Serveur d'exploration sur Caltech

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coronal activity from dynamos in astrophysical rotators

Identifieur interne : 000149 ( Main/Corpus ); précédent : 000148; suivant : 000150

Coronal activity from dynamos in astrophysical rotators

Auteurs : Eric G. Blackman ; George B. Field

Source :

RBID : ISTEX:BF3E3983E4F7883C47FE3A0E4D163CE26C3FB570

English descriptors

Abstract

We show that a steady mean‐field dynamo in astrophysical rotators leads to an outflow of relative magnetic helicity and thus magnetic energy available for particle and wind acceleration in a corona. The connection between energy and magnetic helicity arises because mean‐field generation is linked to an inverse cascade of magnetic helicity. To maintain a steady state in large magnetic Reynolds number rotators, there must then be an escape of relative magnetic helicity associated with the mean field, accompanied by an equal and opposite contribution from the fluctuating field. From the helicity flow, a lower limit on the magnetic energy deposited in the corona can be estimated. Steady coronal activity including the dissipation of magnetic energy, and formation of multi‐scale helical structures therefore necessarily accompanies an internal dynamo. This highlights the importance of boundary conditions which allow this to occur for non‐linear astrophysical dynamo simulations. Our theoretical estimate of the power delivered by a mean‐field dynamo is consistent with that inferred from observations to be delivered to the solar corona, the Galactic corona, and Seyfert 1 AGN coronae.

