Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Meta‐Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes

Identifieur interne : 003155 ( Istex/Corpus ); précédent : 003154; suivant : 003156

A Meta‐Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes

Auteurs : Jeremy M. Gernand ; Elizabeth A. Casman

Source :

RBID : ISTEX:CFB9ADF5408CEC25EC46A94D8D48AF3A7CEFBC25

Abstract

This article presents a regression‐tree‐based meta‐analysis of rodent pulmonary toxicity studies of uncoated, nonfunctionalized carbon nanotube (CNT) exposure. The resulting analysis provides quantitative estimates of the contribution of CNT attributes (impurities, physical dimensions, and aggregation) to pulmonary toxicity indicators in bronchoalveolar lavage fluid: neutrophil and macrophage count, and lactate dehydrogenase and total protein concentrations. The method employs classification and regression tree (CART) models, techniques that are relatively insensitive to data defects that impair other types of regression analysis: high dimensionality, nonlinearity, correlated variables, and significant quantities of missing values. Three types of analysis are presented: the RT, the random forest (RF), and a random‐forest‐based dose‐response model. The RT shows the best single model supported by all the data and typically contains a small number of variables. The RF shows how much variance reduction is associated with every variable in the data set. The dose‐response model is used to isolate the effects of CNT attributes from the CNT dose, showing the shift in the dose‐response caused by the attribute across the measured range of CNT doses. It was found that the CNT attributes that contribute the most to pulmonary toxicity were metallic impurities (cobalt significantly increased observed toxicity, while other impurities had mixed effects), CNT length (negatively correlated with most toxicity indicators), CNT diameter (significantly positively associated with toxicity), and aggregate size (negatively correlated with cell damage indicators and positively correlated with immune response indicators). Increasing CNT N2‐BET‐specific surface area decreased toxicity indicators.

