La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease.

Identifieur interne : 001645 ( PubMed/Curation ); précédent : 001644; suivant : 001646

In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease.

Auteurs : C S Lee [Canada] ; A. Samii ; V. Sossi ; T J Ruth ; M. Schulzer ; J E Holden ; J. Wudel ; P K Pal ; R. De La Fuente-Fernandez ; D B Calne ; A J Stoessl

Source :

RBID : pubmed:10762161

English descriptors

Abstract

Clinical symptoms of Parkinson's disease (PD) do not manifest until dopamine (DA) neuronal loss reaches a symptomatic threshold. To explore the mechanisms of functional compensation that occur in presynaptic DA nerve terminals in PD, we compared striatal positron emission tomographic (PET) measurements by using [11C]dihydrotetrabenazine ([11C]DTBZ; labeling the vesicular monoamine transporter type 2), [11C]methylphenidate (labeling the plasma membrane DA transporter), and [18F]dopa (reflecting synthesis and storage of DA). Three consecutive PET scans were performed in three-dimensional mode by using each tracer on 35 patients and 16 age-matched, normal controls. PET measurements by the three tracers were compared between subgroups of earlier and later stages of PD, between drug-naive and drug-treated subgroups of PD, and between subregions of the parkinsonian striatum. The quantitative relationships of [18F]dopa and [11]DTBZ, and of [11C]methylphenidate and [11C]DTBZ, were compared between the PD and the normal control subjects. We found that [18F]dopa Ki was reduced less than the binding potential (Bmax/Kd) for [11C]DTBZ in the parkinsonian striatum, whereas the [11C]methylphenidate binding potential was reduced more than [11C]DTBZ binding potential. These observations suggest that the activity of aromatic L-amino acid decarboxylase is up-regulated, whereas the plasma membrane DA transporter is down-regulated in the striatum of patients with PD.

