 61 g CO2e/MJ of ethanol (compared with ˜95 g CO2e/MJ of gasoline), depending on biorefinery configurations and marginal electricity sources. Exporting lignin can achieve GHG emission reductions comparable to onsite combustion in some cases, reduce life-cycle water consumption by up to 40%, and reduce combined heat and power-related capital costs by up to 63%. However, nearly 50% of current U.S. coal-fired power generating capacity is expected to be retired by 2050, which will limit the capacity for lignin cofiring and may double transportation distances between biorefineries and coal power plants.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0013-936X
A02 01      @0 ESTHAG
A03   1    @0 Environ. sci. technol.
A05       @2 48
A06       @2 15
A08 01  1  ENG  @1 Role of Lignin in Reducing Life-Cycle Carbon Emissions, Water Use, and Cost for United States Cellulosic Biofuels
A09 01  1  ENG  @1 Understanding the Risks of Unconventional Shale Gas Development
A11 01  1    @1 SCOWN (Corinne D.)
A11 02  1    @1 GOKHALE (Amit A.)
A11 03  1    @1 WILLEMS (Paul A.)
A11 04  1    @1 HORVATH (Arpad)
A11 05  1    @1 MCKONE (Thomas E.)
A12 01  1    @1 STERN (Paul C.) @9 limin.
A12 02  1    @1 WEBLER (Thomas) @9 limin.
A12 03  1    @1 SMALL (Mitchell J.) @9 limin.
A14 01      @1 Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory @2 Berkeley, California 94720 @3 USA @Z 1 aut. @Z 5 aut.
A14 02      @1 BP Corporation North America Inc., 2151 Berkeley Way @2 Berkeley, 94704 @3 USA @Z 2 aut. @Z 3 aut.
A14 03      @1 Department of Civil and Environmental Engineering, University of California, 215 McLaughlin Hall @2 Berkeley, California 94720 @3 USA @Z 4 aut.
A15 01      @1 National Research Council, Board on Environmental Change and Society @2 Washington, DC20001 @3 USA @Z 1 aut.
A15 02      @1 Social and Environmental Research Institute @2 Amherst, Massachusetts 01002 @3 USA @Z 2 aut.
A15 03      @1 H. John Heinz III Professor of Environmental Engineering, Carnegie Mellon University @2 Pittsburgh, Pennsylvania 15213 @3 USA @Z 3 aut.
A20       @1 8446-8455
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 13615 @5 354000504883950160
A44       @0 0000 @1 © 2015 INIST-CNRS. All rights reserved.
A45       @0 39 ref.
A47 01  1    @0 15-0038729
A60       @1 P
A61       @0 A
A64 01  1    @0 Environmental science & technology
A66 01      @0 USA
C01 01    ENG  @0 Cellulosic ethanol can achieve estimated greenhouse gas (GHG) emission reductions greater than 80% relative to gasoline, largely as a result of the combustion of lignin for process heat and electricity in biorefineries. Most studies assume lignin is combusted onsite, but exporting lignin to be cofired at coal power plants has the potential to substantially reduce biorefinery capital costs. We assess the life-cycle GHG emissions, water use, and capital costs associated with four representative biorefinery test cases. Each case is evaluated in the context of a U.S. national scenario in which com stover, wheat straw, and Miscanthus are converted to 1.4 EJ (60 billion liters) of ethanol annually. Life-cycle GHG emissions range from 4.7 to 61 g CO2e/MJ of ethanol (compared with ˜95 g CO2e/MJ of gasoline), depending on biorefinery configurations and marginal electricity sources. Exporting lignin can achieve GHG emission reductions comparable to onsite combustion in some cases, reduce life-cycle water consumption by up to 40%, and reduce combined heat and power-related capital costs by up to 63%. However, nearly 50% of current U.S. coal-fired power generating capacity is expected to be retired by 2050, which will limit the capacity for lignin cofiring and may double transportation distances between biorefineries and coal power plants.
