La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast.

Identifieur interne : 001115 ( PubMed/Corpus ); précédent : 001114; suivant : 001116

Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast.

Auteurs : Ronish Gupta ; Bart Kus ; Christopher Fladd ; James Wasmuth ; Raffi Tonikian ; Sachdev Sidhu ; Nevan J. Krogan ; John Parkinson ; Daniela Rotin

Source :

RBID : pubmed:17551511

English descriptors

Abstract

Ubiquitin-protein ligases (E3s) are responsible for target recognition and regulate stability, localization or function of their substrates. However, the substrates of most E3 enzymes remain unknown. Here, we describe the development of a novel proteomic in vitro ubiquitination screen using a protein microarray platform that can be utilized for the discovery of substrates for E3 ligases on a global scale. Using the yeast E3 Rsp5 as a test system to identify its substrates on a yeast protein microarray that covers most of the yeast (Saccharomyces cerevisiae) proteome, we identified numerous known and novel ubiquitinated substrates of this E3 ligase. Our enzymatic approach was complemented by a parallel protein microarray protein interaction study. Examination of the substrates identified in the analysis combined with phage display screening allowed exploration of binding mechanisms and substrate specificity of Rsp5. The development of a platform for global discovery of E3 substrates is invaluable for understanding the cellular pathways in which they participate, and could be utilized for the identification of drug targets.