Url:
DOI: 10.1111/risa.12109

Links to Exploration step

ISTEX:CFB9ADF5408CEC25EC46A94D8D48AF3A7CEFBC25

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Meta‐Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes</title>
<author>
<name sortKey="Gernand, Jeremy M" sort="Gernand, Jeremy M" uniqKey="Gernand J" first="Jeremy M." last="Gernand">Jeremy M. Gernand</name>
<affiliation>
<mods:affiliation>Engineering and Public Policy, Carnegie Mellon University, PA, Pittsburgh, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Casman, Elizabeth A" sort="Casman, Elizabeth A" uniqKey="Casman E" first="Elizabeth A." last="Casman">Elizabeth A. Casman</name>
<affiliation>
<mods:affiliation>Engineering and Public Policy, Carnegie Mellon University, PA, Pittsburgh, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: casman@andrew.cmu.edu</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CFB9ADF5408CEC25EC46A94D8D48AF3A7CEFBC25</idno>
<date when="2014" year="2014">2014</date>
<idno type="doi">10.1111/risa.12109</idno>
<idno type="url">https://api.istex.fr/document/CFB9ADF5408CEC25EC46A94D8D48AF3A7CEFBC25/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003155</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003155</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">A Meta‐Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes</title>
<author>
<name sortKey="Gernand, Jeremy M" sort="Gernand, Jeremy M" uniqKey="Gernand J" first="Jeremy M." last="Gernand">Jeremy M. Gernand</name>
<affiliation>
<mods:affiliation>Engineering and Public Policy, Carnegie Mellon University, PA, Pittsburgh, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Casman, Elizabeth A" sort="Casman, Elizabeth A" uniqKey="Casman E" first="Elizabeth A." last="Casman">Elizabeth A. Casman</name>
<affiliation>
<mods:affiliation>Engineering and Public Policy, Carnegie Mellon University, PA, Pittsburgh, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: casman@andrew.cmu.edu</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Risk Analysis</title>
<title level="j" type="alt">RISK ANALYSIS</title>
<idno type="ISSN">0272-4332</idno>
<idno type="eISSN">1539-6924</idno>
<imprint>
<biblScope unit="vol">34</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="583">583</biblScope>
<biblScope unit="page" to="597">597</biblScope>
<biblScope unit="page-count">15</biblScope>
<date type="published" when="2014-03">2014-03</date>
</imprint>
<idno type="ISSN">0272-4332</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0272-4332</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">This article presents a regression‐tree‐based meta‐analysis of rodent pulmonary toxicity studies of uncoated, nonfunctionalized carbon nanotube (CNT) exposure. The resulting analysis provides quantitative estimates of the contribution of CNT attributes (impurities, physical dimensions, and aggregation) to pulmonary toxicity indicators in bronchoalveolar lavage fluid: neutrophil and macrophage count, and lactate dehydrogenase and total protein concentrations. The method employs classification and regression tree (CART) models, techniques that are relatively insensitive to data defects that impair other types of regression analysis: high dimensionality, nonlinearity, correlated variables, and significant quantities of missing values. Three types of analysis are presented: the RT, the random forest (RF), and a random‐forest‐based dose‐response model. The RT shows the best single model supported by all the data and typically contains a small number of variables. The RF shows how much variance reduction is associated with every variable in the data set. The dose‐response model is used to isolate the effects of CNT attributes from the CNT dose, showing the shift in the dose‐response caused by the attribute across the measured range of CNT doses. It was found that the CNT attributes that contribute the most to pulmonary toxicity were metallic impurities (cobalt significantly increased observed toxicity, while other impurities had mixed effects), CNT length (negatively correlated with most toxicity indicators), CNT diameter (significantly positively associated with toxicity), and aggregate size (negatively correlated with cell damage indicators and positively correlated with immune response indicators). Increasing CNT N2‐BET‐specific surface area decreased toxicity indicators.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Jeremy M. Gernand</name>
<affiliations>
<json:string>Engineering and Public Policy, Carnegie Mellon University, PA, Pittsburgh, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Elizabeth A. Casman</name>
<affiliations>
<json:string>Engineering and Public Policy, Carnegie Mellon University, PA, Pittsburgh, USA</json:string>
<json:string>E-mail: casman@andrew.cmu.edu</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Carbon nanotubes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>inhalation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>meta‐analysis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>regression tree</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>toxicity</value>
</json:item>
</subject>
<articleId>