C02 01  X    @0 001D06B06E
C02 02  X    @0 230
C03 01  X  FRE  @0 Lignine @5 01
C03 01  X  ENG  @0 Lignin @5 01
C03 01  X  SPA  @0 Lignina @5 01
C03 02  X  FRE  @0 Cycle vie (environnement) @5 02
C03 02  X  ENG  @0 Life cycle (environment) @5 02
C03 02  X  SPA  @0 Ciclo vida (medio ambiente) @5 02
C03 03  X  FRE  @0 Biocarburant @5 03
C03 03  X  ENG  @0 Biofuel @5 03
C03 03  X  SPA  @0 Biocarburante @5 03
C03 04  X  FRE  @0 Etats-Unis @2 NG @5 04
C03 04  X  ENG  @0 United States @2 NG @5 04
C03 04  X  SPA  @0 Estados Unidos @2 NG @5 04
C03 05  X  FRE  @0 Diminution coût @5 05
C03 05  X  ENG  @0 Cost lowering @5 05
C03 05  X  SPA  @0 Reducción costes @5 05
C03 06  3  FRE  @0 Réduction pollution @5 06
C03 06  3  ENG  @0 Pollution abatement @5 06
C03 07  X  FRE  @0 Emission gaz @5 07
C03 07  X  ENG  @0 Gas emission @5 07
C03 07  X  SPA  @0 Emisión gas @5 07
C03 08  X  FRE  @0 Gaz effet serre @5 08
C03 08  X  ENG  @0 Greenhouse gas @5 08
C03 08  X  SPA  @0 Gas efecto invernadero @5 08
C03 09  X  FRE  @0 Consommation eau @5 09
C03 09  X  ENG  @0 Water consumption @5 09
C03 09  X  SPA  @0 Consumo agua @5 09
C03 10  X  FRE  @0 Bioraffinerie @5 10
C03 10  X  ENG  @0 Biorefinery @5 10
C03 10  X  SPA  @0 Biorefinería @5 10
C03 11  X  FRE  @0 Biopolymère @5 32
C03 11  X  ENG  @0 Biopolymer @5 32
C03 11  X  SPA  @0 Biopolímero @5 32
C03 12  X  FRE  @0 Impact environnement @5 33
C03 12  X  ENG  @0 Environment impact @5 33
C03 12  X  SPA  @0 Impacto medio ambiente @5 33
C03 13  X  FRE  @0 Développement durable @5 35
C03 13  X  ENG  @0 Sustainable development @5 35
C03 13  X  SPA  @0 Desarrollo sostenible @5 35
C03 14  X  FRE  @0 Carburant remplacement @5 36
C03 14  X  ENG  @0 Alternative motor fuel @5 36
C03 14  X  SPA  @0 Carburante reemplazo @5 36
C03 15  X  FRE  @0 Energie renouvelable @5 38
C03 15  X  ENG  @0 Renewable energy @5 38
C03 15  X  SPA  @0 Energía renovable @5 38
C03 16  X  FRE  @0 Energie remplacement @5 39
C03 16  X  ENG  @0 Alternative energy @5 39
C03 16  X  SPA  @0 Energía alternativa @5 39
C03 17  X  FRE  @0 Lutte antipollution @5 40
C03 17  X  ENG  @0 Pollution control @5 40
C03 17  X  SPA  @0 Lucha anticontaminación @5 40
C03 18  X  FRE  @0 Empreinte carbone @4 CD @5 96
C03 18  X  ENG  @0 Carbon footprint @4 CD @5 96
C03 18  X  SPA  @0 Huella de carbono @4 CD @5 96
C07 01  X  FRE  @0 Amérique du Nord @2 NG
C07 01  X  ENG  @0 North America @2 NG
C07 01  X  SPA  @0 America del norte @2 NG
C07 02  X  FRE  @0 Amérique @2 NG
C07 02  X  ENG  @0 America @2 NG
C07 02  X  SPA  @0 America @2 NG
N21       @1 075

Format Inist (serveur)

NO : PASCAL 15-0038729 INIST
ET : Role of Lignin in Reducing Life-Cycle Carbon Emissions, Water Use, and Cost for United States Cellulosic Biofuels
AU : SCOWN (Corinne D.); GOKHALE (Amit A.); WILLEMS (Paul A.); HORVATH (Arpad); MCKONE (Thomas E.); STERN (Paul C.); WEBLER (Thomas); SMALL (Mitchell J.)
AF : Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory/Berkeley, California 94720/Etats-Unis (1 aut., 5 aut.); BP Corporation North America Inc., 2151 Berkeley Way/Berkeley, 94704/Etats-Unis (2 aut., 3 aut.); Department of Civil and Environmental Engineering, University of California, 215 McLaughlin Hall/Berkeley, California 94720/Etats-Unis (4 aut.); National Research Council, Board on Environmental Change and Society/Washington, DC20001/Etats-Unis (1 aut.); Social and Environmental Research Institute/Amherst, Massachusetts 01002/Etats-Unis (2 aut.); H. John Heinz III Professor of Environmental Engineering, Carnegie Mellon University/Pittsburgh, Pennsylvania 15213/Etats-Unis (3 aut.)
