Serveur d'exploration sur Caltech

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simple hydrodynamical Simulations of the Circumnuclear Disk

Identifieur interne : 000173 ( Main/Corpus ); précédent : 000172; suivant : 000174

Simple hydrodynamical Simulations of the Circumnuclear Disk

Auteurs : Robert F. Coker ; Michol H. Christopher ; Susan R. Stolovy ; Nick Z. Scoville

Source :

RBID : ISTEX:695ED1DF9E4D0518E678ACF50B1E87299A7E30E4

English descriptors

Abstract

The “circumnuclear disk” (CND) is a dense, clumpy, asymmetric ring‐like feature centered on Sgr A*. The outer edge of the CND is not distinct but the disk extends for more than 7 pc; the distinct inner edge, at a radius of ≃1.5 pc, surrounds the “mini‐spiral” of the HII region, Sgr A West. We present simple 3D hydrodynamical models of the formation and evolution of the CND from multiple selfgravitating infalling clouds and compare the results with recent observations. We assume the clouds are initially Bonner‐Ebert spheres, in equilibrium with a hot confining inter‐cloud medium. We include the gravitational potential due to the point‐mass of Sgr A* as well as the extended mass distribution of the underlying stellar population. We also include the effects of the ram pressure due to the stellar winds from the central cluster of early‐type stars. A single spherically symmetric cloud cannot reproduce the clumpy morphology of the CND; multiple clouds on diverse trajectories are required so that cloud‐cloud collisions can circularize the clouds' orbits while maintaining a clumpy morphology. Collisions also serve to compress the clouds, delaying tidal disruption while potentially hastening gravitational collapse. Low density clumps are disrupted before reaching the inner CND radius, forming short‐lived arcs. The outer parts of more massive clumps get tidally stripped, forming long‐lived low‐density wide‐angle arcs, while their cores potentially undergo gravitational collapse. The fine balance between resisting tidal disruption and preventing gravitational collapse implies that most if not all clumps are not stable for much more than an orbit. Thus, in order for the CND to be a long‐lived clumpy object, it must be continually fed by additional in‐falling clouds. Clouds that survive to small radii are likely to be the sites of present or future star formation. However, within a few parsecs of Sgr A*, the stellar winds decelerate any in‐falling cloud so that the wind‐cloud interface becomes Rayleigh‐Taylor unstable, potentially disrupting the cloud and inhibiting star formation.

