La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interplay between sumoylation and phosphorylation for protection against α-synuclein inclusions.

Identifieur interne : 000639 ( PubMed/Curation ); précédent : 000638; suivant : 000640

Interplay between sumoylation and phosphorylation for protection against α-synuclein inclusions.

Auteurs : Hedieh Shahpasandzadeh [Allemagne] ; Blagovesta Popova [Allemagne] ; Alexandra Kleinknecht [Allemagne] ; Paul E. Fraser [Canada] ; Tiago F. Outeiro [Allemagne] ; Gerhard H. Braus [Allemagne]

Source :

RBID : pubmed:25231978

English descriptors

Abstract

Parkinson disease is associated with the progressive loss of dopaminergic neurons from the substantia nigra. The pathological hallmark of the disease is the accumulation of intracytoplasmic inclusions known as Lewy bodies that consist mainly of post-translationally modified forms of α-synuclein. Whereas phosphorylation is one of the major modifications of α-synuclein in Lewy bodies, sumoylation has recently been described. The interplay between α-synuclein phosphorylation and sumoylation is poorly understood. Here, we examined the interplay between these modifications as well as their impact on cell growth and inclusion formation in yeast. We found that α-synuclein is sumoylated in vivo at the same sites in yeast as in human cells. Impaired sumoylation resulted in reduced yeast growth combined with an increased number of cells with inclusions, suggesting that this modification plays a protective role. In addition, inhibition of sumoylation prevented autophagy-mediated aggregate clearance. A defect in α-synuclein sumoylation could be suppressed by serine 129 phosphorylation by the human G protein-coupled receptor kinase 5 (GRK5) in yeast. Phosphorylation reduced foci formation, alleviated yeast growth inhibition, and partially rescued autophagic α-synuclein degradation along with the promotion of proteasomal degradation, resulting in aggregate clearance in the absence of a small ubiquitin-like modifier. These findings suggest a complex interplay between sumoylation and phosphorylation in α-synuclein aggregate clearance, which may open new horizons for the development of therapeutic strategies for Parkinson disease.

