La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

ABCG1 influences the brain cholesterol biosynthetic pathway but does not affect amyloid precursor protein or apolipoprotein E metabolism in vivo.

Identifieur interne : 000F73 ( PubMed/Curation ); précédent : 000F72; suivant : 000F74

ABCG1 influences the brain cholesterol biosynthetic pathway but does not affect amyloid precursor protein or apolipoprotein E metabolism in vivo.

Auteurs : Braydon L. Burgess [Canada] ; Pamela F. Parkinson ; Margaret M. Racke ; Veronica Hirsch-Reinshagen ; Jianjia Fan ; Charmaine Wong ; Sophie Stukas ; Louise Theroux ; Jeniffer Y. Chan ; James Donkin ; Anna Wilkinson ; Danielle Balik ; Brian Christie ; Judes Poirier ; Dieter Lütjohann ; Ronald B. Demattos ; Cheryl L. Wellington

Source :

RBID : pubmed:18314463

English descriptors

Abstract

Cholesterol homeostasis is of emerging therapeutic importance for Alzheimer's disease (AD). Agonists of liver-X-receptors (LXRs) stimulate several genes that regulate cholesterol homeostasis, and synthetic LXR agonists decrease neuropathological and cognitive phenotypes in AD mouse models. The cholesterol transporter ABCG1 is LXR-responsive and highly expressed in brain. In vitro, conflicting reports exist as to whether ABCG1 promotes or impedes Abeta production. To clarify the in vivo roles of ABCG1 in Abeta metabolism and brain cholesterol homeostasis, we assessed neuropathological and cognitive outcome measures in PDAPP mice expressing excess transgenic ABCG1. A 6-fold increase in ABCG1 levels did not alter Abeta, amyloid, apolipoprotein E levels, cholesterol efflux, or cognitive performance in PDAPP mice. Furthermore, endogenous murine Abeta levels were unchanged in both ABCG1-overexpressing or ABCG1-deficient mice. These data argue against a direct role for ABCG1 in AD. However, excess ABCG1 is associated with decreased levels of sterol precursors and increased levels of SREBP-2 and HMG-CoA-reductase mRNA, whereas deficiency of ABCG1 leads to the opposite effects. Although functions for ABCG1 in cholesterol efflux and Abeta metabolism have been proposed based on results with cellular model systems, the in vivo role of this enigmatic transporter may be largely one of regulating the sterol biosynthetic pathway.