DOI: 10.1038/msb4100159
PubMed: 17551511

Links to Exploration step

pubmed:17551511

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast.</title>
<author>
<name sortKey="Gupta, Ronish" sort="Gupta, Ronish" uniqKey="Gupta R" first="Ronish" last="Gupta">Ronish Gupta</name>
<affiliation>
<nlm:affiliation>Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kus, Bart" sort="Kus, Bart" uniqKey="Kus B" first="Bart" last="Kus">Bart Kus</name>
</author>
<author>
<name sortKey="Fladd, Christopher" sort="Fladd, Christopher" uniqKey="Fladd C" first="Christopher" last="Fladd">Christopher Fladd</name>
</author>
<author>
<name sortKey="Wasmuth, James" sort="Wasmuth, James" uniqKey="Wasmuth J" first="James" last="Wasmuth">James Wasmuth</name>
</author>
<author>
<name sortKey="Tonikian, Raffi" sort="Tonikian, Raffi" uniqKey="Tonikian R" first="Raffi" last="Tonikian">Raffi Tonikian</name>
</author>
<author>
<name sortKey="Sidhu, Sachdev" sort="Sidhu, Sachdev" uniqKey="Sidhu S" first="Sachdev" last="Sidhu">Sachdev Sidhu</name>
</author>
<author>
<name sortKey="Krogan, Nevan J" sort="Krogan, Nevan J" uniqKey="Krogan N" first="Nevan J" last="Krogan">Nevan J. Krogan</name>
</author>
<author>
<name sortKey="Parkinson, John" sort="Parkinson, John" uniqKey="Parkinson J" first="John" last="Parkinson">John Parkinson</name>
</author>
<author>
<name sortKey="Rotin, Daniela" sort="Rotin, Daniela" uniqKey="Rotin D" first="Daniela" last="Rotin">Daniela Rotin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17551511</idno>
<idno type="pmid">17551511</idno>
<idno type="doi">10.1038/msb4100159</idno>
<idno type="wicri:Area/PubMed/Corpus">001115</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001115</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast.</title>
<author>
<name sortKey="Gupta, Ronish" sort="Gupta, Ronish" uniqKey="Gupta R" first="Ronish" last="Gupta">Ronish Gupta</name>
<affiliation>
<nlm:affiliation>Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kus, Bart" sort="Kus, Bart" uniqKey="Kus B" first="Bart" last="Kus">Bart Kus</name>
</author>
<author>
<name sortKey="Fladd, Christopher" sort="Fladd, Christopher" uniqKey="Fladd C" first="Christopher" last="Fladd">Christopher Fladd</name>
</author>
<author>
<name sortKey="Wasmuth, James" sort="Wasmuth, James" uniqKey="Wasmuth J" first="James" last="Wasmuth">James Wasmuth</name>
</author>
<author>
<name sortKey="Tonikian, Raffi" sort="Tonikian, Raffi" uniqKey="Tonikian R" first="Raffi" last="Tonikian">Raffi Tonikian</name>
</author>
<author>
<name sortKey="Sidhu, Sachdev" sort="Sidhu, Sachdev" uniqKey="Sidhu S" first="Sachdev" last="Sidhu">Sachdev Sidhu</name>
</author>
<author>
<name sortKey="Krogan, Nevan J" sort="Krogan, Nevan J" uniqKey="Krogan N" first="Nevan J" last="Krogan">Nevan J. Krogan</name>
</author>
<author>
<name sortKey="Parkinson, John" sort="Parkinson, John" uniqKey="Parkinson J" first="John" last="Parkinson">John Parkinson</name>
</author>
<author>
<name sortKey="Rotin, Daniela" sort="Rotin, Daniela" uniqKey="Rotin D" first="Daniela" last="Rotin">Daniela Rotin</name>
</author>
</analytic>
<series>
<title level="j">Molecular systems biology</title>
<idno type="eISSN">1744-4292</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Molecular Sequence Data</term>
<term>Peptide Library</term>
<term>Protein Array Analysis</term>
<term>Protein Binding</term>
<term>Proteome</term>
<term>Reproducibility of Results</term>
<term>Ribosomal Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Substrate Specificity</term>
<term>Ubiquitin (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ribosomal Proteins</term>
<term>Ubiquitin</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Peptide Library</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Molecular Sequence Data</term>
<term>Protein Array Analysis</term>
<term>Protein Binding</term>
<term>Reproducibility of Results</term>
<term>Substrate Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ubiquitin-protein ligases (E3s) are responsible for target recognition and regulate stability, localization or function of their substrates. However, the substrates of most E3 enzymes remain unknown. Here, we describe the development of a novel proteomic in vitro ubiquitination screen using a protein microarray platform that can be utilized for the discovery of substrates for E3 ligases on a global scale. Using the yeast E3 Rsp5 as a test system to identify its substrates on a yeast protein microarray that covers most of the yeast (Saccharomyces cerevisiae) proteome, we identified numerous known and novel ubiquitinated substrates of this E3 ligase. Our enzymatic approach was complemented by a parallel protein microarray protein interaction study. Examination of the substrates identified in the analysis combined with phage display screening allowed exploration of binding mechanisms and substrate specificity of Rsp5. The development of a platform for global discovery of E3 substrates is invaluable for understanding the cellular pathways in which they participate, and could be utilized for the identification of drug targets.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17551511</PMID>
<DateCreated>
<Year>2007</Year>
<Month>06</Month>
<Day>06</Day>
</DateCreated>
<DateCompleted>
<Year>2007</Year>
<Month>07</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>09</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1744-4292</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<PubDate>
<Year>2007</Year>
</PubDate>
</JournalIssue>
<Title>Molecular systems biology</Title>
<ISOAbbreviation>Mol. Syst. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>116</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Ubiquitin-protein ligases (E3s) are responsible for target recognition and regulate stability, localization or function of their substrates. However, the substrates of most E3 enzymes remain unknown. Here, we describe the development of a novel proteomic in vitro ubiquitination screen using a protein microarray platform that can be utilized for the discovery of substrates for E3 ligases on a global scale. Using the yeast E3 Rsp5 as a test system to identify its substrates on a yeast protein microarray that covers most of the yeast (Saccharomyces cerevisiae) proteome, we identified numerous known and novel ubiquitinated substrates of this E3 ligase. Our enzymatic approach was complemented by a parallel protein microarray protein interaction study. Examination of the substrates identified in the analysis combined with phage display screening allowed exploration of binding mechanisms and substrate specificity of Rsp5. The development of a platform for global discovery of E3 substrates is invaluable for understanding the cellular pathways in which they participate, and could be utilized for the identification of drug targets.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gupta</LastName>
<ForeName>Ronish</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kus</LastName>
<ForeName>Bart</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fladd</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wasmuth</LastName>
<ForeName>James</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tonikian</LastName>
<ForeName>Raffi</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sidhu</LastName>
<ForeName>Sachdev</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Krogan</LastName>
<ForeName>Nevan J</ForeName>
<Initials>NJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Parkinson</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rotin</LastName>
<ForeName>Daniela</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>06</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Syst Biol</MedlineTA>
<NlmUniqueID>101235389</NlmUniqueID>
<ISSNLinking>1744-4292</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019151">Peptide Library</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012269">Ribosomal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C030831">ribosomal protein S5</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Genet. 2000 Jun;16(6):276-7</RefSource>
<PMID Version="1">10827456</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Membr Biol. 2000 Jul 1;176(1):1-17</RefSource>
<PMID Version="1">10882424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2000 Sep 1;102(5):577-86</RefSource>