DT : Publication en série; Niveau analytique
SO : Environmental science & technology; ISSN 0013-936X; Coden ESTHAG; Etats-Unis; Da. 2014; Vol. 48; No. 15; Pp. 8446-8455; Bibl. 39 ref.
LA : Anglais
EA : Cellulosic ethanol can achieve estimated greenhouse gas (GHG) emission reductions greater than 80% relative to gasoline, largely as a result of the combustion of lignin for process heat and electricity in biorefineries. Most studies assume lignin is combusted onsite, but exporting lignin to be cofired at coal power plants has the potential to substantially reduce biorefinery capital costs. We assess the life-cycle GHG emissions, water use, and capital costs associated with four representative biorefinery test cases. Each case is evaluated in the context of a U.S. national scenario in which com stover, wheat straw, and Miscanthus are converted to 1.4 EJ (60 billion liters) of ethanol annually. Life-cycle GHG emissions range from 4.7 to 61 g CO2e/MJ of ethanol (compared with ˜95 g CO2e/MJ of gasoline), depending on biorefinery configurations and marginal electricity sources. Exporting lignin can achieve GHG emission reductions comparable to onsite combustion in some cases, reduce life-cycle water consumption by up to 40%, and reduce combined heat and power-related capital costs by up to 63%. However, nearly 50% of current U.S. coal-fired power generating capacity is expected to be retired by 2050, which will limit the capacity for lignin cofiring and may double transportation distances between biorefineries and coal power plants.
CC : 001D06B06E; 230
FD : Lignine; Cycle vie (environnement); Biocarburant; Etats-Unis; Diminution coût; Réduction pollution; Emission gaz; Gaz effet serre; Consommation eau; Bioraffinerie; Biopolymère; Impact environnement; Développement durable; Carburant remplacement; Energie renouvelable; Energie remplacement; Lutte antipollution; Empreinte carbone
FG : Amérique du Nord; Amérique
ED : Lignin; Life cycle (environment); Biofuel; United States; Cost lowering; Pollution abatement; Gas emission; Greenhouse gas; Water consumption; Biorefinery; Biopolymer; Environment impact; Sustainable development; Alternative motor fuel; Renewable energy; Alternative energy; Pollution control; Carbon footprint
EG : North America; America
SD : Lignina; Ciclo vida (medio ambiente); Biocarburante; Estados Unidos; Reducción costes; Emisión gas; Gas efecto invernadero; Consumo agua; Biorefinería; Biopolímero; Impacto medio ambiente; Desarrollo sostenible; Carburante reemplazo; Energía renovable; Energía alternativa; Lucha anticontaminación; Huella de carbono
LO : INIST-13615.354000504883950160
ID : 15-0038729

Links to Exploration step

Pascal:15-0038729

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Role of Lignin in Reducing Life-Cycle Carbon Emissions, Water Use, and Cost for United States Cellulosic Biofuels</title>
<author>
<name sortKey="Scown, Corinne D" sort="Scown, Corinne D" uniqKey="Scown C" first="Corinne D." last="Scown">Corinne D. Scown</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory</s1>
<s2>Berkeley, California 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gokhale, Amit A" sort="Gokhale, Amit A" uniqKey="Gokhale A" first="Amit A." last="Gokhale">Amit A. Gokhale</name>
<affiliation>
<inist:fA14 i1="02">
<s1>BP Corporation North America Inc., 2151 Berkeley Way</s1>
<s2>Berkeley, 94704</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Willems, Paul A" sort="Willems, Paul A" uniqKey="Willems P" first="Paul A." last="Willems">Paul A. Willems</name>
<affiliation>
<inist:fA14 i1="02">
<s1>BP Corporation North America Inc., 2151 Berkeley Way</s1>
<s2>Berkeley, 94704</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horvath, Arpad" sort="Horvath, Arpad" uniqKey="Horvath A" first="Arpad" last="Horvath">Arpad Horvath</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Civil and Environmental Engineering, University of California, 215 McLaughlin Hall</s1>
<s2>Berkeley, California 94720</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mckone, Thomas E" sort="Mckone, Thomas E" uniqKey="Mckone T" first="Thomas E." last="Mckone">Thomas E. Mckone</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory</s1>
<s2>Berkeley, California 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">15-0038729</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 15-0038729 INIST</idno>
<idno type="RBID">Pascal:15-0038729</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000050</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Role of Lignin in Reducing Life-Cycle Carbon Emissions, Water Use, and Cost for United States Cellulosic Biofuels</title>
<author>
<name sortKey="Scown, Corinne D" sort="Scown, Corinne D" uniqKey="Scown C" first="Corinne D." last="Scown">Corinne D. Scown</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory</s1>
<s2>Berkeley, California 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gokhale, Amit A" sort="Gokhale, Amit A" uniqKey="Gokhale A" first="Amit A." last="Gokhale">Amit A. Gokhale</name>
<affiliation>
<inist:fA14 i1="02">
<s1>BP Corporation North America Inc., 2151 Berkeley Way</s1>
<s2>Berkeley, 94704</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Willems, Paul A" sort="Willems, Paul A" uniqKey="Willems P" first="Paul A." last="Willems">Paul A. Willems</name>
