Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Wnt-responsive Lgr5⁺ globose basal cells function as multipotent olfactory epithelium progenitor cells.

Identifieur interne : 002482 ( Ncbi/Merge ); précédent : 002481; suivant : 002483

Wnt-responsive Lgr5⁺ globose basal cells function as multipotent olfactory epithelium progenitor cells.

Auteurs : Mengfei Chen ; Shenghe Tian ; Xiaoling Yang ; Andrew P. Lane ; Randall R. Reed [États-Unis] ; Hongjun Liu [États-Unis]

Source :

RBID : pubmed:24920630

Descripteurs français

English descriptors

Abstract

Persistent neurogenesis in the olfactory epithelium provides a unique model to study neural stem cell self-renewal and fate determination. In the olfactory neuroepithelium, globose basal cells (GBCs) are considered to be the direct progenitors of olfactory neurons. However, the study of neurogenesis from GBCs has been impeded by the paucity of GBC-specific markers. Here we report that Lgr5, a recently discovered adult stem cell marker, is exclusively expressed in GBCs in neonatal and adult mice. Lgr5(+) cells display characteristics of cycling stem cells, including Ki67 expression and EdU incorporation. Lineage tracing analysis demonstrates that Lgr5(+) GBCs regenerate multiple cell types under normal turnover condition or after olfactory lesion. Furthermore, upregulation or downregulation of Wnt signaling in vivo indicates a key role of Wnt signaling not only in maintaining Lgr5(+) cell proliferation and promoting neuroregeneration, but also in delaying sensory neuron maturation. Together, our observations provided new insights into the dynamics of neurogenesis in the olfactory epithelium.