Url:
DOI: 10.1046/j.1365-8711.2000.03830.x

Links to Exploration step

ISTEX:BF3E3983E4F7883C47FE3A0E4D163CE26C3FB570

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coronal activity from dynamos in astrophysical rotators</title>
<author>
<name sortKey="Blackman, Eric G" sort="Blackman, Eric G" uniqKey="Blackman E" first="Eric G." last="Blackman">Eric G. Blackman</name>
<affiliation>
<mods:affiliation>Theoretical Astrophysics, Caltech 130‐33 Pasadena, CA 91125, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Field, George B" sort="Field, George B" uniqKey="Field G" first="George B." last="Field">George B. Field</name>
<affiliation>
<mods:affiliation>Theoretical Astrophysics, Caltech 130‐33 Pasadena, CA 91125, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:BF3E3983E4F7883C47FE3A0E4D163CE26C3FB570</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1046/j.1365-8711.2000.03830.x</idno>
<idno type="url">https://api.istex.fr/document/BF3E3983E4F7883C47FE3A0E4D163CE26C3FB570/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000149</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Coronal activity from dynamos in astrophysical rotators</title>
<author>
<name sortKey="Blackman, Eric G" sort="Blackman, Eric G" uniqKey="Blackman E" first="Eric G." last="Blackman">Eric G. Blackman</name>
<affiliation>
<mods:affiliation>Theoretical Astrophysics, Caltech 130‐33 Pasadena, CA 91125, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Field, George B" sort="Field, George B" uniqKey="Field G" first="George B." last="Field">George B. Field</name>
<affiliation>
<mods:affiliation>Theoretical Astrophysics, Caltech 130‐33 Pasadena, CA 91125, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Monthly Notices of the Royal Astronomical Society</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2000-11">2000-11</date>
<biblScope unit="volume">318</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="724">724</biblScope>
<biblScope unit="page" to="732">732</biblScope>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
<idno type="istex">BF3E3983E4F7883C47FE3A0E4D163CE26C3FB570</idno>
<idno type="DOI">10.1046/j.1365-8711.2000.03830.x</idno>
<idno type="ArticleID">MNR3830</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Sun: corona</term>
<term>accretion, accretion discs</term>
<term>galaxies: Seyfert</term>
<term>magnetic fields</term>
<term>stars: coronae</term>
<term>stars: magnetic fields</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We show that a steady mean‐field dynamo in astrophysical rotators leads to an outflow of relative magnetic helicity and thus magnetic energy available for particle and wind acceleration in a corona. The connection between energy and magnetic helicity arises because mean‐field generation is linked to an inverse cascade of magnetic helicity. To maintain a steady state in large magnetic Reynolds number rotators, there must then be an escape of relative magnetic helicity associated with the mean field, accompanied by an equal and opposite contribution from the fluctuating field. From the helicity flow, a lower limit on the magnetic energy deposited in the corona can be estimated. Steady coronal activity including the dissipation of magnetic energy, and formation of multi‐scale helical structures therefore necessarily accompanies an internal dynamo. This highlights the importance of boundary conditions which allow this to occur for non‐linear astrophysical dynamo simulations. Our theoretical estimate of the power delivered by a mean‐field dynamo is consistent with that inferred from observations to be delivered to the solar corona, the Galactic corona, and Seyfert 1 AGN coronae.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Eric G. Blackman</name>
<affiliations>
<json:string>Theoretical Astrophysics, Caltech 130‐33 Pasadena, CA 91125, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>George B. Field</name>
<affiliations>
<json:string>Theoretical Astrophysics, Caltech 130‐33 Pasadena, CA 91125, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>accretion, accretion discs</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>magnetic fields</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Sun: corona</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stars: coronae</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stars: magnetic fields</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>galaxies: Seyfert</value>
</json:item>
</subject>
<articleId>
<json:string>MNR3830</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>We show that a steady mean‐field dynamo in astrophysical rotators leads to an outflow of relative magnetic helicity and thus magnetic energy available for particle and wind acceleration in a corona. The connection between energy and magnetic helicity arises because mean‐field generation is linked to an inverse cascade of magnetic helicity. To maintain a steady state in large magnetic Reynolds number rotators, there must then be an escape of relative magnetic helicity associated with the mean field, accompanied by an equal and opposite contribution from the fluctuating field. From the helicity flow, a lower limit on the magnetic energy deposited in the corona can be estimated. Steady coronal activity including the dissipation of magnetic energy, and formation of multi‐scale helical structures therefore necessarily accompanies an internal dynamo. This highlights the importance of boundary conditions which allow this to occur for non‐linear astrophysical dynamo simulations. Our theoretical estimate of the power delivered by a mean‐field dynamo is consistent with that inferred from observations to be delivered to the solar corona, the Galactic corona, and Seyfert 1 AGN coronae.</abstract>
<qualityIndicators>
<score>7.124</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>595 x 782 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>1192</abstractCharCount>
<pdfWordCount>6515</pdfWordCount>
<pdfCharCount>32880</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>177</abstractWordCount>
</qualityIndicators>
