La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.

Identifieur interne : 000499 ( PubMed/Curation ); précédent : 000498; suivant : 000500

The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.

Auteurs : Thomas M. Durcan [Canada] ; Edward A. Fon [Canada]

Source :

RBID : pubmed:25995186

English descriptors

Abstract

Two Parkinson's disease (PD)-associated proteins, the mitochondrial kinase PINK1 and the E3-ubiquitin (Ub) ligase PARKIN, are central to mitochondrial quality control. In this pathway, PINK1 accumulates on defective mitochondria, eliciting the translocation of PARKIN from the cytosol to mediate the clearance of damaged mitochondria via autophagy (mitophagy). Throughout the different stages of mitophagy, post-translational modifications (PTMs) are critical for the regulation of PINK1 and PARKIN activity and function. Indeed, activation and recruitment of PARKIN onto damaged mitochondria involves PINK1-mediated phosphorylation of both PARKIN and Ub. Through a stepwise cascade, PARKIN is converted from an autoinhibited enzyme into an active phospho-Ub-dependent E3 ligase. Upon activation, PARKIN ubiquitinates itself in concert with many different mitochondrial substrates. The Ub conjugates attached to these substrates can in turn be phosphorylated by PINK1, which triggers further cycles of PARKIN recruitment and activation. This feed-forward amplification loop regulates both PARKIN activity and mitophagy. However, the precise steps and sequence of PTMs in this cascade are only now being uncovered. For instance, the Ub conjugates assembled by PARKIN consist predominantly of noncanonical K6-linked Ub chains. Moreover, these modifications are reversible and can be disassembled by deubiquitinating enzymes (DUBs), including Ub-specific protease 8 (USP8), USP15, and USP30. However, PINK1-mediated phosphorylation of Ub can impede the activity of these DUBs, adding a new layer of complexity to the regulation of PARKIN-mediated mitophagy by PTMs. It is therefore evident that further insight into how PTMs regulate the PINK1-PARKIN pathway will be critical for our understanding of mitochondrial quality control.

