Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A tale of two pesticides: how common insecticides affect aquatic communities

Identifieur interne : 00A517 ( Main/Merge ); précédent : 00A516; suivant : 00A518

A tale of two pesticides: how common insecticides affect aquatic communities

Auteurs : Maya L. Groner [États-Unis] ; Rick A. Relyea [États-Unis]

Source :

RBID : ISTEX:2A23B2F48FFF0600F79F158480487752D6D231BD

Descripteurs français

English descriptors

Abstract

1. Recent ecotoxicology studies show that pesticide exposure can alter community composition, structure and function. Generally, community responses to pesticides are driven by trait‐ and density‐mediated indirect effects resulting from sublethal and lethal effects of pesticide exposure on vulnerable taxa. These effects depend upon the concentration of the pesticide and the frequency of exposure. 2. While more research is needed to understand community‐level responses to pesticide exposure, testing the effects of multitudes of registered chemicals on ecologically relevant communities is overwhelming. Recent reviews suggest that contaminants with similar modes of action should produce comparable community‐level responses because they have similar direct effects and, as a result, similar indirect effects; this hypothesis remains largely untested. 3. We subjected pond communities [containing zooplankton, phytoplankton, periphyton and leopard frog tadpoles (Rana pipiens)] to several applications (single applications of medium or high concentrations or weekly applications of a lower concentration) of two acetylcholine esterase inhibiting insecticides, malathion and carbaryl that have comparable toxicity for aquatic organisms. 4. We found that both insecticides cause comparable trophic cascades that affect zooplankton and phytoplankton abundances; however, their effects on amphibians diverged, especially when exposed to higher concentrations of insecticides. Malathion caused a trophic cascade beginning with a decline in cladocerans followed by increases in phytoplankton. At a medium concentration, this cascade also caused a subsequent decrease in periphyton. Carbaryl caused a similar trophic cascade with the highest application, a weak trophic cascade with the medium application and no cascade with smallest application. Malathion directly reduced tadpole survival at all concentrations. Survivors in the two higher treatments were larger at metamorphosis while survivors in the lowest treatments were smaller and developed slowly. In contrast, carbaryl was not directly toxic to tadpoles, but indirectly reduced survival because slow growth and development prevented some tadpoles from metamorphosing before the mesocosms dried at medium and low applications. 5. These results suggest that these common pesticides, which share the same mode of action, have similar effects on zooplankton and algae, but differences in the strength and timing of their effects on tadpoles reduce the generality of responses at higher trophic levels. Overall, general predictive models of contaminant effects could be improved by incorporating the relative timing of direct and indirect effects of exposure.

Url:
DOI: 10.1111/j.1365-2427.2011.02667.x

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:2A23B2F48FFF0600F79F158480487752D6D231BD