<json:string>RISA12109</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-M9F1205S-K</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>This article presents a regression‐tree‐based meta‐analysis of rodent pulmonary toxicity studies of uncoated, nonfunctionalized carbon nanotube (CNT) exposure. The resulting analysis provides quantitative estimates of the contribution of CNT attributes (impurities, physical dimensions, and aggregation) to pulmonary toxicity indicators in bronchoalveolar lavage fluid: neutrophil and macrophage count, and lactate dehydrogenase and total protein concentrations. The method employs classification and regression tree (CART) models, techniques that are relatively insensitive to data defects that impair other types of regression analysis: high dimensionality, nonlinearity, correlated variables, and significant quantities of missing values. Three types of analysis are presented: the RT, the random forest (RF), and a random‐forest‐based dose‐response model. The RT shows the best single model supported by all the data and typically contains a small number of variables. The RF shows how much variance reduction is associated with every variable in the data set. The dose‐response model is used to isolate the effects of CNT attributes from the CNT dose, showing the shift in the dose‐response caused by the attribute across the measured range of CNT doses. It was found that the CNT attributes that contribute the most to pulmonary toxicity were metallic impurities (cobalt significantly increased observed toxicity, while other impurities had mixed effects), CNT length (negatively correlated with most toxicity indicators), CNT diameter (significantly positively associated with toxicity), and aggregate size (negatively correlated with cell damage indicators and positively correlated with immune response indicators). Increasing CNT N2‐BET‐specific surface area decreased toxicity indicators.</abstract>
<qualityIndicators>
<score>9.904</score>
<pdfWordCount>7763</pdfWordCount>
<pdfCharCount>51588</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>15</pdfPageCount>
<pdfPageSize>594 x 783 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>242</abstractWordCount>
<abstractCharCount>1799</abstractCharCount>
<keywordCount>5</keywordCount>
</qualityIndicators>
<title>A Meta‐Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Risk Analysis</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1539-6924</json:string>
</doi>
<issn>
<json:string>0272-4332</json:string>
</issn>
<eissn>
<json:string>1539-6924</json:string>
</eissn>
<publisherId>
<json:string>RISA</json:string>
</publisherId>
<volume>34</volume>
<issue>3</issue>
<pages>
<first>583</first>
<last>597</last>
<total>15</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Original Research Article</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/WNG-M9F1205S-K</json:string>
</ark>
<publicationDate>2014</publicationDate>
<copyrightDate>2014</copyrightDate>
<doi>
<json:string>10.1111/risa.12109</json:string>
</doi>
<id>CFB9ADF5408CEC25EC46A94D8D48AF3A7CEFBC25</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/CFB9ADF5408CEC25EC46A94D8D48AF3A7CEFBC25/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/CFB9ADF5408CEC25EC46A94D8D48AF3A7CEFBC25/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/CFB9ADF5408CEC25EC46A94D8D48AF3A7CEFBC25/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">A Meta‐Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>© 2013 Society for Risk Analysis</licence>
</availability>
<date type="published" when="2014-03"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">A Meta‐Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes</title>
<title level="a" type="short">A Meta‐Analysis of Carbon Nanotube Pulmonary Toxicity Studies</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Jeremy M.</forename>
<surname>Gernand</surname>
</persName>
<affiliation>
<orgName>Engineering and Public Policy</orgName>
<orgName>Carnegie Mellon University</orgName>
<address>
<settlement type="city">Pittsburgh</settlement>
<region>PA</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001" role="corresp">
<persName>
<forename type="first">Elizabeth A.</forename>
<surname>Casman</surname>
</persName>
<affiliation>
<orgName>Engineering and Public Policy</orgName>
<orgName>Carnegie Mellon University</orgName>
<address>
<settlement type="city">Pittsburgh</settlement>
<region>PA</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>Address correspondence to Elizabeth Casman, Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Ave., Baker Hall 129, Pittsburgh, PA 15213, USA; tel: 412‐268‐3756; casman@andrew.cmu.edu.</affiliation>
</author>
<idno type="istex">CFB9ADF5408CEC25EC46A94D8D48AF3A7CEFBC25</idno>
<idno type="ark">ark:/67375/WNG-M9F1205S-K</idno>
<idno type="DOI">10.1111/risa.12109</idno>
<idno type="unit">RISA12109</idno>
<idno type="toTypesetVersion">file:RISA.RISA12109.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Risk Analysis</title>
<title level="j" type="alt">RISK ANALYSIS</title>
<idno type="pISSN">0272-4332</idno>
<idno type="eISSN">1539-6924</idno>
<idno type="book-DOI">10.1111/(ISSN)1539-6924</idno>
<idno type="book-part-DOI">10.1111/risa.2014.34.issue-3</idno>
<idno type="product">RISA</idno>
<imprint>
<biblScope unit="vol">34</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="583">583</biblScope>
<biblScope unit="page" to="597">597</biblScope>
<biblScope unit="page-count">15</biblScope>
<date type="published" when="2014-03"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p>This article presents a regression‐tree‐based meta‐analysis of rodent pulmonary toxicity studies of uncoated, nonfunctionalized carbon nanotube (CNT) exposure. The resulting analysis provides quantitative estimates of the contribution of CNT attributes (impurities, physical dimensions, and aggregation) to pulmonary toxicity indicators in bronchoalveolar lavage fluid: neutrophil and macrophage count, and lactate dehydrogenase and total protein concentrations. The method employs classification and regression tree (CART) models, techniques that are relatively insensitive to data defects that impair other types of regression analysis: high dimensionality, nonlinearity, correlated variables, and significant quantities of missing values. Three types of analysis are presented: the RT, the random forest (RF), and a random‐forest‐based dose‐response model. The RT shows the best single model supported by all the data and typically contains a small number of variables. The RF shows how much variance reduction is associated with every variable in the data set. The dose‐response model is used to isolate the effects of CNT attributes from the CNT dose, showing the shift in the dose‐response caused by the attribute across the measured range of CNT doses. It was found that the CNT attributes that contribute the most to pulmonary toxicity were metallic impurities (cobalt significantly increased observed toxicity, while other impurities had mixed effects), CNT length (negatively correlated with most toxicity indicators), CNT diameter (significantly positively associated with toxicity), and aggregate size (negatively correlated with cell damage indicators and positively correlated with immune response indicators). Increasing CNT N
