Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Superparamagnetic iron oxide (SPIO) labeling efficiency and subsequent MRI tracking of native cell populations pertinent to pulmonary heart valve tissue engineering studies

Identifieur interne : 007959 ( Main/Exploration ); précédent : 007958; suivant : 007960

Superparamagnetic iron oxide (SPIO) labeling efficiency and subsequent MRI tracking of native cell populations pertinent to pulmonary heart valve tissue engineering studies

Auteurs : Sharan Ramaswamy [États-Unis] ; Paul A. Schornack [États-Unis] ; Adam G. Smelko [États-Unis] ; Steven M. Boronyak [États-Unis] ; Julia Ivanova [États-Unis] ; John E. Mayer Jr [États-Unis] ; Michael S. Sacks [États-Unis]

Source :

RBID : ISTEX:E19666C3C76C3920FE2EF5012A3C90DCE1FCE77F

Descripteurs français

English descriptors

Abstract

The intimal and medial linings of the pulmonary artery consist largely of vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs), respectively. The migration of these cell types to a potential tissue‐engineered pulmonary valve (TEPV) implant process is therefore of interest in understanding the valve remodeling process. Visualization and cell tracking by MRI, which employs hypointense contrast achievable through the use of superparamagnetic iron oxide (SPIO) microparticles to label cells, provides a method in which this can be studied. We investigated the SPIO labeling efficiency of human VECs and VSMCs, and used two‐ and three‐dimensional gradient echo sequences to track the migration of these cells in agar gel constructs. Protamine sulfate (4.5 µg/mL) was used to enhance SPIO uptake and was found to have no influence on cell viability or proliferation. MRI experiments were initially performed using a 9.4‐T scanner. The results demonstrated that the spatial positions of hypointense spots were relatively unchanged over 12 days. Subsequent MR experiments performed at 7 T demonstrated that three‐dimensional imaging provided the best spatial resolution to assess cell fate. R2* maps were bright in SPIO cell‐encapsulated gels in comparison with unlabeled counterparts. Signal voids were ruled out as hypointense regions owing to the smooth exponential decay of T2* in these voxels. As a next step, we intend to use the SPIO cell labeling and MR protocols established in this study to assess whether hemodynamic stresses will alter the vascular cell migratory patterns. These studies will shed light on the mechanisms of vascular remodeling after TEPV implantation. Copyright © 2011 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nbm.1642