PubMed: 10762161

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:10762161

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease.</title>
<author>
<name sortKey="Lee, C S" sort="Lee, C S" uniqKey="Lee C" first="C S" last="Lee">C S Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Neurodegenerative Disorders Centre, Vancouver Hospital and Health Sciences Centre, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Neurodegenerative Disorders Centre, Vancouver Hospital and Health Sciences Centre, British Columbia</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Samii, A" sort="Samii, A" uniqKey="Samii A" first="A" last="Samii">A. Samii</name>
</author>
<author>
<name sortKey="Sossi, V" sort="Sossi, V" uniqKey="Sossi V" first="V" last="Sossi">V. Sossi</name>
</author>
<author>
<name sortKey="Ruth, T J" sort="Ruth, T J" uniqKey="Ruth T" first="T J" last="Ruth">T J Ruth</name>
</author>
<author>
<name sortKey="Schulzer, M" sort="Schulzer, M" uniqKey="Schulzer M" first="M" last="Schulzer">M. Schulzer</name>
</author>
<author>
<name sortKey="Holden, J E" sort="Holden, J E" uniqKey="Holden J" first="J E" last="Holden">J E Holden</name>
</author>
<author>
<name sortKey="Wudel, J" sort="Wudel, J" uniqKey="Wudel J" first="J" last="Wudel">J. Wudel</name>
</author>
<author>
<name sortKey="Pal, P K" sort="Pal, P K" uniqKey="Pal P" first="P K" last="Pal">P K Pal</name>
</author>
<author>
<name sortKey="De La Fuente Fernandez, R" sort="De La Fuente Fernandez, R" uniqKey="De La Fuente Fernandez R" first="R" last="De La Fuente-Fernandez">R. De La Fuente-Fernandez</name>
</author>
<author>
<name sortKey="Calne, D B" sort="Calne, D B" uniqKey="Calne D" first="D B" last="Calne">D B Calne</name>
</author>
<author>
<name sortKey="Stoessl, A J" sort="Stoessl, A J" uniqKey="Stoessl A" first="A J" last="Stoessl">A J Stoessl</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:10762161</idno>
<idno type="pmid">10762161</idno>
<idno type="wicri:Area/PubMed/Corpus">001645</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001645</idno>
<idno type="wicri:Area/PubMed/Curation">001645</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001645</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease.</title>
<author>
<name sortKey="Lee, C S" sort="Lee, C S" uniqKey="Lee C" first="C S" last="Lee">C S Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Neurodegenerative Disorders Centre, Vancouver Hospital and Health Sciences Centre, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Neurodegenerative Disorders Centre, Vancouver Hospital and Health Sciences Centre, British Columbia</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Samii, A" sort="Samii, A" uniqKey="Samii A" first="A" last="Samii">A. Samii</name>
</author>
<author>
<name sortKey="Sossi, V" sort="Sossi, V" uniqKey="Sossi V" first="V" last="Sossi">V. Sossi</name>
</author>
<author>
<name sortKey="Ruth, T J" sort="Ruth, T J" uniqKey="Ruth T" first="T J" last="Ruth">T J Ruth</name>
</author>
<author>
<name sortKey="Schulzer, M" sort="Schulzer, M" uniqKey="Schulzer M" first="M" last="Schulzer">M. Schulzer</name>
</author>
<author>
<name sortKey="Holden, J E" sort="Holden, J E" uniqKey="Holden J" first="J E" last="Holden">J E Holden</name>
</author>
<author>
<name sortKey="Wudel, J" sort="Wudel, J" uniqKey="Wudel J" first="J" last="Wudel">J. Wudel</name>
</author>
<author>
<name sortKey="Pal, P K" sort="Pal, P K" uniqKey="Pal P" first="P K" last="Pal">P K Pal</name>
</author>
<author>
<name sortKey="De La Fuente Fernandez, R" sort="De La Fuente Fernandez, R" uniqKey="De La Fuente Fernandez R" first="R" last="De La Fuente-Fernandez">R. De La Fuente-Fernandez</name>
</author>
<author>
<name sortKey="Calne, D B" sort="Calne, D B" uniqKey="Calne D" first="D B" last="Calne">D B Calne</name>
</author>
<author>
<name sortKey="Stoessl, A J" sort="Stoessl, A J" uniqKey="Stoessl A" first="A J" last="Stoessl">A J Stoessl</name>
</author>
</analytic>
<series>
<title level="j">Annals of neurology</title>
<idno type="ISSN">0364-5134</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aged</term>
<term>Carbon Radioisotopes</term>
<term>Carrier Proteins (metabolism)</term>
<term>Corpus Striatum (diagnostic imaging)</term>
<term>Corpus Striatum (metabolism)</term>
<term>Dopamine (metabolism)</term>
<term>Dopamine Plasma Membrane Transport Proteins</term>
<term>Down-Regulation (physiology)</term>
<term>Fluorine Radioisotopes</term>
<term>Homovanillic Acid (metabolism)</term>
<term>Humans</term>
<term>Membrane Glycoproteins</term>
<term>Membrane Transport Proteins</term>
<term>Middle Aged</term>
<term>Nerve Tissue Proteins</term>
<term>Parkinson Disease (diagnostic imaging)</term>
<term>Parkinson Disease (metabolism)</term>
<term>Presynaptic Terminals (metabolism)</term>
<term>Tetrabenazine (analogs & derivatives)</term>
<term>Tomography, Emission-Computed</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Tetrabenazine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carrier Proteins</term>
<term>Dopamine</term>
<term>Homovanillic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carbon Radioisotopes</term>
<term>Dopamine Plasma Membrane Transport Proteins</term>
<term>Fluorine Radioisotopes</term>
<term>Membrane Glycoproteins</term>
<term>Membrane Transport Proteins</term>
<term>Nerve Tissue Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic imaging" xml:lang="en">
<term>Corpus Striatum</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Corpus Striatum</term>
<term>Parkinson Disease</term>
<term>Presynaptic Terminals</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Down-Regulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Aged</term>
<term>Humans</term>
<term>Middle Aged</term>
<term>Tomography, Emission-Computed</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Clinical symptoms of Parkinson's disease (PD) do not manifest until dopamine (DA) neuronal loss reaches a symptomatic threshold. To explore the mechanisms of functional compensation that occur in presynaptic DA nerve terminals in PD, we compared striatal positron emission tomographic (PET) measurements by using [11C]dihydrotetrabenazine ([11C]DTBZ; labeling the vesicular monoamine transporter type 2), [11C]methylphenidate (labeling the plasma membrane DA transporter), and [18F]dopa (reflecting synthesis and storage of DA). Three consecutive PET scans were performed in three-dimensional mode by using each tracer on 35 patients and 16 age-matched, normal controls. PET measurements by the three tracers were compared between subgroups of earlier and later stages of PD, between drug-naive and drug-treated subgroups of PD, and between subregions of the parkinsonian striatum. The quantitative relationships of [18F]dopa and [11]DTBZ, and of [11C]methylphenidate and [11C]DTBZ, were compared between the PD and the normal control subjects. We found that [18F]dopa Ki was reduced less than the binding potential (Bmax/Kd) for [11C]DTBZ in the parkinsonian striatum, whereas the [11C]methylphenidate binding potential was reduced more than [11C]DTBZ binding potential. These observations suggest that the activity of aromatic L-amino acid decarboxylase is up-regulated, whereas the plasma membrane DA transporter is down-regulated in the striatum of patients with PD.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10762161</PMID>