<hi rend="subscript">2</hi>
‐BET‐specific surface area decreased toxicity indicators.</p>
</abstract>
<textClass>
<keywords>
<term xml:id="risa12109-kwd-0001">Carbon nanotubes</term>
<term xml:id="risa12109-kwd-0002">inhalation</term>
<term xml:id="risa12109-kwd-0003">meta‐analysis</term>
<term xml:id="risa12109-kwd-0004">regression tree</term>
<term xml:id="risa12109-kwd-0005">toxicity</term>
</keywords>
<keywords rend="articleCategory">
<term>Original Research Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Original Research Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en" xml:id="RISA12109">
<header>
<publicationMeta level="product">
<doi origin="wiley" registered="yes">10.1111/(ISSN)1539-6924</doi>
<issn type="print">0272-4332</issn>
<issn type="electronic">1539-6924</issn>
<idGroup>
<id type="product" value="RISA"></id>
</idGroup>
<titleGroup>
<title type="main" sort="RISK ANALYSIS">Risk Analysis</title>
<title type="short">Risk Analysis</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="03103">
<doi>10.1111/risa.2014.34.issue-3</doi>
<copyright ownership="thirdParty">© 2014 Society for Risk Analysis</copyright>
<numberingGroup>
<numbering type="journalVolume" number="34">34</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="2014-03">March 2014</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="140" type="article" status="forIssue">
<doi origin="wiley">10.1111/risa.12109</doi>
<idGroup>
<id type="unit" value="RISA12109"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="15"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Original Research Article</title>
<title type="tocHeading1">Original Research Articles</title>
</titleGroup>
<copyright ownership="thirdParty">© 2013 Society for Risk Analysis</copyright>
<eventGroup>
<event type="xmlCreated" agent="Aptara" date="2013-08-14"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.3.0 mode:FullText" date="2014-03-21"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2013-09-11"></event>
<event type="firstOnline" date="2013-09-11"></event>
<event type="publishedOnlineFinalForm" date="2014-03-21"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-07"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">583</numbering>
<numbering type="pageLast">597</numbering>
</numberingGroup>
<correspondenceTo>Address correspondence to Elizabeth Casman, Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Ave., Baker Hall 129, Pittsburgh, PA 15213, USA; tel: 412‐268‐3756;
<email>casman@andrew.cmu.edu</email>
.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:RISA.RISA12109.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">A Meta‐Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes</title>
<title type="shortAuthors">Gernand and Casman</title>
<title type="short">A Meta‐Analysis of Carbon Nanotube Pulmonary Toxicity Studies</title>
</titleGroup>
<creators>
<creator xml:id="risa12109-cr-0001" creatorRole="author" affiliationRef="#risa12109-aff-0001">
<personName>
<givenNames>Jeremy M.</givenNames>
<familyName>Gernand</familyName>
</personName>
</creator>
<creator xml:id="risa12109-cr-0002" creatorRole="author" affiliationRef="#risa12109-aff-0001" corresponding="yes">
<personName>
<givenNames>Elizabeth A.</givenNames>
<familyName>Casman</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="risa12109-aff-0001" countryCode="US">
<orgDiv>Engineering and Public Policy</orgDiv>
<orgName>Carnegie Mellon University</orgName>
<address>
<city>Pittsburgh</city>
<countryPart>PA</countryPart>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="risa12109-kwd-0001">Carbon nanotubes</keyword>
<keyword xml:id="risa12109-kwd-0002">inhalation</keyword>
<keyword xml:id="risa12109-kwd-0003">meta‐analysis</keyword>
<keyword xml:id="risa12109-kwd-0004">regression tree</keyword>
<keyword xml:id="risa12109-kwd-0005">toxicity</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>National Science Foundation (NSF)</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Environmental Protection Agency (EPA)</fundingAgency>
<fundingNumber>EF‐0830093</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Center for the Environmental Implications of NanoTechnology (CEINT)</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Carnegie Institute of Technology (CIT) Dean's Fellowship</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Prem Narain Srivastava Legacy Fellowship</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Neil and Jo Bushnell Fellowship</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Steinbrenner Institute for Environmental Education and Research (SEER)</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main">