DOI: 10.1074/jbc.M114.559237
PubMed: 25231978

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25231978

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interplay between sumoylation and phosphorylation for protection against α-synuclein inclusions.</title>
<author>
<name sortKey="Shahpasandzadeh, Hedieh" sort="Shahpasandzadeh, Hedieh" uniqKey="Shahpasandzadeh H" first="Hedieh" last="Shahpasandzadeh">Hedieh Shahpasandzadeh</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Popova, Blagovesta" sort="Popova, Blagovesta" uniqKey="Popova B" first="Blagovesta" last="Popova">Blagovesta Popova</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kleinknecht, Alexandra" sort="Kleinknecht, Alexandra" uniqKey="Kleinknecht A" first="Alexandra" last="Kleinknecht">Alexandra Kleinknecht</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fraser, Paul E" sort="Fraser, Paul E" uniqKey="Fraser P" first="Paul E" last="Fraser">Paul E. Fraser</name>
<affiliation wicri:level="4">
<nlm:affiliation>the Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Ontario M5T 2S8, Canada, and.</nlm:affiliation>
<orgName type="university">Université de Toronto</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Outeiro, Tiago F" sort="Outeiro, Tiago F" uniqKey="Outeiro T" first="Tiago F" last="Outeiro">Tiago F. Outeiro</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany, the Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, D-37073 Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany, the Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, D-37073 Göttingen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Braus, Gerhard H" sort="Braus, Gerhard H" uniqKey="Braus G" first="Gerhard H" last="Braus">Gerhard H. Braus</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany, gbraus@gwdg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25231978</idno>
<idno type="pmid">25231978</idno>
<idno type="doi">10.1074/jbc.M114.559237</idno>
<idno type="wicri:Area/PubMed/Corpus">000639</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000639</idno>
<idno type="wicri:Area/PubMed/Curation">000639</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000639</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interplay between sumoylation and phosphorylation for protection against α-synuclein inclusions.</title>
<author>
<name sortKey="Shahpasandzadeh, Hedieh" sort="Shahpasandzadeh, Hedieh" uniqKey="Shahpasandzadeh H" first="Hedieh" last="Shahpasandzadeh">Hedieh Shahpasandzadeh</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Popova, Blagovesta" sort="Popova, Blagovesta" uniqKey="Popova B" first="Blagovesta" last="Popova">Blagovesta Popova</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kleinknecht, Alexandra" sort="Kleinknecht, Alexandra" uniqKey="Kleinknecht A" first="Alexandra" last="Kleinknecht">Alexandra Kleinknecht</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fraser, Paul E" sort="Fraser, Paul E" uniqKey="Fraser P" first="Paul E" last="Fraser">Paul E. Fraser</name>
<affiliation wicri:level="4">
<nlm:affiliation>the Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Ontario M5T 2S8, Canada, and.</nlm:affiliation>
<orgName type="university">Université de Toronto</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Outeiro, Tiago F" sort="Outeiro, Tiago F" uniqKey="Outeiro T" first="Tiago F" last="Outeiro">Tiago F. Outeiro</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany, the Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, D-37073 Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany, the Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, D-37073 Göttingen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Braus, Gerhard H" sort="Braus, Gerhard H" uniqKey="Braus G" first="Gerhard H" last="Braus">Gerhard H. Braus</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany, gbraus@gwdg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autophagy</term>
<term>Chromatography, Affinity</term>
<term>G-Protein-Coupled Receptor Kinase 5 (metabolism)</term>
<term>Humans</term>
<term>Lewy Bodies (metabolism)</term>
<term>Lysine (chemistry)</term>
<term>Microscopy, Fluorescence</term>
<term>Phosphorylation</term>
<term>Plasmids (metabolism)</term>
<term>Proteasome Endopeptidase Complex (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Processing, Post-Translational</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Sumoylation</term>
<term>Ubiquitin (chemistry)</term>
<term>alpha-Synuclein (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lysine</term>
<term>Ubiquitin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>G-Protein-Coupled Receptor Kinase 5</term>
<term>Proteasome Endopeptidase Complex</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>alpha-Synuclein</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lewy Bodies</term>
<term>Plasmids</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Autophagy</term>
<term>Chromatography, Affinity</term>
<term>Humans</term>
<term>Microscopy, Fluorescence</term>
<term>Phosphorylation</term>
<term>Protein Binding</term>
<term>Protein Processing, Post-Translational</term>