Url:
DOI: 10.1002/asna.200385057

Links to Exploration step

ISTEX:695ED1DF9E4D0518E678ACF50B1E87299A7E30E4

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Simple hydrodynamical Simulations of the Circumnuclear Disk</title>
<author>
<name sortKey="Coker, Robert F" sort="Coker, Robert F" uniqKey="Coker R" first="Robert F." last="Coker">Robert F. Coker</name>
<affiliation>
<mods:affiliation>Los Alamos National Laboratory, T‐087, Los Alamos, NM 87545</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Christopher, Michol H" sort="Christopher, Michol H" uniqKey="Christopher M" first="Michol H." last="Christopher">Michol H. Christopher</name>
<affiliation>
<mods:affiliation>Caltech, Department of Astronomy, 105‐24, Pasadena, CA 91125</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stolovy, Susan R" sort="Stolovy, Susan R" uniqKey="Stolovy S" first="Susan R." last="Stolovy">Susan R. Stolovy</name>
<affiliation>
<mods:affiliation>SIRTF Science Center, Caltech, 314‐6, Pasadena, CA 91125</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scoville, Nick Z" sort="Scoville, Nick Z" uniqKey="Scoville N" first="Nick Z." last="Scoville">Nick Z. Scoville</name>
<affiliation>
<mods:affiliation>Caltech, Department of Astronomy, 105‐24, Pasadena, CA 91125</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:695ED1DF9E4D0518E678ACF50B1E87299A7E30E4</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1002/asna.200385057</idno>
<idno type="url">https://api.istex.fr/document/695ED1DF9E4D0518E678ACF50B1E87299A7E30E4/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000173</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Simple hydrodynamical Simulations of the Circumnuclear Disk</title>
<author>
<name sortKey="Coker, Robert F" sort="Coker, Robert F" uniqKey="Coker R" first="Robert F." last="Coker">Robert F. Coker</name>
<affiliation>
<mods:affiliation>Los Alamos National Laboratory, T‐087, Los Alamos, NM 87545</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Christopher, Michol H" sort="Christopher, Michol H" uniqKey="Christopher M" first="Michol H." last="Christopher">Michol H. Christopher</name>
<affiliation>
<mods:affiliation>Caltech, Department of Astronomy, 105‐24, Pasadena, CA 91125</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stolovy, Susan R" sort="Stolovy, Susan R" uniqKey="Stolovy S" first="Susan R." last="Stolovy">Susan R. Stolovy</name>
<affiliation>
<mods:affiliation>SIRTF Science Center, Caltech, 314‐6, Pasadena, CA 91125</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scoville, Nick Z" sort="Scoville, Nick Z" uniqKey="Scoville N" first="Nick Z." last="Scoville">Nick Z. Scoville</name>
<affiliation>
<mods:affiliation>Caltech, Department of Astronomy, 105‐24, Pasadena, CA 91125</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Astronomische Nachrichten</title>
<title level="j" type="sub">Astronomical Notes</title>
<title level="j" type="abbrev">Astron. Nachr.</title>
<idno type="ISSN">0004-6337</idno>
<idno type="eISSN">1521-3994</idno>
<imprint>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Berlin</pubPlace>
<date type="published" when="2003-09">2003-09</date>
<biblScope unit="volume">324</biblScope>
<biblScope unit="issue">S1</biblScope>
<biblScope unit="supplement">1</biblScope>
<biblScope unit="page" from="629">629</biblScope>
<biblScope unit="page" to="634">634</biblScope>
</imprint>
<idno type="ISSN">0004-6337</idno>
</series>
<idno type="istex">695ED1DF9E4D0518E678ACF50B1E87299A7E30E4</idno>
<idno type="DOI">10.1002/asna.200385057</idno>
<idno type="ArticleID">ASNA200385057</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0004-6337</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>GMC</term>
<term>Sgr A</term>
<term>simulation</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The “circumnuclear disk” (CND) is a dense, clumpy, asymmetric ring‐like feature centered on Sgr A*. The outer edge of the CND is not distinct but the disk extends for more than 7 pc; the distinct inner edge, at a radius of ≃1.5 pc, surrounds the “mini‐spiral” of the HII region, Sgr A West. We present simple 3D hydrodynamical models of the formation and evolution of the CND from multiple selfgravitating infalling clouds and compare the results with recent observations. We assume the clouds are initially Bonner‐Ebert spheres, in equilibrium with a hot confining inter‐cloud medium. We include the gravitational potential due to the point‐mass of Sgr A* as well as the extended mass distribution of the underlying stellar population. We also include the effects of the ram pressure due to the stellar winds from the central cluster of early‐type stars. A single spherically symmetric cloud cannot reproduce the clumpy morphology of the CND; multiple clouds on diverse trajectories are required so that cloud‐cloud collisions can circularize the clouds' orbits while maintaining a clumpy morphology. Collisions also serve to compress the clouds, delaying tidal disruption while potentially hastening gravitational collapse. Low density clumps are disrupted before reaching the inner CND radius, forming short‐lived arcs. The outer parts of more massive clumps get tidally stripped, forming long‐lived low‐density wide‐angle arcs, while their cores potentially undergo gravitational collapse. The fine balance between resisting tidal disruption and preventing gravitational collapse implies that most if not all clumps are not stable for much more than an orbit. Thus, in order for the CND to be a long‐lived clumpy object, it must be continually fed by additional in‐falling clouds. Clouds that survive to small radii are likely to be the sites of present or future star formation. However, within a few parsecs of Sgr A*, the stellar winds decelerate any in‐falling cloud so that the wind‐cloud interface becomes Rayleigh‐Taylor unstable, potentially disrupting the cloud and inhibiting star formation.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Robert F. Coker</name>