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A tale of two pesticides: how common insecticides affect aquatic communities</title>
<author>
<name sortKey="Groner, Maya L" sort="Groner, Maya L" uniqKey="Groner M" first="Maya L." last="Groner">Maya L. Groner</name>
</author>
<author>
<name sortKey="Relyea, Rick A" sort="Relyea, Rick A" uniqKey="Relyea R" first="Rick A." last="Relyea">Rick A. Relyea</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2A23B2F48FFF0600F79F158480487752D6D231BD</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1365-2427.2011.02667.x</idno>
<idno type="url">https://api.istex.fr/document/2A23B2F48FFF0600F79F158480487752D6D231BD/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000996</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000996</idno>
<idno type="wicri:Area/Istex/Curation">000996</idno>
<idno type="wicri:Area/Istex/Checkpoint">001C33</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001C33</idno>
<idno type="wicri:doubleKey">0046-5070:2011:Groner M:a:tale:of</idno>
<idno type="wicri:Area/Main/Merge">00A517</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">A tale of two pesticides: how common insecticides affect aquatic communities</title>
<author>
<name sortKey="Groner, Maya L" sort="Groner, Maya L" uniqKey="Groner M" first="Maya L." last="Groner">Maya L. Groner</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
<author>
<name sortKey="Relyea, Rick A" sort="Relyea, Rick A" uniqKey="Relyea R" first="Rick A." last="Relyea">Rick A. Relyea</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Freshwater Biology</title>
<title level="j" type="alt">FRESHWATER BIOLOGY</title>
<idno type="ISSN">0046-5070</idno>
<idno type="eISSN">1365-2427</idno>
<imprint>
<biblScope unit="vol">56</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="2391">2391</biblScope>
<biblScope unit="page" to="2404">2404</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-11">2011-11</date>
</imprint>
<idno type="ISSN">0046-5070</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0046-5070</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actual concentrations</term>
<term>Amphibian</term>
<term>Amphibian population declines</term>
<term>Aquatic</term>
<term>Aquatic communities</term>
<term>Blackwell publishing</term>
<term>Boone</term>
<term>Boone semlitsch</term>
<term>California frog</term>
<term>Carbaryl</term>
<term>Carbaryl treatment</term>
<term>Carbaryl treatments</term>
<term>Cascade</term>
<term>Cladocerans</term>
<term>Clements rohr</term>
<term>Community responses</term>
<term>Contaminant</term>
<term>Copepod</term>
<term>Diecks</term>
<term>Ecological</term>
<term>Ecological applications</term>
<term>Ecology</term>
<term>Environmental protection agency</term>
<term>Environmental toxicology</term>
<term>Extinction</term>
<term>Freshwater</term>
<term>Freshwater biology</term>
<term>Frog</term>
<term>Greater light extinction</term>
<term>Groner</term>
<term>Hanazato</term>
<term>Hanazato yasuno</term>
<term>Indirect effects</term>
<term>Insecticide</term>
<term>Leopard</term>
<term>Leopard frog tadpoles</term>
<term>Leopard frogs</term>
<term>Light extinction</term>
<term>Malathion</term>
<term>Malathion treatment</term>
<term>Malathion treatments</term>
<term>Mesocosm</term>
<term>Mesocosm studies</term>
<term>Mesocosms</term>
<term>Metamorphosis</term>
<term>Mills semlitsch</term>
<term>More copepods</term>
<term>Multivariate</term>
<term>Multivariate effect</term>
<term>Nominal concentrations</term>
<term>Odenkirchen wente</term>
<term>Periphyton</term>
<term>Pesticide</term>
<term>Pesticide concentration</term>
<term>Pesticide exposure</term>
<term>Pesticide treatments</term>
<term>Phytoplankton</term>
<term>Phytoplankton blooms</term>
<term>Quinn keough</term>
<term>Rana</term>
<term>Relyea</term>
<term>Relyea diecks</term>
<term>Relyea hoverman</term>
<term>Response variables</term>
<term>Rohr</term>
<term>Sample date</term>
<term>Semlitsch</term>
<term>Shaffer jennings</term>
<term>Similar modes</term>
<term>Single medium</term>
<term>Single medium treatment</term>
<term>Single medium treatments</term>
<term>Slower development</term>
<term>Sublethal</term>
<term>Sublethal effects</term>
<term>Tadpole</term>
<term>Tadpole mortality</term>
<term>Tadpole survival</term>
<term>Toxicity</term>
<term>Toxicology</term>
<term>Trophic</term>
<term>Trophic cascade</term>
<term>Water column</term>
<term>Water quality variables</term>
<term>Weekly applications</term>
<term>Zooplankton</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Actual concentrations</term>
<term>Amphibian</term>
<term>Amphibian population declines</term>
<term>Aquatic</term>
<term>Aquatic communities</term>
<term>Blackwell publishing</term>
<term>Boone</term>
<term>Boone semlitsch</term>
<term>California frog</term>
<term>Carbaryl</term>
<term>Carbaryl treatment</term>
<term>Carbaryl treatments</term>
<term>Cascade</term>
<term>Cladocerans</term>
<term>Clements rohr</term>
<term>Community responses</term>
<term>Contaminant</term>
<term>Copepod</term>
<term>Diecks</term>
<term>Ecological</term>