<term>Sumoylation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Parkinson disease is associated with the progressive loss of dopaminergic neurons from the substantia nigra. The pathological hallmark of the disease is the accumulation of intracytoplasmic inclusions known as Lewy bodies that consist mainly of post-translationally modified forms of α-synuclein. Whereas phosphorylation is one of the major modifications of α-synuclein in Lewy bodies, sumoylation has recently been described. The interplay between α-synuclein phosphorylation and sumoylation is poorly understood. Here, we examined the interplay between these modifications as well as their impact on cell growth and inclusion formation in yeast. We found that α-synuclein is sumoylated in vivo at the same sites in yeast as in human cells. Impaired sumoylation resulted in reduced yeast growth combined with an increased number of cells with inclusions, suggesting that this modification plays a protective role. In addition, inhibition of sumoylation prevented autophagy-mediated aggregate clearance. A defect in α-synuclein sumoylation could be suppressed by serine 129 phosphorylation by the human G protein-coupled receptor kinase 5 (GRK5) in yeast. Phosphorylation reduced foci formation, alleviated yeast growth inhibition, and partially rescued autophagic α-synuclein degradation along with the promotion of proteasomal degradation, resulting in aggregate clearance in the absence of a small ubiquitin-like modifier. These findings suggest a complex interplay between sumoylation and phosphorylation in α-synuclein aggregate clearance, which may open new horizons for the development of therapeutic strategies for Parkinson disease.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25231978</PMID>
<DateCreated>
<Year>2014</Year>
<Month>11</Month>
<Day>08</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>289</Volume>
<Issue>45</Issue>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J. Biol. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Interplay between sumoylation and phosphorylation for protection against α-synuclein inclusions.</ArticleTitle>
<Pagination>
<MedlinePgn>31224-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M114.559237</ELocationID>
<Abstract>
<AbstractText>Parkinson disease is associated with the progressive loss of dopaminergic neurons from the substantia nigra. The pathological hallmark of the disease is the accumulation of intracytoplasmic inclusions known as Lewy bodies that consist mainly of post-translationally modified forms of α-synuclein. Whereas phosphorylation is one of the major modifications of α-synuclein in Lewy bodies, sumoylation has recently been described. The interplay between α-synuclein phosphorylation and sumoylation is poorly understood. Here, we examined the interplay between these modifications as well as their impact on cell growth and inclusion formation in yeast. We found that α-synuclein is sumoylated in vivo at the same sites in yeast as in human cells. Impaired sumoylation resulted in reduced yeast growth combined with an increased number of cells with inclusions, suggesting that this modification plays a protective role. In addition, inhibition of sumoylation prevented autophagy-mediated aggregate clearance. A defect in α-synuclein sumoylation could be suppressed by serine 129 phosphorylation by the human G protein-coupled receptor kinase 5 (GRK5) in yeast. Phosphorylation reduced foci formation, alleviated yeast growth inhibition, and partially rescued autophagic α-synuclein degradation along with the promotion of proteasomal degradation, resulting in aggregate clearance in the absence of a small ubiquitin-like modifier. These findings suggest a complex interplay between sumoylation and phosphorylation in α-synuclein aggregate clearance, which may open new horizons for the development of therapeutic strategies for Parkinson disease.</AbstractText>
<CopyrightInformation>© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shahpasandzadeh</LastName>
<ForeName>Hedieh</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Popova</LastName>
<ForeName>Blagovesta</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kleinknecht</LastName>
<ForeName>Alexandra</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fraser</LastName>
<ForeName>Paul E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>the Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Ontario M5T 2S8, Canada, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Outeiro</LastName>
<ForeName>Tiago F</ForeName>
<Initials>TF</Initials>
<AffiliationInfo>
<Affiliation>the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany, the Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, D-37073 Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Braus</LastName>
<ForeName>Gerhard H</ForeName>
<Initials>GH</Initials>
<AffiliationInfo>
<Affiliation>From the Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, D-37073 Göttingen, Germany, gbraus@gwdg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>09</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051844">alpha-Synuclein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.-</RegistryNumber>
<NameOfSubstance UI="C496126">PLK2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.16</RegistryNumber>
<NameOfSubstance UI="D054774">G-Protein-Coupled Receptor Kinase 5</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.16</RegistryNumber>
<NameOfSubstance UI="C517898">GRK5 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.25.1</RegistryNumber>
<NameOfSubstance UI="D046988">Proteasome Endopeptidase Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3Z4F929H6</RegistryNumber>
<NameOfSubstance UI="D008239">Lysine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1989 May;122(1):19-27</RefSource>
<PMID Version="1">2659436</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Enzymol. 1991;194:1-863</RefSource>