DOI: 10.1194/jlr.M700481-JLR200
PubMed: 18314463

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18314463

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">ABCG1 influences the brain cholesterol biosynthetic pathway but does not affect amyloid precursor protein or apolipoprotein E metabolism in vivo.</title>
<author>
<name sortKey="Burgess, Braydon L" sort="Burgess, Braydon L" uniqKey="Burgess B" first="Braydon L" last="Burgess">Braydon L. Burgess</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Parkinson, Pamela F" sort="Parkinson, Pamela F" uniqKey="Parkinson P" first="Pamela F" last="Parkinson">Pamela F. Parkinson</name>
</author>
<author>
<name sortKey="Racke, Margaret M" sort="Racke, Margaret M" uniqKey="Racke M" first="Margaret M" last="Racke">Margaret M. Racke</name>
</author>
<author>
<name sortKey="Hirsch Reinshagen, Veronica" sort="Hirsch Reinshagen, Veronica" uniqKey="Hirsch Reinshagen V" first="Veronica" last="Hirsch-Reinshagen">Veronica Hirsch-Reinshagen</name>
</author>
<author>
<name sortKey="Fan, Jianjia" sort="Fan, Jianjia" uniqKey="Fan J" first="Jianjia" last="Fan">Jianjia Fan</name>
</author>
<author>
<name sortKey="Wong, Charmaine" sort="Wong, Charmaine" uniqKey="Wong C" first="Charmaine" last="Wong">Charmaine Wong</name>
</author>
<author>
<name sortKey="Stukas, Sophie" sort="Stukas, Sophie" uniqKey="Stukas S" first="Sophie" last="Stukas">Sophie Stukas</name>
</author>
<author>
<name sortKey="Theroux, Louise" sort="Theroux, Louise" uniqKey="Theroux L" first="Louise" last="Theroux">Louise Theroux</name>
</author>
<author>
<name sortKey="Chan, Jeniffer Y" sort="Chan, Jeniffer Y" uniqKey="Chan J" first="Jeniffer Y" last="Chan">Jeniffer Y. Chan</name>
</author>
<author>
<name sortKey="Donkin, James" sort="Donkin, James" uniqKey="Donkin J" first="James" last="Donkin">James Donkin</name>
</author>
<author>
<name sortKey="Wilkinson, Anna" sort="Wilkinson, Anna" uniqKey="Wilkinson A" first="Anna" last="Wilkinson">Anna Wilkinson</name>
</author>
<author>
<name sortKey="Balik, Danielle" sort="Balik, Danielle" uniqKey="Balik D" first="Danielle" last="Balik">Danielle Balik</name>
</author>
<author>
<name sortKey="Christie, Brian" sort="Christie, Brian" uniqKey="Christie B" first="Brian" last="Christie">Brian Christie</name>
</author>
<author>
<name sortKey="Poirier, Judes" sort="Poirier, Judes" uniqKey="Poirier J" first="Judes" last="Poirier">Judes Poirier</name>
</author>
<author>
<name sortKey="Lutjohann, Dieter" sort="Lutjohann, Dieter" uniqKey="Lutjohann D" first="Dieter" last="Lütjohann">Dieter Lütjohann</name>
</author>
<author>
<name sortKey="Demattos, Ronald B" sort="Demattos, Ronald B" uniqKey="Demattos R" first="Ronald B" last="Demattos">Ronald B. Demattos</name>
</author>
<author>
<name sortKey="Wellington, Cheryl L" sort="Wellington, Cheryl L" uniqKey="Wellington C" first="Cheryl L" last="Wellington">Cheryl L. Wellington</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18314463</idno>
<idno type="pmid">18314463</idno>
<idno type="doi">10.1194/jlr.M700481-JLR200</idno>
<idno type="wicri:Area/PubMed/Corpus">000F73</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000F73</idno>
<idno type="wicri:Area/PubMed/Curation">000F73</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000F73</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">ABCG1 influences the brain cholesterol biosynthetic pathway but does not affect amyloid precursor protein or apolipoprotein E metabolism in vivo.</title>
<author>
<name sortKey="Burgess, Braydon L" sort="Burgess, Braydon L" uniqKey="Burgess B" first="Braydon L" last="Burgess">Braydon L. Burgess</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Parkinson, Pamela F" sort="Parkinson, Pamela F" uniqKey="Parkinson P" first="Pamela F" last="Parkinson">Pamela F. Parkinson</name>
</author>
<author>
<name sortKey="Racke, Margaret M" sort="Racke, Margaret M" uniqKey="Racke M" first="Margaret M" last="Racke">Margaret M. Racke</name>
</author>
<author>
<name sortKey="Hirsch Reinshagen, Veronica" sort="Hirsch Reinshagen, Veronica" uniqKey="Hirsch Reinshagen V" first="Veronica" last="Hirsch-Reinshagen">Veronica Hirsch-Reinshagen</name>
</author>
<author>
<name sortKey="Fan, Jianjia" sort="Fan, Jianjia" uniqKey="Fan J" first="Jianjia" last="Fan">Jianjia Fan</name>
</author>
<author>
<name sortKey="Wong, Charmaine" sort="Wong, Charmaine" uniqKey="Wong C" first="Charmaine" last="Wong">Charmaine Wong</name>
</author>
<author>
<name sortKey="Stukas, Sophie" sort="Stukas, Sophie" uniqKey="Stukas S" first="Sophie" last="Stukas">Sophie Stukas</name>
</author>
<author>
<name sortKey="Theroux, Louise" sort="Theroux, Louise" uniqKey="Theroux L" first="Louise" last="Theroux">Louise Theroux</name>
</author>
<author>
<name sortKey="Chan, Jeniffer Y" sort="Chan, Jeniffer Y" uniqKey="Chan J" first="Jeniffer Y" last="Chan">Jeniffer Y. Chan</name>
</author>
<author>
<name sortKey="Donkin, James" sort="Donkin, James" uniqKey="Donkin J" first="James" last="Donkin">James Donkin</name>
</author>
<author>
<name sortKey="Wilkinson, Anna" sort="Wilkinson, Anna" uniqKey="Wilkinson A" first="Anna" last="Wilkinson">Anna Wilkinson</name>