DOI: 10.1101/gad.262758.115
PubMed: 25995186

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25995186

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.</title>
<author>
<name sortKey="Durcan, Thomas M" sort="Durcan, Thomas M" uniqKey="Durcan T" first="Thomas M" last="Durcan">Thomas M. Durcan</name>
<affiliation wicri:level="1">
<nlm:affiliation>McGill Parkinson's Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>McGill Parkinson's Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fon, Edward A" sort="Fon, Edward A" uniqKey="Fon E" first="Edward A" last="Fon">Edward A. Fon</name>
<affiliation wicri:level="1">
<nlm:affiliation>McGill Parkinson's Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada ted.fon@mcgill.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>McGill Parkinson's Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25995186</idno>
<idno type="pmid">25995186</idno>
<idno type="doi">10.1101/gad.262758.115</idno>
<idno type="wicri:Area/PubMed/Corpus">000499</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000499</idno>
<idno type="wicri:Area/PubMed/Curation">000499</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000499</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.</title>
<author>
<name sortKey="Durcan, Thomas M" sort="Durcan, Thomas M" uniqKey="Durcan T" first="Thomas M" last="Durcan">Thomas M. Durcan</name>
<affiliation wicri:level="1">
<nlm:affiliation>McGill Parkinson's Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>McGill Parkinson's Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fon, Edward A" sort="Fon, Edward A" uniqKey="Fon E" first="Edward A" last="Fon">Edward A. Fon</name>
<affiliation wicri:level="1">
<nlm:affiliation>McGill Parkinson's Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada ted.fon@mcgill.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>McGill Parkinson's Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genes & development</title>
<idno type="eISSN">1549-5477</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Enzyme Activation</term>
<term>Humans</term>
<term>Mitochondria (enzymology)</term>
<term>Mitochondria (genetics)</term>
<term>Mitochondria (pathology)</term>
<term>Mitochondrial Degradation (genetics)</term>
<term>Mitochondrial Degradation (physiology)</term>
<term>Parkinson Disease (enzymology)</term>
<term>Parkinson Disease (pathology)</term>
<term>Phosphorylation</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>Protein Processing, Post-Translational</term>
<term>Ubiquitin-Protein Ligases (genetics)</term>
<term>Ubiquitin-Protein Ligases (metabolism)</term>
<term>Ubiquitination</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Protein Kinases</term>
<term>Ubiquitin-Protein Ligases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mitochondria</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mitochondria</term>
<term>Mitochondrial Degradation</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Protein Kinases</term>
<term>Ubiquitin-Protein Ligases</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Mitochondria</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mitochondrial Degradation</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Enzyme Activation</term>
<term>Humans</term>
<term>Phosphorylation</term>
<term>Protein Processing, Post-Translational</term>
<term>Ubiquitination</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Two Parkinson's disease (PD)-associated proteins, the mitochondrial kinase PINK1 and the E3-ubiquitin (Ub) ligase PARKIN, are central to mitochondrial quality control. In this pathway, PINK1 accumulates on defective mitochondria, eliciting the translocation of PARKIN from the cytosol to mediate the clearance of damaged mitochondria via autophagy (mitophagy). Throughout the different stages of mitophagy, post-translational modifications (PTMs) are critical for the regulation of PINK1 and PARKIN activity and function. Indeed, activation and recruitment of PARKIN onto damaged mitochondria involves PINK1-mediated phosphorylation of both PARKIN and Ub. Through a stepwise cascade, PARKIN is converted from an autoinhibited enzyme into an active phospho-Ub-dependent E3 ligase. Upon activation, PARKIN ubiquitinates itself in concert with many different mitochondrial substrates. The Ub conjugates attached to these substrates can in turn be phosphorylated by PINK1, which triggers further cycles of PARKIN recruitment and activation. This feed-forward amplification loop regulates both PARKIN activity and mitophagy. However, the precise steps and sequence of PTMs in this cascade are only now being uncovered. For instance, the Ub conjugates assembled by PARKIN consist predominantly of noncanonical K6-linked Ub chains. Moreover, these modifications are reversible and can be disassembled by deubiquitinating enzymes (DUBs), including Ub-specific protease 8 (USP8), USP15, and USP30. However, PINK1-mediated phosphorylation of Ub can impede the activity of these DUBs, adding a new layer of complexity to the regulation of PARKIN-mediated mitophagy by PTMs. It is therefore evident that further insight into how PTMs regulate the PINK1-PARKIN pathway will be critical for our understanding of mitochondrial quality control.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25995186</PMID>
<DateCreated>
<Year>2015</Year>
<Month>05</Month>
<Day>21</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1549-5477</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2015</Year>
<Month>May</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Genes & development</Title>
<ISOAbbreviation>Genes Dev.</ISOAbbreviation>
</Journal>
<ArticleTitle>The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.</ArticleTitle>
<Pagination>
<MedlinePgn>989-99</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1101/gad.262758.115</ELocationID>
<Abstract>
<AbstractText>Two Parkinson's disease (PD)-associated proteins, the mitochondrial kinase PINK1 and the E3-ubiquitin (Ub) ligase PARKIN, are central to mitochondrial quality control. In this pathway, PINK1 accumulates on defective mitochondria, eliciting the translocation of PARKIN from the cytosol to mediate the clearance of damaged mitochondria via autophagy (mitophagy). Throughout the different stages of mitophagy, post-translational modifications (PTMs) are critical for the regulation of PINK1 and PARKIN activity and function. Indeed, activation and recruitment of PARKIN onto damaged mitochondria involves PINK1-mediated phosphorylation of both PARKIN and Ub. Through a stepwise cascade, PARKIN is converted from an autoinhibited enzyme into an active phospho-Ub-dependent E3 ligase. Upon activation, PARKIN ubiquitinates itself in concert with many different mitochondrial substrates. The Ub conjugates attached to these substrates can in turn be phosphorylated by PINK1, which triggers further cycles of PARKIN recruitment and activation. This feed-forward amplification loop regulates both PARKIN activity and mitophagy. However, the precise steps and sequence of PTMs in this cascade are only now being uncovered. For instance, the Ub conjugates assembled by PARKIN consist predominantly of noncanonical K6-linked Ub chains. Moreover, these modifications are reversible and can be disassembled by deubiquitinating enzymes (DUBs), including Ub-specific protease 8 (USP8), USP15, and USP30. However, PINK1-mediated phosphorylation of Ub can impede the activity of these DUBs, adding a new layer of complexity to the regulation of PARKIN-mediated mitophagy by PTMs. It is therefore evident that further insight into how PTMs regulate the PINK1-PARKIN pathway will be critical for our understanding of mitochondrial quality control.</AbstractText>