<PMID Version="1">2005781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1992 Mar 25;20(6):1425</RefSource>
<PMID Version="1">1561104</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1992 Oct;119(2):301-11</RefSource>
<PMID Version="1">1400575</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1992 Nov 15;267(32):22699-702</RefSource>
<PMID Version="1">1429620</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Neurol. 1996;69:217-28</RefSource>
<PMID Version="1">8615131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1996 Nov 1;271(44):27280-4</RefSource>
<PMID Version="1">8910302</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 1996 Oct 31;178(1-2):139-43</RefSource>
<PMID Version="1">8921905</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1997 Jun 27;276(5321):2045-7</RefSource>
<PMID Version="1">9197268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 1997 Jun 19;192(2):245-50</RefSource>
<PMID Version="1">9224897</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1997 Aug 28;388(6645):839-40</RefSource>
<PMID Version="1">9278044</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 1998 Feb;18(2):106-8</RefSource>
<PMID Version="1">9462735</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biochem. 1998;67:425-79</RefSource>
<PMID Version="1">9759494</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cell Biol. 1998 Oct;8(10):397-403</RefSource>
<PMID Version="1">9789328</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Cell. 1999 May;10(5):1367-79</RefSource>
<PMID Version="1">10233150</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuropathol Exp Neurol. 2008 May;67(5):402-16</RefSource>
<PMID Version="1">18451726</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Jun 13;283(24):16895-905</RefSource>
<PMID Version="1">18343814</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18666-71</RefSource>
<PMID Version="1">22065755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2012 Feb 3;418(1):156-60</RefSource>
<PMID Version="1">22248692</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2012 Jun 1;21(11):2432-49</RefSource>
<PMID Version="1">22357655</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2012 Aug 10;287(33):27567-79</RefSource>
<PMID Version="1">22722939</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16119-24</RefSource>
<PMID Version="1">22988096</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):E3945-54</RefSource>
<PMID Version="1">23983262</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Neurobiol. 2013 Dec;48(3):854-62</RefSource>
<PMID Version="1">23677647</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuromolecular Med. 2013 Dec;15(4):737-59</RefSource>
<PMID Version="1">23979994</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2014 Jan 3;256:72-82</RefSource>
<PMID Version="1">24128992</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Nov 12;279(46):47746-53</RefSource>
<PMID Version="1">15364911</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2005 Jan 11;44(1):361-8</RefSource>
<PMID Version="1">15628878</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS J. 2005 Mar;272(6):1386-400</RefSource>
<PMID Version="1">15752356</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2005 May;8(5):657-63</RefSource>
<PMID Version="1">15834418</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2005 Jun 8;25(23):5544-52</RefSource>
<PMID Version="1">15944382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 Jun 24;280(25):23727-34</RefSource>
<PMID Version="1">15845543</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):45-50</RefSource>
<PMID Version="1">16371476</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 Apr 14;281(15):9919-24</RefSource>
<PMID Version="1">16464864</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Sep 6;26(36):9227-38</RefSource>
<PMID Version="1">16957079</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 Oct 6;281(40):29739-52</RefSource>
<PMID Version="1">16847063</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2007 Jan;9(1):80-5</RefSource>
<PMID Version="1">17159996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechniques. 2007 Feb;42(2):158, 160, 162</RefSource>
<PMID Version="1">17373478</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2007 Jun 26;46(25):7325-36</RefSource>
<PMID Version="1">17542619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2007 Sep;28(9):1421-35</RefSource>
<PMID Version="1">16872721</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):763-8</RefSource>
<PMID Version="1">18178617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Feb 8;283(6):3316-28</RefSource>
<PMID Version="1">18070888</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 2013 Jun;70(12):2123-38</RefSource>
<PMID Version="1">23007842</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1999 Nov 26;274(48):33855-8</RefSource>
<PMID Version="1">10567343</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2000 Jan 7;275(1):390-7</RefSource>
<PMID Version="1">10617630</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2000 Aug 25;275(34):26515-22</RefSource>
<PMID Version="1">10852916</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2000 Nov 3;290(5493):985-9</RefSource>
<PMID Version="1">11062131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Neurol. 2001 Feb;58(2):186-90</RefSource>
<PMID Version="1">11176955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Aug 29;283(35):23542-56</RefSource>