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Superparamagnetic iron oxide (SPIO) labeling efficiency and subsequent MRI tracking of native cell populations pertinent to pulmonary heart valve tissue engineering studies</title>
<author>
<name sortKey="Ramaswamy, Sharan" sort="Ramaswamy, Sharan" uniqKey="Ramaswamy S" first="Sharan" last="Ramaswamy">Sharan Ramaswamy</name>
</author>
<author>
<name sortKey="Schornack, Paul A" sort="Schornack, Paul A" uniqKey="Schornack P" first="Paul A." last="Schornack">Paul A. Schornack</name>
</author>
<author>
<name sortKey="Smelko, Adam G" sort="Smelko, Adam G" uniqKey="Smelko A" first="Adam G." last="Smelko">Adam G. Smelko</name>
</author>
<author>
<name sortKey="Boronyak, Steven M" sort="Boronyak, Steven M" uniqKey="Boronyak S" first="Steven M." last="Boronyak">Steven M. Boronyak</name>
</author>
<author>
<name sortKey="Ivanova, Julia" sort="Ivanova, Julia" uniqKey="Ivanova J" first="Julia" last="Ivanova">Julia Ivanova</name>
</author>
<author>
<name sortKey="Mayer Jr, John E" sort="Mayer Jr, John E" uniqKey="Mayer Jr J" first="John E." last="Mayer Jr">John E. Mayer Jr</name>
</author>
<author>
<name sortKey="Sacks, Michael S" sort="Sacks, Michael S" uniqKey="Sacks M" first="Michael S." last="Sacks">Michael S. Sacks</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E19666C3C76C3920FE2EF5012A3C90DCE1FCE77F</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/nbm.1642</idno>
<idno type="url">https://api.istex.fr/document/E19666C3C76C3920FE2EF5012A3C90DCE1FCE77F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003588</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003588</idno>
<idno type="wicri:Area/Istex/Curation">003588</idno>
<idno type="wicri:Area/Istex/Checkpoint">001306</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001306</idno>
<idno type="wicri:doubleKey">0952-3480:2012:Ramaswamy S:superparamagnetic:iron:oxide</idno>
<idno type="wicri:Area/Main/Merge">007E37</idno>
<idno type="wicri:Area/Main/Curation">007959</idno>
<idno type="wicri:Area/Main/Exploration">007959</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Superparamagnetic iron oxide (SPIO) labeling efficiency and subsequent MRI tracking of native cell populations pertinent to pulmonary heart valve tissue engineering studies</title>
<author>
<name sortKey="Ramaswamy, Sharan" sort="Ramaswamy, Sharan" uniqKey="Ramaswamy S" first="Sharan" last="Ramaswamy">Sharan Ramaswamy</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Florida International University, Miami, FL</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Correspondence address: Florida International University, Department of Biomedical Engineering, College of Engineering and Computing, 10555 W. Flagler Street, EC 2612, Miami, FL 33174</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schornack, Paul A" sort="Schornack, Paul A" uniqKey="Schornack P" first="Paul A." last="Schornack">Paul A. Schornack</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, University of Pittsburgh, Pittsburgh, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
<author>
<name sortKey="Smelko, Adam G" sort="Smelko, Adam G" uniqKey="Smelko A" first="Adam G." last="Smelko">Adam G. Smelko</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
<author>
<name sortKey="Boronyak, Steven M" sort="Boronyak, Steven M" uniqKey="Boronyak S" first="Steven M." last="Boronyak">Steven M. Boronyak</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ivanova, Julia" sort="Ivanova, Julia" uniqKey="Ivanova J" first="Julia" last="Ivanova">Julia Ivanova</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
<author>
<name sortKey="Mayer Jr, John E" sort="Mayer Jr, John E" uniqKey="Mayer Jr J" first="John E." last="Mayer Jr">John E. Mayer Jr</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sacks, Michael S" sort="Sacks, Michael S" uniqKey="Sacks M" first="Michael S." last="Sacks">Michael S. Sacks</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">NMR in Biomedicine</title>
<title level="j" type="sub">MRI in Tissue Engineering</title>
<title level="j" type="alt">NMR IN BIOMEDICINE</title>
<idno type="ISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<imprint>
<biblScope unit="vol">25</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="410">410</biblScope>
<biblScope unit="page" to="417">417</biblScope>
<biblScope unit="page-count">8</biblScope>
<publisher>John Wiley & Sons, Ltd</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2012-03">2012-03</date>
</imprint>
<idno type="ISSN">0952-3480</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0952-3480</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agar</term>
<term>Binding buffer</term>
<term>Biomed</term>
<term>Biomedical engineering</term>
<term>Bioreactor</term>
<term>Cell detection</term>
<term>Cell fate</term>
<term>Cell populations</term>
<term>Cell type</term>
<term>Cell types</term>
<term>Cell viability</term>
<term>Cellular</term>