<CopyrightInformation>© 2015 Durcan and Fon; Published by Cold Spring Harbor Laboratory Press.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Durcan</LastName>
<ForeName>Thomas M</ForeName>
<Initials>TM</Initials>
<AffiliationInfo>
<Affiliation>McGill Parkinson's Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fon</LastName>
<ForeName>Edward A</ForeName>
<Initials>EA</Initials>
<AffiliationInfo>
<Affiliation>McGill Parkinson's Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada ted.fon@mcgill.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genes Dev</MedlineTA>
<NlmUniqueID>8711660</NlmUniqueID>
<ISSNLinking>0890-9369</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 2.3.2.27</RegistryNumber>
<NameOfSubstance UI="D044767">Ubiquitin-Protein Ligases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.27</RegistryNumber>
<NameOfSubstance UI="C111567">parkin protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C433927">PTEN-induced putative kinase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2001 Jun 29;105(7):891-902</RefSource>
<PMID Version="1">11439185</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2002 Aug 1;21(15):4037-48</RefSource>
<PMID Version="1">12145204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2002 Jul;10(1):55-67</RefSource>
<PMID Version="1">12150907</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4078-83</RefSource>
<PMID Version="1">12642658</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2003 Sep 12;278(37):34743-6</RefSource>
<PMID Version="1">12890688</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2004 Apr 1;13 Spec No 1:R127-33</RefSource>
<PMID Version="1">14976155</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2004 May 21;304(5674):1158-60</RefSource>
<PMID Version="1">15087508</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2004 Sep;56(3):336-41</RefSource>
<PMID Version="1">15349860</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1983 Feb 25;219(4587):979-80</RefSource>
<PMID Version="1">6823561</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet. 1989 Jun 3;1(8649):1269</RefSource>
<PMID Version="1">2566813</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 1989 Sep 29;163(3):1450-5</RefSource>
<PMID Version="1">2551290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1989 Dec;26(6):719-23</RefSource>
<PMID Version="1">2557792</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1998 Apr 9;392(6676):605-8</RefSource>
<PMID Version="1">9560156</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Toxicol Sci. 2005 Nov;88(1):193-201</RefSource>
<PMID Version="1">16141438</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2005 Dec 2;123(5):773-86</RefSource>
<PMID Version="1">16325574</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1717-22</RefSource>
<PMID Version="1">16446428</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2006 May;38(5):518-20</RefSource>
<PMID Version="1">16604072</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2006 May;38(5):515-7</RefSource>
<PMID Version="1">16604074</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 May 10;26(19):5256-64</RefSource>
<PMID Version="1">16687518</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Jun 29;441(7097):1157-61</RefSource>
<PMID Version="1">16672980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Jun 29;441(7097):1162-6</RefSource>
<PMID Version="1">16672981</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10793-8</RefSource>
<PMID Version="1">16818890</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2006 Aug;8(8):834-42</RefSource>
<PMID Version="1">16862145</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2006 Dec 8;24(5):701-11</RefSource>
<PMID Version="1">17157253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2008 Aug 22;134(4):668-78</RefSource>
<PMID Version="1">18724939</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2008 Dec 1;183(5):795-803</RefSource>
<PMID Version="1">19029340</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2009 Dec 25;36(6):1034-47</RefSource>
<PMID Version="1">20064468</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2010 Feb;12(2):119-31</RefSource>
<PMID Version="1">20098416</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2010 Jan;8(1):e1000298</RefSource>
<PMID Version="1">20126261</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2010 Apr 19;189(2):211-21</RefSource>
<PMID Version="1">20404107</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Cells. 2010 Aug;15(8):887-900</RefSource>
<PMID Version="1">20604804</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 Aug 19;466(7309):941-6</RefSource>
<PMID Version="1">20725033</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2014 Feb 18;33(4):282-95</RefSource>
<PMID Version="1">24446486</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 2014 Mar 15;458(3):421-37</RefSource>
<PMID Version="1">24576094</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 2014 May 15;460(1):127-39</RefSource>
<PMID Version="1">24660806</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2014 Apr 28;205(2):143-53</RefSource>
<PMID Version="1">24751536</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2014 May 8;54(3):362-77</RefSource>
<PMID Version="1">24746696</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2014 Jun 5;510(7503):162-6</RefSource>
<PMID Version="1">24784582</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2014 Jun 19;510(7505):370-5</RefSource>
<PMID Version="1">24896179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2014 Aug 1;127(Pt 15):3280-93</RefSource>
<PMID Version="1">24906799</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2014 Oct 1;23(19):5227-42</RefSource>
<PMID Version="1">24852371</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2014;5:4930</RefSource>
<PMID Version="1">25222142</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4439-48</RefSource>
<PMID Version="1">25294927</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2010 Sep 24;400(3):389-95</RefSource>
<PMID Version="1">20800574</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2010 Nov 29;191(5):933-42</RefSource>
<PMID Version="1">21115803</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Autophagy. 2010 Nov;6(8):1090-106</RefSource>
<PMID Version="1">20890124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 Dec 2;468(7324):696-700</RefSource>