<affiliation>
<inist:fA14 i1="02">
<s1>BP Corporation North America Inc., 2151 Berkeley Way</s1>
<s2>Berkeley, 94704</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horvath, Arpad" sort="Horvath, Arpad" uniqKey="Horvath A" first="Arpad" last="Horvath">Arpad Horvath</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Civil and Environmental Engineering, University of California, 215 McLaughlin Hall</s1>
<s2>Berkeley, California 94720</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mckone, Thomas E" sort="Mckone, Thomas E" uniqKey="Mckone T" first="Thomas E." last="Mckone">Thomas E. Mckone</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory</s1>
<s2>Berkeley, California 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Environmental science & technology</title>
<title level="j" type="abbreviated">Environ. sci. technol.</title>
<idno type="ISSN">0013-936X</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Environmental science & technology</title>
<title level="j" type="abbreviated">Environ. sci. technol.</title>
<idno type="ISSN">0013-936X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alternative energy</term>
<term>Alternative motor fuel</term>
<term>Biofuel</term>
<term>Biopolymer</term>
<term>Biorefinery</term>
<term>Carbon footprint</term>
<term>Cost lowering</term>
<term>Environment impact</term>
<term>Gas emission</term>
<term>Greenhouse gas</term>
<term>Life cycle (environment)</term>
<term>Lignin</term>
<term>Pollution abatement</term>
<term>Pollution control</term>
<term>Renewable energy</term>
<term>Sustainable development</term>
<term>United States</term>
<term>Water consumption</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Lignine</term>
<term>Cycle vie (environnement)</term>
<term>Biocarburant</term>
<term>Etats-Unis</term>
<term>Diminution coût</term>
<term>Réduction pollution</term>
<term>Emission gaz</term>
<term>Gaz effet serre</term>
<term>Consommation eau</term>
<term>Bioraffinerie</term>
<term>Biopolymère</term>
<term>Impact environnement</term>
<term>Développement durable</term>
<term>Carburant remplacement</term>
<term>Energie renouvelable</term>
<term>Energie remplacement</term>
<term>Lutte antipollution</term>
<term>Empreinte carbone</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellulosic ethanol can achieve estimated greenhouse gas (GHG) emission reductions greater than 80% relative to gasoline, largely as a result of the combustion of lignin for process heat and electricity in biorefineries. Most studies assume lignin is combusted onsite, but exporting lignin to be cofired at coal power plants has the potential to substantially reduce biorefinery capital costs. We assess the life-cycle GHG emissions, water use, and capital costs associated with four representative biorefinery test cases. Each case is evaluated in the context of a U.S. national scenario in which com stover, wheat straw, and Miscanthus are converted to 1.4 EJ (60 billion liters) of ethanol annually. Life-cycle GHG emissions range from 4.7 to 61 g CO
<sub>2e</sub>
/MJ of ethanol (compared with
<sub>˜</sub>
95 g CO
<sub>2e</sub>
/MJ of gasoline), depending on biorefinery configurations and marginal electricity sources. Exporting lignin can achieve GHG emission reductions comparable to onsite combustion in some cases, reduce life-cycle water consumption by up to 40%, and reduce combined heat and power-related capital costs by up to 63%. However, nearly 50% of current U.S. coal-fired power generating capacity is expected to be retired by 2050, which will limit the capacity for lignin cofiring and may double transportation distances between biorefineries and coal power plants.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0013-936X</s0>
</fA01>
<fA02 i1="01">
<s0>ESTHAG</s0>
</fA02>
<fA03 i2="1">
<s0>Environ. sci. technol.</s0>
</fA03>
<fA05>
<s2>48</s2>
</fA05>
<fA06>
<s2>15</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Role of Lignin in Reducing Life-Cycle Carbon Emissions, Water Use, and Cost for United States Cellulosic Biofuels</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Understanding the Risks of Unconventional Shale Gas Development</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>SCOWN (Corinne D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GOKHALE (Amit A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WILLEMS (Paul A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HORVATH (Arpad)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MCKONE (Thomas E.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>STERN (Paul C.)</s1>
<s9>limin.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>WEBLER (Thomas)</s1>
<s9>limin.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SMALL (Mitchell J.)</s1>
<s9>limin.</s9>
</fA12>
<fA14 i1="01">
<s1>Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory</s1>
<s2>Berkeley, California 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>BP Corporation North America Inc., 2151 Berkeley Way</s1>
<s2>Berkeley, 94704</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Civil and Environmental Engineering, University of California, 215 McLaughlin Hall</s1>
<s2>Berkeley, California 94720</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>National Research Council, Board on Environmental Change and Society</s1>