<affiliations>
<json:string>Los Alamos National Laboratory, T‐087, Los Alamos, NM 87545</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michol H. Christopher</name>
<affiliations>
<json:string>Caltech, Department of Astronomy, 105‐24, Pasadena, CA 91125</json:string>
</affiliations>
</json:item>
<json:item>
<name>Susan R. Stolovy</name>
<affiliations>
<json:string>SIRTF Science Center, Caltech, 314‐6, Pasadena, CA 91125</json:string>
</affiliations>
</json:item>
<json:item>
<name>Nick Z. Scoville</name>
<affiliations>
<json:string>Caltech, Department of Astronomy, 105‐24, Pasadena, CA 91125</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>GMC</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>simulation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Sgr A</value>
</json:item>
</subject>
<articleId>
<json:string>ASNA200385057</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The “circumnuclear disk” (CND) is a dense, clumpy, asymmetric ring‐like feature centered on Sgr A*. The outer edge of the CND is not distinct but the disk extends for more than 7 pc; the distinct inner edge, at a radius of ≃1.5 pc, surrounds the “mini‐spiral” of the HII region, Sgr A West. We present simple 3D hydrodynamical models of the formation and evolution of the CND from multiple selfgravitating infalling clouds and compare the results with recent observations. We assume the clouds are initially Bonner‐Ebert spheres, in equilibrium with a hot confining inter‐cloud medium. We include the gravitational potential due to the point‐mass of Sgr A* as well as the extended mass distribution of the underlying stellar population. We also include the effects of the ram pressure due to the stellar winds from the central cluster of early‐type stars. A single spherically symmetric cloud cannot reproduce the clumpy morphology of the CND; multiple clouds on diverse trajectories are required so that cloud‐cloud collisions can circularize the clouds' orbits while maintaining a clumpy morphology. Collisions also serve to compress the clouds, delaying tidal disruption while potentially hastening gravitational collapse. Low density clumps are disrupted before reaching the inner CND radius, forming short‐lived arcs. The outer parts of more massive clumps get tidally stripped, forming long‐lived low‐density wide‐angle arcs, while their cores potentially undergo gravitational collapse. The fine balance between resisting tidal disruption and preventing gravitational collapse implies that most if not all clumps are not stable for much more than an orbit. Thus, in order for the CND to be a long‐lived clumpy object, it must be continually fed by additional in‐falling clouds. Clouds that survive to small radii are likely to be the sites of present or future star formation. However, within a few parsecs of Sgr A*, the stellar winds decelerate any in‐falling cloud so that the wind‐cloud interface becomes Rayleigh‐Taylor unstable, potentially disrupting the cloud and inhibiting star formation.</abstract>
<qualityIndicators>
<score>5.952</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>596 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>3</keywordCount>
<abstractCharCount>2105</abstractCharCount>
<pdfWordCount>2952</pdfWordCount>
<pdfCharCount>14526</pdfCharCount>
<pdfPageCount>6</pdfPageCount>
<abstractWordCount>322</abstractWordCount>
</qualityIndicators>
<title>Simple hydrodynamical Simulations of the Circumnuclear Disk</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>324</volume>
<publisherId>
<json:string>ASNA</json:string>
</publisherId>
<pages>
<total>6</total>
<last>634</last>
<first>629</first>
</pages>
<issn>
<json:string>0004-6337</json:string>
</issn>
<issue>S1</issue>
<subject>
<json:item>
<value>Chapter 8: Morphology and Dynamics of the Central 10 Parsecs</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1521-3994</json:string>
</eissn>
<title>Astronomische Nachrichten</title>
<doi>
<json:string>10.1002/(ISSN)1521-3994</json:string>
</doi>
</host>
<publicationDate>2003</publicationDate>
<copyrightDate>2003</copyrightDate>
<doi>
<json:string>10.1002/asna.200385057</json:string>
</doi>
<id>695ED1DF9E4D0518E678ACF50B1E87299A7E30E4</id>
<score>2.955475</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/695ED1DF9E4D0518E678ACF50B1E87299A7E30E4/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/695ED1DF9E4D0518E678ACF50B1E87299A7E30E4/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/695ED1DF9E4D0518E678ACF50B1E87299A7E30E4/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Simple hydrodynamical Simulations of the Circumnuclear Disk</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Berlin</pubPlace>