<term>Cellular agar</term>
<term>Cellular imaging</term>
<term>Clinical studies</term>
<term>Clinical trials</term>
<term>Copyright</term>
<term>Electronic proceedings</term>
<term>Endosomal uptake</term>
<term>Entire stack</term>
<term>Full width</term>
<term>Gaussian excitation</term>
<term>Gradient echo acquisition</term>
<term>Gradient echo images</term>
<term>Gradient echo measurements</term>
<term>Heart valve application</term>
<term>Heart valve tissue engineering</term>
<term>Heart valve tissue engineering figure</term>
<term>Heart valve tissues</term>
<term>Heart valves</term>
<term>Higher concentration</term>
<term>Horizontal system</term>
<term>Human vecs</term>
<term>Human vsmcs</term>
<term>Hypointense</term>
<term>Hypointense regions</term>
<term>Imaging</term>
<term>Imaging experiments</term>
<term>Implantation</term>
<term>Intensity projection</term>
<term>Iron oxide</term>
<term>Iron oxide concentration</term>
<term>Iron oxide content</term>
<term>Iron oxide microparticles</term>
<term>Iron oxide particles</term>
<term>John wiley sons</term>
<term>Magnetic resonance imaging</term>
<term>Mechanical conditioning experiments</term>
<term>Medial linings</term>
<term>Mesenchymal</term>
<term>Microparticles</term>
<term>Migratory processes</term>
<term>Multislice gradient echo measurements</term>
<term>Muscle cells</term>
<term>National institutes</term>
<term>Native cell populations</term>
<term>Oxide</term>
<term>Pediatric population</term>
<term>Preliminary work</term>
<term>Previous work</term>
<term>Progenitor cells</term>
<term>Protamine</term>
<term>Protamine sulfate</term>
<term>Protamine sulfate complexed</term>
<term>Protamine sulfate concentration</term>
<term>Protamine sulfate concentrations</term>
<term>Prussian slides</term>
<term>Pulmonary artery</term>
<term>Pulmonary valves</term>
<term>Ramaswamy</term>
<term>Relaxation rate</term>
<term>Resonance imaging</term>
<term>Scaffold environment</term>
<term>Signal decay</term>
<term>Signal intensity</term>
<term>Smooth muscle cells</term>
<term>Spio</term>
<term>Spio microparticles</term>
<term>Spio particles</term>
<term>Spio uptake</term>
<term>Sulfate</term>
<term>Superparamagnetic</term>
<term>Superparamagnetic iron oxide</term>
<term>Superparamagnetic iron oxide nanoparticles</term>
<term>Temporal resolution</term>
<term>Tepv</term>
<term>Tepv implantation</term>
<term>Tepv scaffolds</term>
<term>Tepvs</term>
<term>Tissue engineering</term>
<term>Tissue formation</term>
<term>Unlabeled</term>
<term>Unlabeled cells</term>
<term>Unlabeled counterparts</term>
<term>Unlabeled vecs</term>
<term>Unlabeled vsmcs</term>
<term>Unstained slides</term>
<term>Uorescein isothiocyanate</term>
<term>Valve</term>
<term>Vascular</term>
<term>Vecs</term>
<term>Viability</term>
<term>Vivo</term>
<term>Voxels</term>
<term>Vsmc</term>
<term>Vsmcs</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Agar</term>
<term>Binding buffer</term>
<term>Biomed</term>
<term>Biomedical engineering</term>
<term>Bioreactor</term>
<term>Cell detection</term>
<term>Cell fate</term>
<term>Cell populations</term>
<term>Cell type</term>
<term>Cell types</term>
<term>Cell viability</term>
<term>Cellular</term>
<term>Cellular agar</term>
<term>Cellular imaging</term>
<term>Clinical studies</term>
<term>Clinical trials</term>
<term>Copyright</term>
<term>Electronic proceedings</term>
<term>Endosomal uptake</term>
<term>Entire stack</term>
<term>Full width</term>
<term>Gaussian excitation</term>
<term>Gradient echo acquisition</term>
<term>Gradient echo images</term>
<term>Gradient echo measurements</term>
<term>Heart valve application</term>
<term>Heart valve tissue engineering</term>
<term>Heart valve tissue engineering figure</term>
<term>Heart valve tissues</term>
<term>Heart valves</term>
<term>Higher concentration</term>
<term>Horizontal system</term>
<term>Human vecs</term>
<term>Human vsmcs</term>
<term>Hypointense</term>
<term>Hypointense regions</term>
<term>Imaging</term>
<term>Imaging experiments</term>
<term>Implantation</term>
<term>Intensity projection</term>
<term>Iron oxide</term>
<term>Iron oxide concentration</term>
<term>Iron oxide content</term>
<term>Iron oxide microparticles</term>
<term>Iron oxide particles</term>
<term>John wiley sons</term>
<term>Magnetic resonance imaging</term>
<term>Mechanical conditioning experiments</term>
<term>Medial linings</term>
<term>Mesenchymal</term>
<term>Microparticles</term>
<term>Migratory processes</term>
<term>Multislice gradient echo measurements</term>
<term>Muscle cells</term>
<term>National institutes</term>
<term>Native cell populations</term>
<term>Oxide</term>
<term>Pediatric population</term>
<term>Preliminary work</term>
<term>Previous work</term>
<term>Progenitor cells</term>
<term>Protamine</term>
<term>Protamine sulfate</term>
<term>Protamine sulfate complexed</term>
<term>Protamine sulfate concentration</term>
<term>Protamine sulfate concentrations</term>
<term>Prussian slides</term>