<s2>Washington, DC20001</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Social and Environmental Research Institute</s1>
<s2>Amherst, Massachusetts 01002</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>H. John Heinz III Professor of Environmental Engineering, Carnegie Mellon University</s1>
<s2>Pittsburgh, Pennsylvania 15213</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s1>8446-8455</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13615</s2>
<s5>354000504883950160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2015 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>15-0038729</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Environmental science & technology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Cellulosic ethanol can achieve estimated greenhouse gas (GHG) emission reductions greater than 80% relative to gasoline, largely as a result of the combustion of lignin for process heat and electricity in biorefineries. Most studies assume lignin is combusted onsite, but exporting lignin to be cofired at coal power plants has the potential to substantially reduce biorefinery capital costs. We assess the life-cycle GHG emissions, water use, and capital costs associated with four representative biorefinery test cases. Each case is evaluated in the context of a U.S. national scenario in which com stover, wheat straw, and Miscanthus are converted to 1.4 EJ (60 billion liters) of ethanol annually. Life-cycle GHG emissions range from 4.7 to 61 g CO
<sub>2e</sub>
/MJ of ethanol (compared with
<sub>˜</sub>
95 g CO
<sub>2e</sub>
/MJ of gasoline), depending on biorefinery configurations and marginal electricity sources. Exporting lignin can achieve GHG emission reductions comparable to onsite combustion in some cases, reduce life-cycle water consumption by up to 40%, and reduce combined heat and power-related capital costs by up to 63%. However, nearly 50% of current U.S. coal-fired power generating capacity is expected to be retired by 2050, which will limit the capacity for lignin cofiring and may double transportation distances between biorefineries and coal power plants.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06B06E</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Lignine</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Lignin</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Lignina</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cycle vie (environnement)</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Life cycle (environment)</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Ciclo vida (medio ambiente)</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Biocarburant</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Biofuel</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Biocarburante</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Etats-Unis</s0>
<s2>NG</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Diminution coût</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Cost lowering</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Reducción costes</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Réduction pollution</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Pollution abatement</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Emission gaz</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Gas emission</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Emisión gas</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Gaz effet serre</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Greenhouse gas</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Gas efecto invernadero</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Consommation eau</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Water consumption</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Consumo agua</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Bioraffinerie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Biorefinery</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Biorefinería</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Biopolymère</s0>
<s5>32</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Biopolymer</s0>
<s5>32</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Biopolímero</s0>
<s5>32</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Impact environnement</s0>
<s5>33</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Environment impact</s0>
<s5>33</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Impacto medio ambiente</s0>
<s5>33</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Développement durable</s0>
<s5>35</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Sustainable development</s0>
<s5>35</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Desarrollo sostenible</s0>
<s5>35</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Carburant remplacement</s0>
<s5>36</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Alternative motor fuel</s0>
<s5>36</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Carburante reemplazo</s0>
<s5>36</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Energie renouvelable</s0>
<s5>38</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Renewable energy</s0>