<p>This article presents a regression‐tree‐based meta‐analysis of rodent pulmonary toxicity studies of uncoated, nonfunctionalized carbon nanotube (CNT) exposure. The resulting analysis provides quantitative estimates of the contribution of CNT attributes (impurities, physical dimensions, and aggregation) to pulmonary toxicity indicators in bronchoalveolar lavage fluid: neutrophil and macrophage count, and lactate dehydrogenase and total protein concentrations. The method employs classification and regression tree (CART) models, techniques that are relatively insensitive to data defects that impair other types of regression analysis: high dimensionality, nonlinearity, correlated variables, and significant quantities of missing values. Three types of analysis are presented: the RT, the random forest (RF), and a random‐forest‐based dose‐response model. The RT shows the best single model supported by all the data and typically contains a small number of variables. The RF shows how much variance reduction is associated with every variable in the data set. The dose‐response model is used to isolate the effects of CNT attributes from the CNT dose, showing the shift in the dose‐response caused by the attribute across the measured range of CNT doses. It was found that the CNT attributes that contribute the most to pulmonary toxicity were metallic impurities (cobalt significantly increased observed toxicity, while other impurities had mixed effects), CNT length (negatively correlated with most toxicity indicators), CNT diameter (significantly positively associated with toxicity), and aggregate size (negatively correlated with cell damage indicators and positively correlated with immune response indicators). Increasing CNT N
<sub>2</sub>
‐BET‐specific surface area decreased toxicity indicators.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A Meta‐Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>A Meta‐Analysis of Carbon Nanotube Pulmonary Toxicity Studies</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>A Meta‐Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeremy M.</namePart>
<namePart type="family">Gernand</namePart>
<affiliation>Engineering and Public Policy, Carnegie Mellon University, PA, Pittsburgh, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth A.</namePart>
<namePart type="family">Casman</namePart>
<affiliation>Engineering and Public Policy, Carnegie Mellon University, PA, Pittsburgh, USA</affiliation>
<affiliation>E-mail: casman@andrew.cmu.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2014-03</dateIssued>
<dateCreated encoding="w3cdtf">2013-08-14</dateCreated>
<copyrightDate encoding="w3cdtf">2014</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract>This article presents a regression‐tree‐based meta‐analysis of rodent pulmonary toxicity studies of uncoated, nonfunctionalized carbon nanotube (CNT) exposure. The resulting analysis provides quantitative estimates of the contribution of CNT attributes (impurities, physical dimensions, and aggregation) to pulmonary toxicity indicators in bronchoalveolar lavage fluid: neutrophil and macrophage count, and lactate dehydrogenase and total protein concentrations. The method employs classification and regression tree (CART) models, techniques that are relatively insensitive to data defects that impair other types of regression analysis: high dimensionality, nonlinearity, correlated variables, and significant quantities of missing values. Three types of analysis are presented: the RT, the random forest (RF), and a random‐forest‐based dose‐response model. The RT shows the best single model supported by all the data and typically contains a small number of variables. The RF shows how much variance reduction is associated with every variable in the data set. The dose‐response model is used to isolate the effects of CNT attributes from the CNT dose, showing the shift in the dose‐response caused by the attribute across the measured range of CNT doses. It was found that the CNT attributes that contribute the most to pulmonary toxicity were metallic impurities (cobalt significantly increased observed toxicity, while other impurities had mixed effects), CNT length (negatively correlated with most toxicity indicators), CNT diameter (significantly positively associated with toxicity), and aggregate size (negatively correlated with cell damage indicators and positively correlated with immune response indicators). Increasing CNT N2‐BET‐specific surface area decreased toxicity indicators.</abstract>
<note type="funding">National Science Foundation (NSF)</note>
<note type="funding">Environmental Protection Agency (EPA) - No. EF‐0830093; </note>
<note type="funding">Center for the Environmental Implications of NanoTechnology (CEINT)</note>
<note type="funding">Carnegie Institute of Technology (CIT) Dean's Fellowship</note>
<note type="funding">Prem Narain Srivastava Legacy Fellowship</note>
<note type="funding">Neil and Jo Bushnell Fellowship</note>
<note type="funding">Steinbrenner Institute for Environmental Education and Research (SEER)</note>
<subject>
<genre>keywords</genre>
<topic>Carbon nanotubes</topic>
<topic>inhalation</topic>
<topic>meta‐analysis</topic>
<topic>regression tree</topic>
<topic>toxicity</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Risk Analysis</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Risk Analysis</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Original Research Article</topic>
</subject>
<identifier type="ISSN">0272-4332</identifier>
<identifier type="eISSN">1539-6924</identifier>
<identifier type="DOI">10.1111/(ISSN)1539-6924</identifier>
<identifier type="PublisherID">RISA</identifier>
<part>
<date>2014</date>
<detail type="volume">
<caption>vol.</caption>
<number>34</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>583</start>
<end>597</end>
<total>15</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">CFB9ADF5408CEC25EC46A94D8D48AF3A7CEFBC25</identifier>
<identifier type="ark">ark:/67375/WNG-M9F1205S-K</identifier>
<identifier type="DOI">10.1111/risa.12109</identifier>
<identifier type="ArticleID">RISA12109</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2014 Society for Risk Analysis© 2013 Society for Risk Analysis</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/CFB9ADF5408CEC25EC46A94D8D48AF3A7CEFBC25/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003155 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003155 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:CFB9ADF5408CEC25EC46A94D8D48AF3A7CEFBC25
   |texte=   A Meta‐Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021