DOI: 10.1523/JNEUROSCI.0240-14.2014
PubMed: 24920630

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24920630

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Wnt-responsive Lgr5⁺ globose basal cells function as multipotent olfactory epithelium progenitor cells.</title>
<author>
<name sortKey="Chen, Mengfei" sort="Chen, Mengfei" uniqKey="Chen M" first="Mengfei" last="Chen">Mengfei Chen</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Molecular Genetics and.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Microbiology and Molecular Genetics and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tian, Shenghe" sort="Tian, Shenghe" uniqKey="Tian S" first="Shenghe" last="Tian">Shenghe Tian</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Molecular Genetics and Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaoling" sort="Yang, Xiaoling" uniqKey="Yang X" first="Xiaoling" last="Yang">Xiaoling Yang</name>
<affiliation>
<nlm:affiliation>Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Lane, Andrew P" sort="Lane, Andrew P" uniqKey="Lane A" first="Andrew P" last="Lane">Andrew P. Lane</name>
<affiliation>
<nlm:affiliation>Department of Otolaryngology-Head and Neck Surgery and.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Otolaryngology-Head and Neck Surgery and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Reed, Randall R" sort="Reed, Randall R" uniqKey="Reed R" first="Randall R" last="Reed">Randall R. Reed</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Liu, Hongjun" sort="Liu, Hongjun" uniqKey="Liu H" first="Hongjun" last="Liu">Hongjun Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Genetics and Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and liuh4@pitt.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics and Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213</wicri:regionArea>
<wicri:noRegion>Pennsylvania 15213</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24920630</idno>
<idno type="pmid">24920630</idno>
<idno type="doi">10.1523/JNEUROSCI.0240-14.2014</idno>
<idno type="wicri:Area/PubMed/Corpus">002B09</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002B09</idno>
<idno type="wicri:Area/PubMed/Curation">002A93</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002A93</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002A93</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002A93</idno>
<idno type="wicri:Area/Ncbi/Merge">002482</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Wnt-responsive Lgr5⁺ globose basal cells function as multipotent olfactory epithelium progenitor cells.</title>
<author>
<name sortKey="Chen, Mengfei" sort="Chen, Mengfei" uniqKey="Chen M" first="Mengfei" last="Chen">Mengfei Chen</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Molecular Genetics and.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Microbiology and Molecular Genetics and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tian, Shenghe" sort="Tian, Shenghe" uniqKey="Tian S" first="Shenghe" last="Tian">Shenghe Tian</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Molecular Genetics and Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaoling" sort="Yang, Xiaoling" uniqKey="Yang X" first="Xiaoling" last="Yang">Xiaoling Yang</name>
<affiliation>
<nlm:affiliation>Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Lane, Andrew P" sort="Lane, Andrew P" uniqKey="Lane A" first="Andrew P" last="Lane">Andrew P. Lane</name>
<affiliation>
<nlm:affiliation>Department of Otolaryngology-Head and Neck Surgery and.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Otolaryngology-Head and Neck Surgery and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Reed, Randall R" sort="Reed, Randall R" uniqKey="Reed R" first="Randall R" last="Reed">Randall R. Reed</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Liu, Hongjun" sort="Liu, Hongjun" uniqKey="Liu H" first="Hongjun" last="Liu">Hongjun Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Genetics and Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and liuh4@pitt.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics and Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213</wicri:regionArea>
<wicri:noRegion>Pennsylvania 15213</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of neuroscience : the official journal of the Society for Neuroscience</title>
<idno type="eISSN">1529-2401</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Animals, Newborn</term>
<term>Bacterial Capsules (metabolism)</term>
<term>Basic Helix-Loop-Helix Transcription Factors (metabolism)</term>
<term>Cell Differentiation (physiology)</term>
<term>Flow Cytometry</term>
<term>GAP-43 Protein (metabolism)</term>
<term>Glial Fibrillary Acidic Protein (metabolism)</term>
<term>Green Fluorescent Proteins (genetics)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>Intercellular Adhesion Molecule-1 (metabolism)</term>
<term>Ki-67 Antigen (metabolism)</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
<term>Multipotent Stem Cells (physiology)</term>
<term>Olfactory Marker Protein (metabolism)</term>
<term>Olfactory Mucosa (cytology)</term>
<term>Olfactory Receptor Neurons (physiology)</term>
<term>Receptors, G-Protein-Coupled (genetics)</term>
<term>Receptors, G-Protein-Coupled (metabolism)</term>
<term>beta-Galactosidase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Animaux nouveau-nés</term>
<term>Antigène KI-67 (métabolisme)</term>
<term>Capsules bactériennes (métabolisme)</term>
<term>Cellules souches multipotentes (physiologie)</term>
<term>Cytométrie en flux</term>