<term>Pulmonary artery</term>
<term>Pulmonary valves</term>
<term>Ramaswamy</term>
<term>Relaxation rate</term>
<term>Resonance imaging</term>
<term>Scaffold environment</term>
<term>Signal decay</term>
<term>Signal intensity</term>
<term>Smooth muscle cells</term>
<term>Spio</term>
<term>Spio microparticles</term>
<term>Spio particles</term>
<term>Spio uptake</term>
<term>Sulfate</term>
<term>Superparamagnetic</term>
<term>Superparamagnetic iron oxide</term>
<term>Superparamagnetic iron oxide nanoparticles</term>
<term>Temporal resolution</term>
<term>Tepv</term>
<term>Tepv implantation</term>
<term>Tepv scaffolds</term>
<term>Tepvs</term>
<term>Tissue engineering</term>
<term>Tissue formation</term>
<term>Unlabeled</term>
<term>Unlabeled cells</term>
<term>Unlabeled counterparts</term>
<term>Unlabeled vecs</term>
<term>Unlabeled vsmcs</term>
<term>Unstained slides</term>
<term>Uorescein isothiocyanate</term>
<term>Valve</term>
<term>Vascular</term>
<term>Vecs</term>
<term>Viability</term>
<term>Vivo</term>
<term>Voxels</term>
<term>Vsmc</term>
<term>Vsmcs</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Droit d'auteur</term>
<term>Oxyde</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The intimal and medial linings of the pulmonary artery consist largely of vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs), respectively. The migration of these cell types to a potential tissue‐engineered pulmonary valve (TEPV) implant process is therefore of interest in understanding the valve remodeling process. Visualization and cell tracking by MRI, which employs hypointense contrast achievable through the use of superparamagnetic iron oxide (SPIO) microparticles to label cells, provides a method in which this can be studied. We investigated the SPIO labeling efficiency of human VECs and VSMCs, and used two‐ and three‐dimensional gradient echo sequences to track the migration of these cells in agar gel constructs. Protamine sulfate (4.5 µg/mL) was used to enhance SPIO uptake and was found to have no influence on cell viability or proliferation. MRI experiments were initially performed using a 9.4‐T scanner. The results demonstrated that the spatial positions of hypointense spots were relatively unchanged over 12 days. Subsequent MR experiments performed at 7 T demonstrated that three‐dimensional imaging provided the best spatial resolution to assess cell fate. R2* maps were bright in SPIO cell‐encapsulated gels in comparison with unlabeled counterparts. Signal voids were ruled out as hypointense regions owing to the smooth exponential decay of T2* in these voxels. As a next step, we intend to use the SPIO cell labeling and MR protocols established in this study to assess whether hemodynamic stresses will alter the vascular cell migratory patterns. These studies will shed light on the mechanisms of vascular remodeling after TEPV implantation. Copyright © 2011 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
<li>Massachusetts</li>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>Pittsburgh</li>
</settlement>
<orgName>
<li>Université de Pittsburgh</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Ramaswamy, Sharan" sort="Ramaswamy, Sharan" uniqKey="Ramaswamy S" first="Sharan" last="Ramaswamy">Sharan Ramaswamy</name>
</region>
<name sortKey="Boronyak, Steven M" sort="Boronyak, Steven M" uniqKey="Boronyak S" first="Steven M." last="Boronyak">Steven M. Boronyak</name>
<name sortKey="Ivanova, Julia" sort="Ivanova, Julia" uniqKey="Ivanova J" first="Julia" last="Ivanova">Julia Ivanova</name>
<name sortKey="Mayer Jr, John E" sort="Mayer Jr, John E" uniqKey="Mayer Jr J" first="John E." last="Mayer Jr">John E. Mayer Jr</name>
<name sortKey="Ramaswamy, Sharan" sort="Ramaswamy, Sharan" uniqKey="Ramaswamy S" first="Sharan" last="Ramaswamy">Sharan Ramaswamy</name>
<name sortKey="Ramaswamy, Sharan" sort="Ramaswamy, Sharan" uniqKey="Ramaswamy S" first="Sharan" last="Ramaswamy">Sharan Ramaswamy</name>
<name sortKey="Ramaswamy, Sharan" sort="Ramaswamy, Sharan" uniqKey="Ramaswamy S" first="Sharan" last="Ramaswamy">Sharan Ramaswamy</name>
<name sortKey="Sacks, Michael S" sort="Sacks, Michael S" uniqKey="Sacks M" first="Michael S." last="Sacks">Michael S. Sacks</name>
<name sortKey="Schornack, Paul A" sort="Schornack, Paul A" uniqKey="Schornack P" first="Paul A." last="Schornack">Paul A. Schornack</name>
<name sortKey="Smelko, Adam G" sort="Smelko, Adam G" uniqKey="Smelko A" first="Adam G." last="Smelko">Adam G. Smelko</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007959 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 007959 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:E19666C3C76C3920FE2EF5012A3C90DCE1FCE77F
   |texte=   Superparamagnetic iron oxide (SPIO) labeling efficiency and subsequent MRI tracking of native cell populations pertinent to pulmonary heart valve tissue engineering studies
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021