</author>
<author>
<name sortKey="Balik, Danielle" sort="Balik, Danielle" uniqKey="Balik D" first="Danielle" last="Balik">Danielle Balik</name>
</author>
<author>
<name sortKey="Christie, Brian" sort="Christie, Brian" uniqKey="Christie B" first="Brian" last="Christie">Brian Christie</name>
</author>
<author>
<name sortKey="Poirier, Judes" sort="Poirier, Judes" uniqKey="Poirier J" first="Judes" last="Poirier">Judes Poirier</name>
</author>
<author>
<name sortKey="Lutjohann, Dieter" sort="Lutjohann, Dieter" uniqKey="Lutjohann D" first="Dieter" last="Lütjohann">Dieter Lütjohann</name>
</author>
<author>
<name sortKey="Demattos, Ronald B" sort="Demattos, Ronald B" uniqKey="Demattos R" first="Ronald B" last="Demattos">Ronald B. Demattos</name>
</author>
<author>
<name sortKey="Wellington, Cheryl L" sort="Wellington, Cheryl L" uniqKey="Wellington C" first="Cheryl L" last="Wellington">Cheryl L. Wellington</name>
</author>
</analytic>
<series>
<title level="j">Journal of lipid research</title>
<idno type="ISSN">0022-2275</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>ATP Binding Cassette Transporter, Sub-Family G, Member 1</term>
<term>ATP-Binding Cassette Transporters (physiology)</term>
<term>Amyloid beta-Protein Precursor (metabolism)</term>
<term>Animals</term>
<term>Apolipoproteins E (metabolism)</term>
<term>Base Sequence</term>
<term>Biological Transport</term>
<term>Brain (metabolism)</term>
<term>Cells, Cultured</term>
<term>Cholesterol (biosynthesis)</term>
<term>DNA Primers</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Lipoproteins (physiology)</term>
<term>Liver X Receptors</term>
<term>Mice</term>
<term>Orphan Nuclear Receptors</term>
<term>Receptors, Cytoplasmic and Nuclear (metabolism)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Cholesterol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amyloid beta-Protein Precursor</term>
<term>Apolipoproteins E</term>
<term>DNA-Binding Proteins</term>
<term>Receptors, Cytoplasmic and Nuclear</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Lipoproteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>ATP Binding Cassette Transporter, Sub-Family G, Member 1</term>
<term>DNA Primers</term>
<term>Liver X Receptors</term>
<term>Orphan Nuclear Receptors</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>ATP-Binding Cassette Transporters</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Biological Transport</term>
<term>Cells, Cultured</term>
<term>Mice</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cholesterol homeostasis is of emerging therapeutic importance for Alzheimer's disease (AD). Agonists of liver-X-receptors (LXRs) stimulate several genes that regulate cholesterol homeostasis, and synthetic LXR agonists decrease neuropathological and cognitive phenotypes in AD mouse models. The cholesterol transporter ABCG1 is LXR-responsive and highly expressed in brain. In vitro, conflicting reports exist as to whether ABCG1 promotes or impedes Abeta production. To clarify the in vivo roles of ABCG1 in Abeta metabolism and brain cholesterol homeostasis, we assessed neuropathological and cognitive outcome measures in PDAPP mice expressing excess transgenic ABCG1. A 6-fold increase in ABCG1 levels did not alter Abeta, amyloid, apolipoprotein E levels, cholesterol efflux, or cognitive performance in PDAPP mice. Furthermore, endogenous murine Abeta levels were unchanged in both ABCG1-overexpressing or ABCG1-deficient mice. These data argue against a direct role for ABCG1 in AD. However, excess ABCG1 is associated with decreased levels of sterol precursors and increased levels of SREBP-2 and HMG-CoA-reductase mRNA, whereas deficiency of ABCG1 leads to the opposite effects. Although functions for ABCG1 in cholesterol efflux and Abeta metabolism have been proposed based on results with cellular model systems, the in vivo role of this enigmatic transporter may be largely one of regulating the sterol biosynthetic pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18314463</PMID>
<DateCreated>
<Year>2008</Year>
<Month>05</Month>
<Day>19</Day>
</DateCreated>
<DateCompleted>
<Year>2008</Year>
<Month>08</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0022-2275</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>49</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of lipid research</Title>
<ISOAbbreviation>J. Lipid Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>ABCG1 influences the brain cholesterol biosynthetic pathway but does not affect amyloid precursor protein or apolipoprotein E metabolism in vivo.</ArticleTitle>
<Pagination>
<MedlinePgn>1254-67</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1194/jlr.M700481-JLR200</ELocationID>
<Abstract>