<term>Différenciation cellulaire (physiologie)</term>
<term>Facteurs de transcription à motif basique hélice-boucle-hélice (métabolisme)</term>
<term>Molécule-1 d'adhérence intercellulaire (métabolisme)</term>
<term>Muqueuse olfactive (cytologie)</term>
<term>Neurorécepteurs olfactifs (physiologie)</term>
<term>Protéine GAP-43 (métabolisme)</term>
<term>Protéine gliofibrillaire acide (métabolisme)</term>
<term>Protéine marqueur olfactif (métabolisme)</term>
<term>Protéines à fluorescence verte (génétique)</term>
<term>Protéines à fluorescence verte (métabolisme)</term>
<term>Récepteurs couplés aux protéines G (génétique)</term>
<term>Récepteurs couplés aux protéines G (métabolisme)</term>
<term>Souris</term>
<term>Souris transgéniques</term>
<term>beta-Galactosidase (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Green Fluorescent Proteins</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Basic Helix-Loop-Helix Transcription Factors</term>
<term>GAP-43 Protein</term>
<term>Glial Fibrillary Acidic Protein</term>
<term>Green Fluorescent Proteins</term>
<term>Intercellular Adhesion Molecule-1</term>
<term>Ki-67 Antigen</term>
<term>Olfactory Marker Protein</term>
<term>Receptors, G-Protein-Coupled</term>
<term>beta-Galactosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Muqueuse olfactive</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Olfactory Mucosa</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines à fluorescence verte</term>
<term>Récepteurs couplés aux protéines G</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacterial Capsules</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antigène KI-67</term>
<term>Capsules bactériennes</term>
<term>Facteurs de transcription à motif basique hélice-boucle-hélice</term>
<term>Molécule-1 d'adhérence intercellulaire</term>
<term>Protéine GAP-43</term>
<term>Protéine gliofibrillaire acide</term>
<term>Protéine marqueur olfactif</term>
<term>Protéines à fluorescence verte</term>
<term>Récepteurs couplés aux protéines G</term>
<term>beta-Galactosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cellules souches multipotentes</term>
<term>Différenciation cellulaire</term>
<term>Neurorécepteurs olfactifs</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cell Differentiation</term>
<term>Multipotent Stem Cells</term>
<term>Olfactory Receptor Neurons</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Animals, Newborn</term>
<term>Flow Cytometry</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Animaux nouveau-nés</term>
<term>Cytométrie en flux</term>
<term>Souris</term>
<term>Souris transgéniques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Persistent neurogenesis in the olfactory epithelium provides a unique model to study neural stem cell self-renewal and fate determination. In the olfactory neuroepithelium, globose basal cells (GBCs) are considered to be the direct progenitors of olfactory neurons. However, the study of neurogenesis from GBCs has been impeded by the paucity of GBC-specific markers. Here we report that Lgr5, a recently discovered adult stem cell marker, is exclusively expressed in GBCs in neonatal and adult mice. Lgr5(+) cells display characteristics of cycling stem cells, including Ki67 expression and EdU incorporation. Lineage tracing analysis demonstrates that Lgr5(+) GBCs regenerate multiple cell types under normal turnover condition or after olfactory lesion. Furthermore, upregulation or downregulation of Wnt signaling in vivo indicates a key role of Wnt signaling not only in maintaining Lgr5(+) cell proliferation and promoting neuroregeneration, but also in delaying sensory neuron maturation. Together, our observations provided new insights into the dynamics of neurogenesis in the olfactory epithelium.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24920630</PMID>
<DateCreated>
<Year>2014</Year>
<Month>06</Month>
<Day>12</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>08</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1529-2401</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of neuroscience : the official journal of the Society for Neuroscience</Title>
<ISOAbbreviation>J. Neurosci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Wnt-responsive Lgr5⁺ globose basal cells function as multipotent olfactory epithelium progenitor cells.</ArticleTitle>
<Pagination>
<MedlinePgn>8268-76</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1523/JNEUROSCI.0240-14.2014</ELocationID>
<Abstract>
<AbstractText>Persistent neurogenesis in the olfactory epithelium provides a unique model to study neural stem cell self-renewal and fate determination. In the olfactory neuroepithelium, globose basal cells (GBCs) are considered to be the direct progenitors of olfactory neurons. However, the study of neurogenesis from GBCs has been impeded by the paucity of GBC-specific markers. Here we report that Lgr5, a recently discovered adult stem cell marker, is exclusively expressed in GBCs in neonatal and adult mice. Lgr5(+) cells display characteristics of cycling stem cells, including Ki67 expression and EdU incorporation. Lineage tracing analysis demonstrates that Lgr5(+) GBCs regenerate multiple cell types under normal turnover condition or after olfactory lesion. Furthermore, upregulation or downregulation of Wnt signaling in vivo indicates a key role of Wnt signaling not only in maintaining Lgr5(+) cell proliferation and promoting neuroregeneration, but also in delaying sensory neuron maturation. Together, our observations provided new insights into the dynamics of neurogenesis in the olfactory epithelium.</AbstractText>