<term>Ecological applications</term>
<term>Ecology</term>
<term>Environmental protection agency</term>
<term>Environmental toxicology</term>
<term>Extinction</term>
<term>Freshwater</term>
<term>Freshwater biology</term>
<term>Frog</term>
<term>Greater light extinction</term>
<term>Groner</term>
<term>Hanazato</term>
<term>Hanazato yasuno</term>
<term>Indirect effects</term>
<term>Insecticide</term>
<term>Leopard</term>
<term>Leopard frog tadpoles</term>
<term>Leopard frogs</term>
<term>Light extinction</term>
<term>Malathion</term>
<term>Malathion treatment</term>
<term>Malathion treatments</term>
<term>Mesocosm</term>
<term>Mesocosm studies</term>
<term>Mesocosms</term>
<term>Metamorphosis</term>
<term>Mills semlitsch</term>
<term>More copepods</term>
<term>Multivariate</term>
<term>Multivariate effect</term>
<term>Nominal concentrations</term>
<term>Odenkirchen wente</term>
<term>Periphyton</term>
<term>Pesticide</term>
<term>Pesticide concentration</term>
<term>Pesticide exposure</term>
<term>Pesticide treatments</term>
<term>Phytoplankton</term>
<term>Phytoplankton blooms</term>
<term>Quinn keough</term>
<term>Rana</term>
<term>Relyea</term>
<term>Relyea diecks</term>
<term>Relyea hoverman</term>
<term>Response variables</term>
<term>Rohr</term>
<term>Sample date</term>
<term>Semlitsch</term>
<term>Shaffer jennings</term>
<term>Similar modes</term>
<term>Single medium</term>
<term>Single medium treatment</term>
<term>Single medium treatments</term>
<term>Slower development</term>
<term>Sublethal</term>
<term>Sublethal effects</term>
<term>Tadpole</term>
<term>Tadpole mortality</term>
<term>Tadpole survival</term>
<term>Toxicity</term>
<term>Toxicology</term>
<term>Trophic</term>
<term>Trophic cascade</term>
<term>Water column</term>
<term>Water quality variables</term>
<term>Weekly applications</term>
<term>Zooplankton</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>écologie</term>
<term>Eau douce</term>
<term>Insecticide</term>
<term>Pesticide</term>
<term>Toxicologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">1. Recent ecotoxicology studies show that pesticide exposure can alter community composition, structure and function. Generally, community responses to pesticides are driven by trait‐ and density‐mediated indirect effects resulting from sublethal and lethal effects of pesticide exposure on vulnerable taxa. These effects depend upon the concentration of the pesticide and the frequency of exposure. 2. While more research is needed to understand community‐level responses to pesticide exposure, testing the effects of multitudes of registered chemicals on ecologically relevant communities is overwhelming. Recent reviews suggest that contaminants with similar modes of action should produce comparable community‐level responses because they have similar direct effects and, as a result, similar indirect effects; this hypothesis remains largely untested. 3. We subjected pond communities [containing zooplankton, phytoplankton, periphyton and leopard frog tadpoles (Rana pipiens)] to several applications (single applications of medium or high concentrations or weekly applications of a lower concentration) of two acetylcholine esterase inhibiting insecticides, malathion and carbaryl that have comparable toxicity for aquatic organisms. 4. We found that both insecticides cause comparable trophic cascades that affect zooplankton and phytoplankton abundances; however, their effects on amphibians diverged, especially when exposed to higher concentrations of insecticides. Malathion caused a trophic cascade beginning with a decline in cladocerans followed by increases in phytoplankton. At a medium concentration, this cascade also caused a subsequent decrease in periphyton. Carbaryl caused a similar trophic cascade with the highest application, a weak trophic cascade with the medium application and no cascade with smallest application. Malathion directly reduced tadpole survival at all concentrations. Survivors in the two higher treatments were larger at metamorphosis while survivors in the lowest treatments were smaller and developed slowly. In contrast, carbaryl was not directly toxic to tadpoles, but indirectly reduced survival because slow growth and development prevented some tadpoles from metamorphosing before the mesocosms dried at medium and low applications. 5. These results suggest that these common pesticides, which share the same mode of action, have similar effects on zooplankton and algae, but differences in the strength and timing of their effects on tadpoles reduce the generality of responses at higher trophic levels. Overall, general predictive models of contaminant effects could be improved by incorporating the relative timing of direct and indirect effects of exposure.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00A517 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 00A517 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     ISTEX:2A23B2F48FFF0600F79F158480487752D6D231BD
   |texte=   A tale of two pesticides: how common insecticides affect aquatic communities
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021