<PMID Version="1">18566453</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2009 Jan 30;284(5):2598-602</RefSource>
<PMID Version="1">19004816</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2009 Mar 1;18(5):872-87</RefSource>
<PMID Version="1">19074459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2009 Jul 3;384(3):378-82</RefSource>
<PMID Version="1">19410557</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2009 Aug 7;284(32):21296-306</RefSource>
<PMID Version="1">19497852</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuropathol Exp Neurol. 2009 May;68(5):515-24</RefSource>
<PMID Version="1">19525899</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2010 Jan 1;19(1):181-95</RefSource>
<PMID Version="1">19843541</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2010 Jan 22;285(4):2807-22</RefSource>
<PMID Version="1">19889641</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Death Differ. 2010 May;17(5):746-53</RefSource>
<PMID Version="1">20019751</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2010 Jun;16(6):653-61</RefSource>
<PMID Version="1">20495568</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2010 Aug;30(15):3737-48</RefSource>
<PMID Version="1">20516210</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2010;183:115-45</RefSource>
<PMID Version="1">20696318</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Res. 2011 Feb;89(2):231-47</RefSource>
<PMID Version="1">21162130</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2011 May 27;286(21):18731-46</RefSource>
<PMID Version="1">21460228</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2011 Jul 11;194(1):49-60</RefSource>
<PMID Version="1">21746851</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2011 Aug 5;286(31):27342-9</RefSource>
<PMID Version="1">21685386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Oct 12;31(41):14508-20</RefSource>
<PMID Version="1">21994367</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Feb 9;276(6):3879-84</RefSource>
<PMID Version="1">11078745</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2001 Oct;159(2):453-70</RefSource>
<PMID Version="1">11606525</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2001 Nov 30;509(1):22-6</RefSource>
<PMID Version="1">11734199</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2002 Feb;4(2):160-4</RefSource>
<PMID Version="1">11813001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Enzymol. 2002;351:127-50</RefSource>
<PMID Version="1">12073340</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Sep 12;419(6903):135-41</RefSource>
<PMID Version="1">12226657</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2002 Dec 13;277(50):49071-6</RefSource>
<PMID Version="1">12377775</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2003 Jul 4;278(27):25009-13</RefSource>
<PMID Version="1">12719433</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2003 Oct 31;302(5646):841</RefSource>
<PMID Version="1">14593171</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2003 Nov 7;278(45):44405-11</RefSource>
<PMID Version="1">12923179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2003 Dec 5;302(5651):1772-5</RefSource>
<PMID Version="1">14657500</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2004 Feb;55(2):164-73</RefSource>
<PMID Version="1">14755719</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Microbiol. 2004 Mar;51(5):1375-87</RefSource>
<PMID Version="1">14982631</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2004 Jun;24(12):5130-43</RefSource>
<PMID Version="1">15169880</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biochem. 2004;73:355-82</RefSource>
<PMID Version="1">15189146</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neuropathol. 1988;75(4):345-53</RefSource>
<PMID Version="1">3364159</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002846" MajorTopicYN="N">Chromatography, Affinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054774" MajorTopicYN="N">G-Protein-Coupled Receptor Kinase 5</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016631" MajorTopicYN="N">Lewy Bodies</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008239" MajorTopicYN="N">Lysine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046988" MajorTopicYN="N">Proteasome Endopeptidase Complex</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058207" MajorTopicYN="N">Sumoylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025801" MajorTopicYN="N">Ubiquitin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051844" MajorTopicYN="N">alpha-Synuclein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4223324</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Autophagy</Keyword>
<Keyword MajorTopicYN="N">Post-translational Modification</Keyword>
<Keyword MajorTopicYN="N">Proteasome</Keyword>
<Keyword MajorTopicYN="N">Yeast</Keyword>
<Keyword MajorTopicYN="N">α-Synuclein</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25231978</ArticleId>
<ArticleId IdType="pii">M114.559237</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M114.559237</ArticleId>
<ArticleId IdType="pmc">PMC4223324</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000639 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000639 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25231978
   |texte=   Interplay between sumoylation and phosphorylation for protection against α-synuclein inclusions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25231978" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022