<PMID Version="1">11007476</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Enzymol. 2000;328:333-63</RefSource>
<PMID Version="1">11075354</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2001 Feb 23;104(4):545-56</RefSource>
<PMID Version="1">11239411</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4569-74</RefSource>
<PMID Version="1">11283351</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Biol. 2001 Mar;8(3):231-41</RefSource>
<PMID Version="1">11306348</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Biol. 2001 May;8(5):407-12</RefSource>
<PMID Version="1">11323714</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2001 May 14;153(4):649-62</RefSource>
<PMID Version="1">11352928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2001 Sep 14;293(5537):2101-5</RefSource>
<PMID Version="1">11474067</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biochem. 2001;70:503-33</RefSource>
<PMID Version="1">11395416</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Jan 10;415(6868):180-3</RefSource>
<PMID Version="1">11805837</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 2002 Apr;82(2):373-428</RefSource>
<PMID Version="1">11917093</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2002 Apr 12;277(15):12906-14</RefSource>
<PMID Version="1">11821434</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2002 Aug 14;525(1-3):131-4</RefSource>
<PMID Version="1">12163175</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Chem Biol. 2003 Feb;7(1):55-63</RefSource>
<PMID Version="1">12547427</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2003 May 30;113(5):621-30</RefSource>
<PMID Version="1">12787503</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2003 Aug;21(8):921-6</RefSource>
<PMID Version="1">12872131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2003 Aug 7;1614(2):139-55</RefSource>
<PMID Version="1">12896807</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Cell Dev Biol. 2003;19:141-72</RefSource>
<PMID Version="1">14570567</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2003 Oct 31;302(5646):819-22</RefSource>
<PMID Version="1">14593166</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics. 2003 Nov;3(11):2190-9</RefSource>
<PMID Version="1">14595818</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 2004 Feb 15;54(3):455-67</RefSource>
<PMID Version="1">14747994</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics. 2004 Mar;4(3):643-55</RefSource>
<PMID Version="1">14997488</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oncogene. 2004 Mar 15;23(11):1972-84</RefSource>
<PMID Version="1">15021885</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Immunol. 2004;22:81-127</RefSource>
<PMID Version="1">15032575</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2004;32(5):1792-7</RefSource>
<PMID Version="1">15034147</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Apr 16;279(16):16017-25</RefSource>
<PMID Version="1">14761940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2004 Jun;14(6):1188-90</RefSource>
<PMID Version="1">15173120</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 2004 Jul;61(13):1546-61</RefSource>
<PMID Version="1">15224180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 1992 Jul;6(7):1319-31</RefSource>
<PMID Version="1">1628834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2563-7</RefSource>
<PMID Version="1">7708685</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 1996 May 15;15(10):2371-80</RefSource>
<PMID Version="1">8665844</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 1996 Jul;16(7):3255-63</RefSource>
<PMID Version="1">8668140</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</RefSource>
<PMID Version="1">9254694</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1997 Oct;147(2):451-65</RefSource>
<PMID Version="1">9335585</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1997 Oct 24;278(5338):631-7</RefSource>
<PMID Version="1">9381173</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Appl Biosci. 1997 Oct;13(5):555-6</RefSource>
<PMID Version="1">9367129</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biochem. 1998;67:425-79</RefSource>
<PMID Version="1">9759494</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 1999 Jan;19(1):342-52</RefSource>
<PMID Version="1">9858558</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 1999 Mar;103(5):667-73</RefSource>
<PMID Version="1">10074483</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 1999 Jul;4(1):21-33</RefSource>
<PMID Version="1">10445024</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 1999 Oct;19(10):6972-9</RefSource>
<PMID Version="1">10490634</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2004 Nov 29;1695(1-3):89-111</RefSource>
<PMID Version="1">15571811</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2004 Nov 29;1695(1-3):133-70</RefSource>
<PMID Version="1">15571813</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Dec 17;279(51):53892-8</RefSource>
<PMID Version="1">15466864</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mech Ageing Dev. 2005 Jan;126(1):171-5</RefSource>
<PMID Version="1">15610776</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Yeast. 2005 Feb;22(3):219-39</RefSource>
<PMID Version="1">15704212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neurobiol Exp (Wars). 2005;65(2):161-5</RefSource>
<PMID Version="1">15960300</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 Aug 19;280(33):29470-8</RefSource>
<PMID Version="1">15955809</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>RNA. 2005 Nov;11(11):1710-8</RefSource>
<PMID Version="1">16177134</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS J. 2005 Nov;272(21):5400-11</RefSource>
<PMID Version="1">16262682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2005 Nov 4;123(3):507-19</RefSource>
<PMID Version="1">16269340</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2005 Dec 1;438(7068):679-84</RefSource>
<PMID Version="1">16319894</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D432-5</RefSource>
<PMID Version="1">16381905</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Structure. 2006 Mar;14(3):543-53</RefSource>
<PMID Version="1">16531238</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Mar 30;440(7084):631-6</RefSource>
<PMID Version="1">16429126</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Mar 30;440(7084):637-43</RefSource>
<PMID Version="1">16554755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Cancer. 2006 May;6(5):369-81</RefSource>
<PMID Version="1">16633365</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2006;7(4):R30</RefSource>
<PMID Version="1">16606443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Biochem Biophys. 2006;46(1):1-15</RefSource>
<PMID Version="1">16943619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Mol Biol. 2007 Jan;14(1):15-22</RefSource>
<PMID Version="1">17173052</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Cell. 2007 Feb;18(2):707-20</RefSource>
<PMID Version="1">17182849</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Cell. 2007 Feb;18(2):697-706</RefSource>
<PMID Version="1">17182850</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Proteomics. 2007 Mar;6(3):439-50</RefSource>
<PMID Version="1">17200106</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2007 Apr 12;446(7137):806-10</RefSource>
<PMID Version="1">17314980</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019151" MajorTopicYN="N">Peptide Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040081" MajorTopicYN="Y">Protein Array Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012269" MajorTopicYN="N">Ribosomal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025801" MajorTopicYN="N">Ubiquitin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC1911201</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17551511</ArticleId>
<ArticleId IdType="pii">msb4100159</ArticleId>
<ArticleId IdType="doi">10.1038/msb4100159</ArticleId>
<ArticleId IdType="pmc">PMC1911201</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001115 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001115 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:17551511
   |texte=   Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:17551511" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022