<CopyrightInformation>Copyright © 2014 the authors 0270-6474/14/348268-09$15.00/0.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Mengfei</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Genetics and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Shenghe</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Genetics and Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Xiaoling</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lane</LastName>
<ForeName>Andrew P</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Department of Otolaryngology-Head and Neck Surgery and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reed</LastName>
<ForeName>Randall R</ForeName>
<Initials>RR</Initials>
<AffiliationInfo>
<Affiliation>Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Hongjun</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Genetics and Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and liuh4@pitt.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 DC005211</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R00 AG032356</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R00AG032356</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurosci</MedlineTA>
<NlmUniqueID>8102140</NlmUniqueID>
<ISSNLinking>0270-6474</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C499317">Ascl1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051792">Basic Helix-Loop-Helix Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019922">GAP-43 Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005904">Glial Fibrillary Acidic Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019394">Ki-67 Antigen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C493597">Lgr5 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501008">Neurod1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051842">Olfactory Marker Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C497598">Omp protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D043562">Receptors, G-Protein-Coupled</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C039514">capsular polysaccharide K14</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C485184">enhanced green fluorescent protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>126547-89-5</RegistryNumber>
<NameOfSubstance UI="D018799">Intercellular Adhesion Molecule-1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.23</RegistryNumber>
<NameOfSubstance UI="D001616">beta-Galactosidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1995 Aug 14;359(1):15-37</RefSource>
<PMID Version="1">8557844</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Stem Cell. 2013 Feb 7;12(2):204-14</RefSource>
<PMID Version="1">23395445</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Stem Cell. 2013 Feb 7;12(2):215-23</RefSource>
<PMID Version="1">23395446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1998 Nov 2;400(4):469-86</RefSource>
<PMID Version="1">9786409</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Apr 16;28(16):4271-82</RefSource>
<PMID Version="1">18417707</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2005 Oct 27;437(7063):1370-5</RefSource>
<PMID Version="1">16251967</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2003 May 19;460(1):123-40</RefSource>
<PMID Version="1">12687701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2007 May 24;54(4):547-57</RefSource>
<PMID Version="1">17521568</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2007 Jun;10(6):720-6</RefSource>
<PMID Version="1">17468753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16970-5</RefSource>
<PMID Version="1">18957545</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2007 Oct 25;449(7165):1003-7</RefSource>
<PMID Version="1">17934449</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2002 Apr;129(8):1871-80</RefSource>
<PMID Version="1">11934853</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2002 Jun 18;3(7):RESEARCH0034</RefSource>
<PMID Version="1">12184808</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Jul 11;32(28):9639-48</RefSource>
<PMID Version="1">22787049</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13851-6</RefSource>
<PMID Version="1">23918377</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Jun 23;24(25):5670-83</RefSource>
<PMID Version="1">15215289</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2008 Nov;214(1):25-36</RefSource>
<PMID Version="1">18703052</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2011 May 1;124(Pt 9):1553-63</RefSource>
<PMID Version="1">21486944</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2004 Nov 8;479(2):216-33</RefSource>
<PMID Version="1">15452857</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Toxicol Pathol. 1995 Jul-Aug;23(4):477-86</RefSource>
<PMID Version="1">7501959</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2011 Dec 8;72(5):748-59</RefSource>
<PMID Version="1">22153372</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Brain. 2013;6:49</RefSource>
<PMID Version="1">24267470</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2012;8(11):e1002986</RefSource>
<PMID Version="1">23133384</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Neurobiol. 2006 Jul-Aug;26(4-6):803-21</RefSource>
<PMID Version="1">16708285</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 May 22;109(21):8167-72</RefSource>
<PMID Version="1">22562792</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1997 May 15;17(10):3610-22</RefSource>