<AbstractText>Cholesterol homeostasis is of emerging therapeutic importance for Alzheimer's disease (AD). Agonists of liver-X-receptors (LXRs) stimulate several genes that regulate cholesterol homeostasis, and synthetic LXR agonists decrease neuropathological and cognitive phenotypes in AD mouse models. The cholesterol transporter ABCG1 is LXR-responsive and highly expressed in brain. In vitro, conflicting reports exist as to whether ABCG1 promotes or impedes Abeta production. To clarify the in vivo roles of ABCG1 in Abeta metabolism and brain cholesterol homeostasis, we assessed neuropathological and cognitive outcome measures in PDAPP mice expressing excess transgenic ABCG1. A 6-fold increase in ABCG1 levels did not alter Abeta, amyloid, apolipoprotein E levels, cholesterol efflux, or cognitive performance in PDAPP mice. Furthermore, endogenous murine Abeta levels were unchanged in both ABCG1-overexpressing or ABCG1-deficient mice. These data argue against a direct role for ABCG1 in AD. However, excess ABCG1 is associated with decreased levels of sterol precursors and increased levels of SREBP-2 and HMG-CoA-reductase mRNA, whereas deficiency of ABCG1 leads to the opposite effects. Although functions for ABCG1 in cholesterol efflux and Abeta metabolism have been proposed based on results with cellular model systems, the in vivo role of this enigmatic transporter may be largely one of regulating the sterol biosynthetic pathway.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Burgess</LastName>
<ForeName>Braydon L</ForeName>
<Initials>BL</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parkinson</LastName>
<ForeName>Pamela F</ForeName>
<Initials>PF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Racke</LastName>
<ForeName>Margaret M</ForeName>
<Initials>MM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hirsch-Reinshagen</LastName>
<ForeName>Veronica</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Jianjia</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wong</LastName>
<ForeName>Charmaine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stukas</LastName>
<ForeName>Sophie</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Theroux</LastName>
<ForeName>Louise</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chan</LastName>
<ForeName>Jeniffer Y</ForeName>
<Initials>JY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Donkin</LastName>
<ForeName>James</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wilkinson</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Balik</LastName>
<ForeName>Danielle</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Christie</LastName>
<ForeName>Brian</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Poirier</LastName>
<ForeName>Judes</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lütjohann</LastName>
<ForeName>Dieter</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Demattos</LastName>
<ForeName>Ronald B</ForeName>
<Initials>RB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wellington</LastName>
<ForeName>Cheryl L</ForeName>
<Initials>CL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>02</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Lipid Res</MedlineTA>
<NlmUniqueID>0376606</NlmUniqueID>
<ISSNLinking>0022-2275</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C487540">ABCG1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000070998">ATP Binding Cassette Transporter, Sub-Family G, Member 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016564">Amyloid beta-Protein Precursor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001057">Apolipoproteins E</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008074">Lipoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071518">Liver X Receptors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D057093">Orphan Nuclear Receptors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018160">Receptors, Cytoplasmic and Nuclear</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>97C5T2UQ7J</RegistryNumber>
<NameOfSubstance UI="D002784">Cholesterol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000070998" MajorTopicYN="N">ATP Binding Cassette Transporter, Sub-Family G, Member 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018528" MajorTopicYN="N">ATP-Binding Cassette Transporters</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016564" MajorTopicYN="N">Amyloid beta-Protein Precursor</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001057" MajorTopicYN="N">Apolipoproteins E</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002784" MajorTopicYN="N">Cholesterol</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008074" MajorTopicYN="N">Lipoproteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071518" MajorTopicYN="N">Liver X Receptors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057093" MajorTopicYN="N">Orphan Nuclear Receptors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018160" MajorTopicYN="N">Receptors, Cytoplasmic and Nuclear</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18314463</ArticleId>
<ArticleId IdType="pii">M700481-JLR200</ArticleId>
<ArticleId IdType="doi">10.1194/jlr.M700481-JLR200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000F73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:18314463
   |texte=   ABCG1 influences the brain cholesterol biosynthetic pathway but does not affect amyloid precursor protein or apolipoprotein E metabolism in vivo.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:18314463" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022