<PMID Version="1">21068725</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2011 Jan 1;20(1):141-54</RefSource>
<PMID Version="1">20940148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2010 Dec 27;191(7):1367-80</RefSource>
<PMID Version="1">21173115</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2011 Mar 1;20(5):867-79</RefSource>
<PMID Version="1">21138942</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2011 May 1;20(9):1726-37</RefSource>
<PMID Version="1">21296869</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Jun 2;474(7349):105-8</RefSource>
<PMID Version="1">21532592</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2011 Jul 20;30(14):2853-67</RefSource>
<PMID Version="1">21694720</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2012 Jan 2;287(1):531-41</RefSource>
<PMID Version="1">22081612</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2012 Jan 24;22(2):135-41</RefSource>
<PMID Version="1">22226745</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Mol Biol. 2012 Feb;19(2):184-92</RefSource>
<PMID Version="1">22266821</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2012 Feb 14;22(2):320-33</RefSource>
<PMID Version="1">22280891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO Rep. 2012 Apr;13(4):378-85</RefSource>
<PMID Version="1">22354088</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biochem. 2012;81:291-322</RefSource>
<PMID Version="1">22482907</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Open Biol. 2012 May;2(5):120080</RefSource>
<PMID Version="1">22724072</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2012;3:1016</RefSource>
<PMID Version="1">22910362</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2012 Oct 5;287(41):34635-45</RefSource>
<PMID Version="1">22915595</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(12):e52830</RefSource>
<PMID Version="1">23300790</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2013 Jan 21;200(2):163-72</RefSource>
<PMID Version="1">23319602</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2013 Apr 10;78(1):65-80</RefSource>
<PMID Version="1">23498974</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2013 Apr 18;496(7445):372-6</RefSource>
<PMID Version="1">23503661</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Mol Biol. 2013 May;20(5):555-65</RefSource>
<PMID Version="1">23563141</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2013;4:1982</RefSource>
<PMID Version="1">23770887</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2013;4:1983</RefSource>
<PMID Version="1">23770917</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2013 Jun 21;340(6139):1451-5</RefSource>
<PMID Version="1">23661642</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2013 Jul 26;288(30):22019-32</RefSource>
<PMID Version="1">23754282</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2013 Jul 31;32(15):2099-112</RefSource>
<PMID Version="1">23727886</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Commun Signal. 2013;11:52</RefSource>
<PMID Version="1">23902637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Autophagy. 2013 Nov 1;9(11):1758-69</RefSource>
<PMID Version="1">24121706</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2013 Dec 12;504(7479):291-5</RefSource>
<PMID Version="1">24270810</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2014 Oct 24;289(43):29519-30</RefSource>
<PMID Version="1">25217637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2014 Nov 3;33(21):2473-91</RefSource>
<PMID Version="1">25216678</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2014 Nov 3;33(21):2442-3</RefSource>
<PMID Version="1">25274967</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2014 Nov 28;289(48):33131-6</RefSource>
<PMID Version="1">25336644</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2014 Nov 6;56(3):360-75</RefSource>
<PMID Version="1">25284222</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2014 Dec;10(12):e1004861</RefSource>
<PMID Version="1">25474007</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2014 Oct 1;33(19):2142-56</RefSource>
<PMID Version="1">25107473</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2015 Jan 30;290(5):2798-811</RefSource>
<PMID Version="1">25527497</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2015 Feb;17(2):160-9</RefSource>
<PMID Version="1">25621951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2015 Feb 3;34(3):307-25</RefSource>
<PMID Version="1">25527291</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO Rep. 2015 Feb;16(2):192-201</RefSource>
<PMID Version="1">25527407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2015 Mar 1;128(5):964-78</RefSource>
<PMID Version="1">25609704</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2015 Mar 20;290(12):7492-505</RefSource>
<PMID Version="1">25666615</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2015 Apr 13;209(1):111-28</RefSource>
<PMID Version="1">25847540</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO Rep. 2015 May;16(5):618-27</RefSource>
<PMID Version="1">25739811</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12760-5</RefSource>
<PMID Version="1">10535996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Immunol. 2000;18:621-63</RefSource>
<PMID Version="1">10837071</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biochem. 1999;68:1015-68</RefSource>
<PMID Version="1">10872471</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2000 Jul;25(3):302-5</RefSource>
<PMID Version="1">10888878</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13354-9</RefSource>
<PMID Version="1">11078524</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2000 Dec;3(12):1301-6</RefSource>
<PMID Version="1">11100151</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063306" MajorTopicYN="N">Mitochondrial Degradation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010300" MajorTopicYN="N">Parkinson Disease</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="Y">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044767" MajorTopicYN="N">Ubiquitin-Protein Ligases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054875" MajorTopicYN="N">Ubiquitination</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4441056</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">PARKIN</Keyword>
<Keyword MajorTopicYN="N">PINK1</Keyword>
<Keyword MajorTopicYN="N">deubiquitination</Keyword>
<Keyword MajorTopicYN="N">mitophagy</Keyword>
<Keyword MajorTopicYN="N">phosphorylation</Keyword>
<Keyword MajorTopicYN="N">ubiquitin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25995186</ArticleId>
<ArticleId IdType="pii">29/10/989</ArticleId>
<ArticleId IdType="doi">10.1101/gad.262758.115</ArticleId>
<ArticleId IdType="pmc">PMC4441056</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000499 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000499 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25995186
   |texte=   The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25995186" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022