<PMID Version="1">9133384</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Aug 18;476(7360):293-7</RefSource>
<PMID Version="1">21727895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2011 Dec 1;519(17):3580-96</RefSource>
<PMID Version="1">21800309</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Histol. 2007 Dec;38(6):581-99</RefSource>
<PMID Version="1">17851769</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stem Cells. 2013 May;31(5):992-1000</RefSource>
<PMID Version="1">23377989</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2011 Jun;229(2):308-23</RefSource>
<PMID Version="1">21376038</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2004 Feb 16;469(4):457-74</RefSource>
<PMID Version="1">14755529</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2010 Nov 1;518(21):4395-418</RefSource>
<PMID Version="1">20852734</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2011 Aug 11;71(3):389-405</RefSource>
<PMID Version="1">21835338</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Stem Cell. 2010 Jan 8;6(1):25-36</RefSource>
<PMID Version="1">20085740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1995 Dec 4;363(1):129-46</RefSource>
<PMID Version="1">8682932</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 1994 Aug;13(2):339-52</RefSource>
<PMID Version="1">8060615</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2008 Nov;40(11):1291-9</RefSource>
<PMID Version="1">18849992</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Dyn. 1995 May;203(1):17-26</RefSource>
<PMID Version="1">7647371</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anat Rec. 1946 Feb;94:239-47</RefSource>
<PMID Version="1">21015608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Jun 15;31(24):8748-59</RefSource>
<PMID Version="1">21677159</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anat Rec. 2002 Feb 15;269(1):33-49</RefSource>
<PMID Version="1">11891623</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2012 Jun 8;149(6):1192-205</RefSource>
<PMID Version="1">22682243</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11452-7</RefSource>
<PMID Version="1">21693646</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2014 Mar;522(4):731-49</RefSource>
<PMID Version="1">24122672</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Feb 2;31(5):1676-87</RefSource>
<PMID Version="1">21289176</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000831" MajorTopicYN="N">Animals, Newborn</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016667" MajorTopicYN="N">Bacterial Capsules</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051792" MajorTopicYN="N">Basic Helix-Loop-Helix Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005434" MajorTopicYN="N">Flow Cytometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019922" MajorTopicYN="N">GAP-43 Protein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005904" MajorTopicYN="N">Glial Fibrillary Acidic Protein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018799" MajorTopicYN="N">Intercellular Adhesion Molecule-1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019394" MajorTopicYN="N">Ki-67 Antigen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008822" MajorTopicYN="N">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039902" MajorTopicYN="N">Multipotent Stem Cells</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051842" MajorTopicYN="N">Olfactory Marker Protein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009831" MajorTopicYN="N">Olfactory Mucosa</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018034" MajorTopicYN="N">Olfactory Receptor Neurons</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043562" MajorTopicYN="N">Receptors, G-Protein-Coupled</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001616" MajorTopicYN="N">beta-Galactosidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4051978</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Lgr5</Keyword>
<Keyword MajorTopicYN="N">Wnt</Keyword>
<Keyword MajorTopicYN="N">globose basal cells</Keyword>
<Keyword MajorTopicYN="N">neural stem cells</Keyword>
<Keyword MajorTopicYN="N">olfactory epithelium</Keyword>
<Keyword MajorTopicYN="N">regeneration</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24920630</ArticleId>
<ArticleId IdType="pii">34/24/8268</ArticleId>
<ArticleId IdType="doi">10.1523/JNEUROSCI.0240-14.2014</ArticleId>
<ArticleId IdType="pmc">PMC4051978</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Mengfei" sort="Chen, Mengfei" uniqKey="Chen M" first="Mengfei" last="Chen">Mengfei Chen</name>
<name sortKey="Lane, Andrew P" sort="Lane, Andrew P" uniqKey="Lane A" first="Andrew P" last="Lane">Andrew P. Lane</name>
<name sortKey="Tian, Shenghe" sort="Tian, Shenghe" uniqKey="Tian S" first="Shenghe" last="Tian">Shenghe Tian</name>
<name sortKey="Yang, Xiaoling" sort="Yang, Xiaoling" uniqKey="Yang X" first="Xiaoling" last="Yang">Xiaoling Yang</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Reed, Randall R" sort="Reed, Randall R" uniqKey="Reed R" first="Randall R" last="Reed">Randall R. Reed</name>
</region>
<name sortKey="Liu, Hongjun" sort="Liu, Hongjun" uniqKey="Liu H" first="Hongjun" last="Liu">Hongjun Liu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002482 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002482 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:24920630
   |texte=   Wnt-responsive Lgr5⁺ globose basal cells function as multipotent olfactory epithelium progenitor cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:24920630" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021