<DateCreated>
<Year>2000</Year>
<Month>04</Month>
<Day>21</Day>
</DateCreated>
<DateCompleted>
<Year>2000</Year>
<Month>04</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0364-5134</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>47</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2000</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Annals of neurology</Title>
<ISOAbbreviation>Ann. Neurol.</ISOAbbreviation>
</Journal>
<ArticleTitle>In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease.</ArticleTitle>
<Pagination>
<MedlinePgn>493-503</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Clinical symptoms of Parkinson's disease (PD) do not manifest until dopamine (DA) neuronal loss reaches a symptomatic threshold. To explore the mechanisms of functional compensation that occur in presynaptic DA nerve terminals in PD, we compared striatal positron emission tomographic (PET) measurements by using [11C]dihydrotetrabenazine ([11C]DTBZ; labeling the vesicular monoamine transporter type 2), [11C]methylphenidate (labeling the plasma membrane DA transporter), and [18F]dopa (reflecting synthesis and storage of DA). Three consecutive PET scans were performed in three-dimensional mode by using each tracer on 35 patients and 16 age-matched, normal controls. PET measurements by the three tracers were compared between subgroups of earlier and later stages of PD, between drug-naive and drug-treated subgroups of PD, and between subregions of the parkinsonian striatum. The quantitative relationships of [18F]dopa and [11]DTBZ, and of [11C]methylphenidate and [11C]DTBZ, were compared between the PD and the normal control subjects. We found that [18F]dopa Ki was reduced less than the binding potential (Bmax/Kd) for [11C]DTBZ in the parkinsonian striatum, whereas the [11C]methylphenidate binding potential was reduced more than [11C]DTBZ binding potential. These observations suggest that the activity of aromatic L-amino acid decarboxylase is up-regulated, whereas the plasma membrane DA transporter is down-regulated in the striatum of patients with PD.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>C S</ForeName>
<Initials>CS</Initials>
<AffiliationInfo>
<Affiliation>Neurodegenerative Disorders Centre, Vancouver Hospital and Health Sciences Centre, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Samii</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sossi</LastName>
<ForeName>V</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ruth</LastName>
<ForeName>T J</ForeName>
<Initials>TJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schulzer</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holden</LastName>
<ForeName>J E</ForeName>
<Initials>JE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wudel</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pal</LastName>
<ForeName>P K</ForeName>
<Initials>PK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>de la Fuente-Fernandez</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Calne</LastName>
<ForeName>D B</ForeName>
<Initials>DB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stoessl</LastName>
<ForeName>A J</ForeName>
<Initials>AJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ann Neurol</MedlineTA>
<NlmUniqueID>7707449</NlmUniqueID>
<ISSNLinking>0364-5134</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002250">Carbon Radioisotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050483">Dopamine Plasma Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005462">Fluorine Radioisotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009419">Nerve Tissue Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3466-75-9</RegistryNumber>
<NameOfSubstance UI="C032811">dihydrotetrabenazine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>VTD58H1Z2X</RegistryNumber>
<NameOfSubstance UI="D004298">Dopamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>X77S6GMS36</RegistryNumber>
<NameOfSubstance UI="D006719">Homovanillic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Z9O08YRN8O</RegistryNumber>
<NameOfSubstance UI="D013747">Tetrabenazine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002250" MajorTopicYN="N">Carbon Radioisotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003342" MajorTopicYN="N">Corpus Striatum</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004298" MajorTopicYN="N">Dopamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050483" MajorTopicYN="N">Dopamine Plasma Membrane Transport Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005462" MajorTopicYN="N">Fluorine Radioisotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006719" MajorTopicYN="N">Homovanillic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="Y">Membrane Glycoproteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="Y">Membrane Transport Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009419" MajorTopicYN="Y">Nerve Tissue Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010300" MajorTopicYN="N">Parkinson Disease</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="Y">diagnostic imaging</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017729" MajorTopicYN="N">Presynaptic Terminals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013747" MajorTopicYN="N">Tetrabenazine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014055" MajorTopicYN="Y">Tomography, Emission-Computed</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2000</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10762161</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001645 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001645 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:10762161
   |texte=   In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:10762161" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022