<availability>
<p>Copyright © 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</p>
</availability>
<date>2003</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Simple hydrodynamical Simulations of the Circumnuclear Disk</title>
<author xml:id="author-1">
<persName>
<forename type="first">Robert F.</forename>
<surname>Coker</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Phone: +1‐505‐665‐1245, Fax: +1‐505‐665‐1231</p>
</note>
<affiliation>Los Alamos National Laboratory, T‐087, Los Alamos, NM 87545</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Michol H.</forename>
<surname>Christopher</surname>
</persName>
<affiliation>Caltech, Department of Astronomy, 105‐24, Pasadena, CA 91125</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Susan R.</forename>
<surname>Stolovy</surname>
</persName>
<affiliation>SIRTF Science Center, Caltech, 314‐6, Pasadena, CA 91125</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Nick Z.</forename>
<surname>Scoville</surname>
</persName>
<affiliation>Caltech, Department of Astronomy, 105‐24, Pasadena, CA 91125</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Astronomische Nachrichten</title>
<title level="j" type="sub">Astronomical Notes</title>
<title level="j" type="abbrev">Astron. Nachr.</title>
<idno type="pISSN">0004-6337</idno>
<idno type="eISSN">1521-3994</idno>
<idno type="DOI">10.1002/(ISSN)1521-3994</idno>
<imprint>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Berlin</pubPlace>
<date type="published" when="2003-09"></date>
<biblScope unit="volume">324</biblScope>
<biblScope unit="issue">S1</biblScope>
<biblScope unit="supplement">1</biblScope>
<biblScope unit="page" from="629">629</biblScope>
<biblScope unit="page" to="634">634</biblScope>
</imprint>
</monogr>
<idno type="istex">695ED1DF9E4D0518E678ACF50B1E87299A7E30E4</idno>
<idno type="DOI">10.1002/asna.200385057</idno>
<idno type="ArticleID">ASNA200385057</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2003</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The “circumnuclear disk” (CND) is a dense, clumpy, asymmetric ring‐like feature centered on Sgr A*. The outer edge of the CND is not distinct but the disk extends for more than 7 pc; the distinct inner edge, at a radius of ≃1.5 pc, surrounds the “mini‐spiral” of the HII region, Sgr A West. We present simple 3D hydrodynamical models of the formation and evolution of the CND from multiple selfgravitating infalling clouds and compare the results with recent observations. We assume the clouds are initially Bonner‐Ebert spheres, in equilibrium with a hot confining inter‐cloud medium. We include the gravitational potential due to the point‐mass of Sgr A* as well as the extended mass distribution of the underlying stellar population. We also include the effects of the ram pressure due to the stellar winds from the central cluster of early‐type stars. A single spherically symmetric cloud cannot reproduce the clumpy morphology of the CND; multiple clouds on diverse trajectories are required so that cloud‐cloud collisions can circularize the clouds' orbits while maintaining a clumpy morphology. Collisions also serve to compress the clouds, delaying tidal disruption while potentially hastening gravitational collapse. Low density clumps are disrupted before reaching the inner CND radius, forming short‐lived arcs. The outer parts of more massive clumps get tidally stripped, forming long‐lived low‐density wide‐angle arcs, while their cores potentially undergo gravitational collapse. The fine balance between resisting tidal disruption and preventing gravitational collapse implies that most if not all clumps are not stable for much more than an orbit. Thus, in order for the CND to be a long‐lived clumpy object, it must be continually fed by additional in‐falling clouds. Clouds that survive to small radii are likely to be the sites of present or future star formation. However, within a few parsecs of Sgr A*, the stellar winds decelerate any in‐falling cloud so that the wind‐cloud interface becomes Rayleigh‐Taylor unstable, potentially disrupting the cloud and inhibiting star formation.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>GMC</term>
</item>
<item>
<term>simulation</term>
</item>
<item>
<term>Sgr A</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Chapter 8: Morphology and Dynamics of the Central 10 Parsecs</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2003-09">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/695ED1DF9E4D0518E678ACF50B1E87299A7E30E4/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>WILEY‐VCH Verlag</publisherName>
<publisherLoc>Berlin</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1521-3994</doi>
<issn type="print">0004-6337</issn>
<issn type="electronic">1521-3994</issn>
<idGroup>
<id type="product" value="ASNA"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="ASTRONOMISCHE NACHRICHTEN">Astronomische Nachrichten</title>
<title type="subtitle">Astronomical Notes</title>
<title type="short">Astron. Nachr.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="55">
<doi origin="wiley" registered="yes">10.1002/asna.v324:1+</doi>
<titleGroup>