<title>Coronal activity from dynamos in astrophysical rotators</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>318</volume>
<publisherId>
<json:string>MNR</json:string>
</publisherId>
<pages>
<total>9</total>
<last>732</last>
<first>724</first>
</pages>
<issn>
<json:string>0035-8711</json:string>
</issn>
<issue>3</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1365-2966</json:string>
</eissn>
<title>Monthly Notices of the Royal Astronomical Society</title>
<doi>
<json:string>10.1111/(ISSN)1365-2966</json:string>
</doi>
</host>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1046/j.1365-8711.2000.03830.x</json:string>
</doi>
<id>BF3E3983E4F7883C47FE3A0E4D163CE26C3FB570</id>
<score>3.2634666</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/BF3E3983E4F7883C47FE3A0E4D163CE26C3FB570/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/BF3E3983E4F7883C47FE3A0E4D163CE26C3FB570/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/BF3E3983E4F7883C47FE3A0E4D163CE26C3FB570/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Coronal activity from dynamos in astrophysical rotators</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2000</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Coronal activity from dynamos in astrophysical rotators</title>
<author xml:id="author-1">
<persName>
<forename type="first">Eric G.</forename>
<surname>Blackman</surname>
</persName>
<affiliation>Theoretical Astrophysics, Caltech 130‐33 Pasadena, CA 91125, USA</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">George B.</forename>
<surname>Field</surname>
</persName>
<affiliation>Theoretical Astrophysics, Caltech 130‐33 Pasadena, CA 91125, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Monthly Notices of the Royal Astronomical Society</title>
<idno type="pISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<idno type="DOI">10.1111/(ISSN)1365-2966</idno>
<imprint>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2000-11"></date>
<biblScope unit="volume">318</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="724">724</biblScope>
<biblScope unit="page" to="732">732</biblScope>
</imprint>
</monogr>
<idno type="istex">BF3E3983E4F7883C47FE3A0E4D163CE26C3FB570</idno>
<idno type="DOI">10.1046/j.1365-8711.2000.03830.x</idno>
<idno type="ArticleID">MNR3830</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>We show that a steady mean‐field dynamo in astrophysical rotators leads to an outflow of relative magnetic helicity and thus magnetic energy available for particle and wind acceleration in a corona. The connection between energy and magnetic helicity arises because mean‐field generation is linked to an inverse cascade of magnetic helicity. To maintain a steady state in large magnetic Reynolds number rotators, there must then be an escape of relative magnetic helicity associated with the mean field, accompanied by an equal and opposite contribution from the fluctuating field. From the helicity flow, a lower limit on the magnetic energy deposited in the corona can be estimated. Steady coronal activity including the dissipation of magnetic energy, and formation of multi‐scale helical structures therefore necessarily accompanies an internal dynamo. This highlights the importance of boundary conditions which allow this to occur for non‐linear astrophysical dynamo simulations. Our theoretical estimate of the power delivered by a mean‐field dynamo is consistent with that inferred from observations to be delivered to the solar corona, the Galactic corona, and Seyfert 1 AGN coronae.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>accretion, accretion discs</term>
</item>
<item>
<term>magnetic fields</term>
</item>
<item>
<term>Sun: corona</term>
</item>
<item>
<term>stars: coronae</term>
</item>
<item>
<term>stars: magnetic fields</term>
</item>
<item>
<term>galaxies: Seyfert</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000-11">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/BF3E3983E4F7883C47FE3A0E4D163CE26C3FB570/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Science Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2966</doi>
<issn type="print">0035-8711</issn>
<issn type="electronic">1365-2966</issn>
<idGroup>
<id type="product" value="MNR"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY">Monthly Notices of the Royal Astronomical Society</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="11003">
<doi origin="wiley">10.1111/mnr.2000.318.issue-3</doi>
<numberingGroup>
<numbering type="journalVolume" number="318">318</numbering>
<numbering type="journalIssue" number="3">3</numbering>
</numberingGroup>
<coverDate startDate="2000-11">November 2000</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="0072400" status="forIssue">
<doi origin="wiley">10.1046/j.1365-8711.2000.03830.x</doi>
<idGroup>
<id type="unit" value="MNR3830"></id>
<id type="supplier" value="mn3162"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Papers</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2002-04-04"></event>
<event type="publishedOnlineFinalForm" date="2003-02-14"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText mathml2tex" date="2010-02-26"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-02"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="724">724</numbering>
<numbering type="pageLast" number="732">732</numbering>
</numberingGroup>
<correspondenceTo>★ E‐mail:
<email>blackman@pas.rochester.edu</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:MNR.MNR3830.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Accepted 2000 June 5; Received 2000 June 5; in original form 1999 December 29</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="0"></count>
<count type="tableTotal" number="0"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="56"></count>
<count type="wordTotal" number="13479"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="1"></count>
</countGroup>
<titleGroup>
<title type="main">Coronal activity from dynamos in astrophysical rotators</title>
<title type="shortAuthors">E. G. Blackman and G. B. Field</title>
<title type="short">Coronal activity from dynamos in astrophysical rotators</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>Eric G.</givenNames>