<s5>38</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Energía renovable</s0>
<s5>38</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Energie remplacement</s0>
<s5>39</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Alternative energy</s0>
<s5>39</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Energía alternativa</s0>
<s5>39</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Lutte antipollution</s0>
<s5>40</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Pollution control</s0>
<s5>40</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Lucha anticontaminación</s0>
<s5>40</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Empreinte carbone</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Carbon footprint</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Huella de carbono</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Amérique du Nord</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>North America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>America del norte</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Amérique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>075</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 15-0038729 INIST</NO>
<ET>Role of Lignin in Reducing Life-Cycle Carbon Emissions, Water Use, and Cost for United States Cellulosic Biofuels</ET>
<AU>SCOWN (Corinne D.); GOKHALE (Amit A.); WILLEMS (Paul A.); HORVATH (Arpad); MCKONE (Thomas E.); STERN (Paul C.); WEBLER (Thomas); SMALL (Mitchell J.)</AU>
<AF>Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory/Berkeley, California 94720/Etats-Unis (1 aut., 5 aut.); BP Corporation North America Inc., 2151 Berkeley Way/Berkeley, 94704/Etats-Unis (2 aut., 3 aut.); Department of Civil and Environmental Engineering, University of California, 215 McLaughlin Hall/Berkeley, California 94720/Etats-Unis (4 aut.); National Research Council, Board on Environmental Change and Society/Washington, DC20001/Etats-Unis (1 aut.); Social and Environmental Research Institute/Amherst, Massachusetts 01002/Etats-Unis (2 aut.); H. John Heinz III Professor of Environmental Engineering, Carnegie Mellon University/Pittsburgh, Pennsylvania 15213/Etats-Unis (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Environmental science & technology; ISSN 0013-936X; Coden ESTHAG; Etats-Unis; Da. 2014; Vol. 48; No. 15; Pp. 8446-8455; Bibl. 39 ref.</SO>
<LA>Anglais</LA>
<EA>Cellulosic ethanol can achieve estimated greenhouse gas (GHG) emission reductions greater than 80% relative to gasoline, largely as a result of the combustion of lignin for process heat and electricity in biorefineries. Most studies assume lignin is combusted onsite, but exporting lignin to be cofired at coal power plants has the potential to substantially reduce biorefinery capital costs. We assess the life-cycle GHG emissions, water use, and capital costs associated with four representative biorefinery test cases. Each case is evaluated in the context of a U.S. national scenario in which com stover, wheat straw, and Miscanthus are converted to 1.4 EJ (60 billion liters) of ethanol annually. Life-cycle GHG emissions range from 4.7 to 61 g CO
<sub>2e</sub>
/MJ of ethanol (compared with
<sub>˜</sub>
95 g CO
<sub>2e</sub>
/MJ of gasoline), depending on biorefinery configurations and marginal electricity sources. Exporting lignin can achieve GHG emission reductions comparable to onsite combustion in some cases, reduce life-cycle water consumption by up to 40%, and reduce combined heat and power-related capital costs by up to 63%. However, nearly 50% of current U.S. coal-fired power generating capacity is expected to be retired by 2050, which will limit the capacity for lignin cofiring and may double transportation distances between biorefineries and coal power plants.</EA>
<CC>001D06B06E; 230</CC>
<FD>Lignine; Cycle vie (environnement); Biocarburant; Etats-Unis; Diminution coût; Réduction pollution; Emission gaz; Gaz effet serre; Consommation eau; Bioraffinerie; Biopolymère; Impact environnement; Développement durable; Carburant remplacement; Energie renouvelable; Energie remplacement; Lutte antipollution; Empreinte carbone</FD>
<FG>Amérique du Nord; Amérique</FG>
<ED>Lignin; Life cycle (environment); Biofuel; United States; Cost lowering; Pollution abatement; Gas emission; Greenhouse gas; Water consumption; Biorefinery; Biopolymer; Environment impact; Sustainable development; Alternative motor fuel; Renewable energy; Alternative energy; Pollution control; Carbon footprint</ED>
<EG>North America; America</EG>
<SD>Lignina; Ciclo vida (medio ambiente); Biocarburante; Estados Unidos; Reducción costes; Emisión gas; Gas efecto invernadero; Consumo agua; Biorefinería; Biopolímero; Impacto medio ambiente; Desarrollo sostenible; Carburante reemplazo; Energía renovable; Energía alternativa; Lucha anticontaminación; Huella de carbono</SD>
<LO>INIST-13615.354000504883950160</LO>
<ID>15-0038729</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000050 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000050 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:15-0038729
   |texte=   Role of Lignin in Reducing Life-Cycle Carbon Emissions, Water Use, and Cost for United States Cellulosic Biofuels
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021