<title type="supplementTitle">Proceedings of the Galactic Center Workshop 2002 – The central 300 parsecs of the Milky Way (Hardcover, ISBN 3‐527‐40466‐X)</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="324">324</numbering>
<numbering type="journalIssue">S1</numbering>
<numbering type="supplement" number="1">1</numbering>
</numberingGroup>
<coverDate startDate="2003-09">September 2003</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="94" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/asna.200385057</doi>
<idGroup>
<id type="unit" value="ASNA200385057"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="6"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Chapter 8: Morphology and Dynamics of the Central 10 Parsecs</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</copyright>
<eventGroup>
<event type="firstOnline" date="2003-10-20"></event>
<event type="publishedOnlineFinalForm" date="2003-10-20"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.9 mode:FullText source:HeaderRef result:HeaderRef" date="2010-06-24"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-06"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-15"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">629</numbering>
<numbering type="pageLast">634</numbering>
</numberingGroup>
<correspondenceTo>Phone: +1‐505‐665‐1245, Fax: +1‐505‐665‐1231</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:ASNA.ASNA200385057.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="referenceTotal" number="20"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Simple hydrodynamical Simulations of the Circumnuclear Disk</title>
<title type="short" xml:lang="en">Simulations of the Circumnuclear Disk</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>Robert F.</givenNames>
<familyName>Coker</familyName>
</personName>
<contactDetails>
<email>robc@lanl.gov</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#a2">
<personName>
<givenNames>Michol H.</givenNames>
<familyName>Christopher</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#a3">
<personName>
<givenNames>Susan R.</givenNames>
<familyName>Stolovy</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#a2">
<personName>
<givenNames>Nick Z.</givenNames>
<familyName>Scoville</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="US" type="organization">
<unparsedAffiliation>Los Alamos National Laboratory, T‐087, Los Alamos, NM 87545</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="US" type="organization">
<unparsedAffiliation>Caltech, Department of Astronomy, 105‐24, Pasadena, CA 91125</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="US" type="organization">
<unparsedAffiliation>SIRTF Science Center, Caltech, 314‐6, Pasadena, CA 91125</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">GMC</keyword>
<keyword xml:id="kwd2">simulation</keyword>
<keyword xml:id="kwd3">Sgr A</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The “circumnuclear disk” (CND) is a dense, clumpy, asymmetric ring‐like feature centered on Sgr A*. The outer edge of the CND is not distinct but the disk extends for more than 7 pc; the distinct inner edge, at a radius of ≃1.5 pc, surrounds the “mini‐spiral” of the HII region, Sgr A West. We present simple 3D hydrodynamical models of the formation and evolution of the CND from multiple selfgravitating infalling clouds and compare the results with recent observations. We assume the clouds are initially Bonner‐Ebert spheres, in equilibrium with a hot confining inter‐cloud medium. We include the gravitational potential due to the point‐mass of Sgr A* as well as the extended mass distribution of the underlying stellar population. We also include the effects of the ram pressure due to the stellar winds from the central cluster of early‐type stars.</p>
<p>A single spherically symmetric cloud cannot reproduce the clumpy morphology of the CND; multiple clouds on diverse trajectories are required so that cloud‐cloud collisions can circularize the clouds' orbits while maintaining a clumpy morphology. Collisions also serve to compress the clouds, delaying tidal disruption while potentially hastening gravitational collapse. Low density clumps are disrupted before reaching the inner CND radius, forming short‐lived arcs. The outer parts of more massive clumps get tidally stripped, forming long‐lived low‐density wide‐angle arcs, while their cores potentially undergo gravitational collapse. The fine balance between resisting tidal disruption and preventing gravitational collapse implies that most if not all clumps are not stable for much more than an orbit. Thus, in order for the CND to be a long‐lived clumpy object, it must be continually fed by additional in‐falling clouds. Clouds that survive to small radii are likely to be the sites of present or future star formation. However, within a few parsecs of Sgr A*, the stellar winds decelerate any in‐falling cloud so that the wind‐cloud interface becomes Rayleigh‐Taylor unstable, potentially disrupting the cloud and inhibiting star formation.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Simple hydrodynamical Simulations of the Circumnuclear Disk</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Simulations of the Circumnuclear Disk</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Simple hydrodynamical Simulations of the Circumnuclear Disk</title>