<familyName>Blackman</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>George B.</givenNames>
<familyName>Field</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="US">
<unparsedAffiliation>Theoretical Astrophysics, Caltech 130‐33 Pasadena, CA 91125, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="US">
<unparsedAffiliation>Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="US">
<unparsedAffiliation>Harvard‐Smithsonian Center for Astrophysics (CFA), 60 Garden St., Cambridge, MA 02139, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">accretion, accretion discs</keyword>
<keyword xml:id="k2">magnetic fields</keyword>
<keyword xml:id="k3">Sun: corona</keyword>
<keyword xml:id="k4">stars: coronae</keyword>
<keyword xml:id="k5">stars: magnetic fields</keyword>
<keyword xml:id="k6">galaxies: Seyfert</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>We show that a steady mean‐field dynamo in astrophysical rotators leads to an outflow of relative magnetic helicity and thus magnetic energy available for particle and wind acceleration in a corona. The connection between energy and magnetic helicity arises because mean‐field generation is linked to an inverse cascade of magnetic helicity. To maintain a steady state in large magnetic Reynolds number rotators, there must then be an escape of relative magnetic helicity associated with the mean field, accompanied by an equal and opposite contribution from the fluctuating field. From the helicity flow, a lower limit on the magnetic energy deposited in the corona can be estimated. Steady coronal activity including the dissipation of magnetic energy, and formation of multi‐scale helical structures therefore necessarily accompanies an internal dynamo. This highlights the importance of boundary conditions which allow this to occur for non‐linear astrophysical dynamo simulations. Our theoretical estimate of the power delivered by a mean‐field dynamo is consistent with that inferred from observations to be delivered to the solar corona, the Galactic corona, and Seyfert 1 AGN coronae.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Coronal activity from dynamos in astrophysical rotators</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Coronal activity from dynamos in astrophysical rotators</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Coronal activity from dynamos in astrophysical rotators</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eric G.</namePart>
<namePart type="family">Blackman</namePart>
<affiliation>Theoretical Astrophysics, Caltech 130‐33 Pasadena, CA 91125, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">George B.</namePart>
<namePart type="family">Field</namePart>
<affiliation>Theoretical Astrophysics, Caltech 130‐33 Pasadena, CA 91125, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Science Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2000-11</dateIssued>
<edition>Accepted 2000 June 5; Received 2000 June 5; in original form 1999 December 29</edition>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="references">56</extent>
<extent unit="words">13479</extent>
</physicalDescription>
<abstract lang="en">We show that a steady mean‐field dynamo in astrophysical rotators leads to an outflow of relative magnetic helicity and thus magnetic energy available for particle and wind acceleration in a corona. The connection between energy and magnetic helicity arises because mean‐field generation is linked to an inverse cascade of magnetic helicity. To maintain a steady state in large magnetic Reynolds number rotators, there must then be an escape of relative magnetic helicity associated with the mean field, accompanied by an equal and opposite contribution from the fluctuating field. From the helicity flow, a lower limit on the magnetic energy deposited in the corona can be estimated. Steady coronal activity including the dissipation of magnetic energy, and formation of multi‐scale helical structures therefore necessarily accompanies an internal dynamo. This highlights the importance of boundary conditions which allow this to occur for non‐linear astrophysical dynamo simulations. Our theoretical estimate of the power delivered by a mean‐field dynamo is consistent with that inferred from observations to be delivered to the solar corona, the Galactic corona, and Seyfert 1 AGN coronae.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>accretion, accretion discs</topic>
<topic>magnetic fields</topic>
<topic>Sun: corona</topic>
<topic>stars: coronae</topic>
<topic>stars: magnetic fields</topic>
<topic>galaxies: Seyfert</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Monthly Notices of the Royal Astronomical Society</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0035-8711</identifier>
<identifier type="eISSN">1365-2966</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2966</identifier>
<identifier type="PublisherID">MNR</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>318</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>724</start>
<end>732</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">BF3E3983E4F7883C47FE3A0E4D163CE26C3FB570</identifier>
<identifier type="DOI">10.1046/j.1365-8711.2000.03830.x</identifier>
<identifier type="ArticleID">MNR3830</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Science Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<json:item>
<type>multicat</type>
<uri>https://api.istex.fr/document/BF3E3983E4F7883C47FE3A0E4D163CE26C3FB570/enrichments/multicat</uri>
</json:item>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amerique/explor/CaltechV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000149 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000149 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amerique
   |area=    CaltechV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:BF3E3983E4F7883C47FE3A0E4D163CE26C3FB570
   |texte=   Coronal activity from dynamos in astrophysical rotators
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 11:37:59 2017. Site generation: Mon Feb 12 16:27:53 2024