</titleInfo>
<name type="personal">
<namePart type="given">Robert F.</namePart>
<namePart type="family">Coker</namePart>
<affiliation>Los Alamos National Laboratory, T‐087, Los Alamos, NM 87545</affiliation>
<description>Correspondence: Phone: +1‐505‐665‐1245, Fax: +1‐505‐665‐1231</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michol H.</namePart>
<namePart type="family">Christopher</namePart>
<affiliation>Caltech, Department of Astronomy, 105‐24, Pasadena, CA 91125</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Susan R.</namePart>
<namePart type="family">Stolovy</namePart>
<affiliation>SIRTF Science Center, Caltech, 314‐6, Pasadena, CA 91125</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nick Z.</namePart>
<namePart type="family">Scoville</namePart>
<affiliation>Caltech, Department of Astronomy, 105‐24, Pasadena, CA 91125</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>WILEY‐VCH Verlag</publisher>
<place>
<placeTerm type="text">Berlin</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2003-09</dateIssued>
<copyrightDate encoding="w3cdtf">2003</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">4</extent>
<extent unit="references">20</extent>
</physicalDescription>
<abstract lang="en">The “circumnuclear disk” (CND) is a dense, clumpy, asymmetric ring‐like feature centered on Sgr A*. The outer edge of the CND is not distinct but the disk extends for more than 7 pc; the distinct inner edge, at a radius of ≃1.5 pc, surrounds the “mini‐spiral” of the HII region, Sgr A West. We present simple 3D hydrodynamical models of the formation and evolution of the CND from multiple selfgravitating infalling clouds and compare the results with recent observations. We assume the clouds are initially Bonner‐Ebert spheres, in equilibrium with a hot confining inter‐cloud medium. We include the gravitational potential due to the point‐mass of Sgr A* as well as the extended mass distribution of the underlying stellar population. We also include the effects of the ram pressure due to the stellar winds from the central cluster of early‐type stars. A single spherically symmetric cloud cannot reproduce the clumpy morphology of the CND; multiple clouds on diverse trajectories are required so that cloud‐cloud collisions can circularize the clouds' orbits while maintaining a clumpy morphology. Collisions also serve to compress the clouds, delaying tidal disruption while potentially hastening gravitational collapse. Low density clumps are disrupted before reaching the inner CND radius, forming short‐lived arcs. The outer parts of more massive clumps get tidally stripped, forming long‐lived low‐density wide‐angle arcs, while their cores potentially undergo gravitational collapse. The fine balance between resisting tidal disruption and preventing gravitational collapse implies that most if not all clumps are not stable for much more than an orbit. Thus, in order for the CND to be a long‐lived clumpy object, it must be continually fed by additional in‐falling clouds. Clouds that survive to small radii are likely to be the sites of present or future star formation. However, within a few parsecs of Sgr A*, the stellar winds decelerate any in‐falling cloud so that the wind‐cloud interface becomes Rayleigh‐Taylor unstable, potentially disrupting the cloud and inhibiting star formation.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>GMC</topic>
<topic>simulation</topic>
<topic>Sgr A</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Astronomische Nachrichten</title>
<subTitle>Astronomical Notes</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>Astron. Nachr.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Chapter 8: Morphology and Dynamics of the Central 10 Parsecs</topic>
</subject>
<identifier type="ISSN">0004-6337</identifier>
<identifier type="eISSN">1521-3994</identifier>
<identifier type="DOI">10.1002/(ISSN)1521-3994</identifier>
<identifier type="PublisherID">ASNA</identifier>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>324</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>S1</number>
</detail>
<detail type="supplement">
<caption>Suppl. no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>629</start>
<end>634</end>
<total>6</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">695ED1DF9E4D0518E678ACF50B1E87299A7E30E4</identifier>
<identifier type="DOI">10.1002/asna.200385057</identifier>
<identifier type="ArticleID">ASNA200385057</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>WILEY‐VCH Verlag</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<json:item>
<type>multicat</type>
<uri>https://api.istex.fr/document/695ED1DF9E4D0518E678ACF50B1E87299A7E30E4/enrichments/multicat</uri>
</json:item>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amerique/explor/CaltechV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000173 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000173 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amerique
   |area=    CaltechV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:695ED1DF9E4D0518E678ACF50B1E87299A7E30E4
   |texte=   Simple hydrodynamical Simulations of the Circumnuclear Disk
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 11:37:59 2017. Site generation: Mon Feb 12 16:27:53 2024