La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Involvement of the Fc gamma receptor in a chronic N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of dopaminergic loss.

Identifieur interne : 000B86 ( PubMed/Corpus ); précédent : 000B85; suivant : 000B87

Involvement of the Fc gamma receptor in a chronic N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of dopaminergic loss.

Auteurs : Arman Lira ; Jerzy Kulczycki ; Ruth Slack ; Hymie Anisman ; David S. Park

Source :

RBID : pubmed:21693708

English descriptors

Abstract

Although there is growing evidence for a role of the innate immune response in Parkinson's disease, the nature of any humoral response in dopaminergic degeneration is uncertain. Here we report on a protracted N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of dopaminergic death that potentially allows a more full adaptive humoral response to develop. Rag2 mutant mice that lack the full adaptive response (deficient in both T and B cells) are resistant to dopaminergic death and behavioral deficiencies in this model. These mice are resensitized after reconstitution with WT splenocytes. To more directly provide evidence for humoral/IgG involvement, we show that deficiency of Fcγ receptors, which are critical for activation of macrophages/microglia by binding to IgGs, is also protective in this protracted model. FcγR-deficient mice display improved behavior and impaired microglial activation. Interestingly, however, Rag2 mutant but not FcγR-deficient mice are resistant to a more standard N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine paradigm where death is more rapid. Taken together, these data indicate that, provided sufficient time, the humoral arm of the adaptive immune system can play a critical functional role in modulating the microglial response to dopaminergic degeneration and suggest that this humoral component may participate in degeneration in Parkinson's disease.

DOI: 10.1074/jbc.M111.244830
PubMed: 21693708

Links to Exploration step

pubmed:21693708

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Involvement of the Fc gamma receptor in a chronic N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of dopaminergic loss.</title>
<author>
<name sortKey="Lira, Arman" sort="Lira, Arman" uniqKey="Lira A" first="Arman" last="Lira">Arman Lira</name>
<affiliation>
<nlm:affiliation>Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kulczycki, Jerzy" sort="Kulczycki, Jerzy" uniqKey="Kulczycki J" first="Jerzy" last="Kulczycki">Jerzy Kulczycki</name>
</author>
<author>
<name sortKey="Slack, Ruth" sort="Slack, Ruth" uniqKey="Slack R" first="Ruth" last="Slack">Ruth Slack</name>
</author>
<author>
<name sortKey="Anisman, Hymie" sort="Anisman, Hymie" uniqKey="Anisman H" first="Hymie" last="Anisman">Hymie Anisman</name>
</author>
<author>
<name sortKey="Park, David S" sort="Park, David S" uniqKey="Park D" first="David S" last="Park">David S. Park</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21693708</idno>
<idno type="pmid">21693708</idno>
<idno type="doi">10.1074/jbc.M111.244830</idno>
<idno type="wicri:Area/PubMed/Corpus">000B86</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Involvement of the Fc gamma receptor in a chronic N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of dopaminergic loss.</title>
<author>
<name sortKey="Lira, Arman" sort="Lira, Arman" uniqKey="Lira A" first="Arman" last="Lira">Arman Lira</name>
<affiliation>
<nlm:affiliation>Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kulczycki, Jerzy" sort="Kulczycki, Jerzy" uniqKey="Kulczycki J" first="Jerzy" last="Kulczycki">Jerzy Kulczycki</name>
</author>
<author>
<name sortKey="Slack, Ruth" sort="Slack, Ruth" uniqKey="Slack R" first="Ruth" last="Slack">Ruth Slack</name>
</author>
<author>
<name sortKey="Anisman, Hymie" sort="Anisman, Hymie" uniqKey="Anisman H" first="Hymie" last="Anisman">Hymie Anisman</name>
</author>
<author>
<name sortKey="Park, David S" sort="Park, David S" uniqKey="Park D" first="David S" last="Park">David S. Park</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (adverse effects)</term>
<term>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (pharmacology)</term>
<term>Animals</term>
<term>Cell Death (drug effects)</term>
<term>Cell Death (genetics)</term>
<term>Cell Death (immunology)</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>DNA-Binding Proteins (immunology)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Disease Models, Animal</term>
<term>Immunoglobulin G (genetics)</term>
<term>Immunoglobulin G (immunology)</term>
<term>Immunoglobulin G (metabolism)</term>
<term>MPTP Poisoning (genetics)</term>
<term>MPTP Poisoning (immunology)</term>
<term>MPTP Poisoning (metabolism)</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Neurotoxins (adverse effects)</term>
<term>Neurotoxins (pharmacology)</term>
<term>Parkinson Disease, Secondary (chemically induced)</term>
<term>Parkinson Disease, Secondary (genetics)</term>
<term>Parkinson Disease, Secondary (immunology)</term>
<term>Receptors, IgG (genetics)</term>
<term>Receptors, IgG (immunology)</term>
<term>Receptors, IgG (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine</term>
<term>Neurotoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Immunoglobulin G</term>
<term>Receptors, IgG</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Immunoglobulin G</term>
<term>Receptors, IgG</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Immunoglobulin G</term>
<term>Receptors, IgG</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine</term>
<term>Neurotoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemically induced" xml:lang="en">
<term>Parkinson Disease, Secondary</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Death</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Death</term>
<term>MPTP Poisoning</term>
<term>Parkinson Disease, Secondary</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Cell Death</term>
<term>MPTP Poisoning</term>
<term>Parkinson Disease, Secondary</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>MPTP Poisoning</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Disease Models, Animal</term>
<term>Mice</term>
<term>Mice, Knockout</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although there is growing evidence for a role of the innate immune response in Parkinson's disease, the nature of any humoral response in dopaminergic degeneration is uncertain. Here we report on a protracted N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of dopaminergic death that potentially allows a more full adaptive humoral response to develop. Rag2 mutant mice that lack the full adaptive response (deficient in both T and B cells) are resistant to dopaminergic death and behavioral deficiencies in this model. These mice are resensitized after reconstitution with WT splenocytes. To more directly provide evidence for humoral/IgG involvement, we show that deficiency of Fcγ receptors, which are critical for activation of macrophages/microglia by binding to IgGs, is also protective in this protracted model. FcγR-deficient mice display improved behavior and impaired microglial activation. Interestingly, however, Rag2 mutant but not FcγR-deficient mice are resistant to a more standard N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine paradigm where death is more rapid. Taken together, these data indicate that, provided sufficient time, the humoral arm of the adaptive immune system can play a critical functional role in modulating the microglial response to dopaminergic degeneration and suggest that this humoral component may participate in degeneration in Parkinson's disease.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21693708</PMID>
<DateCreated>
<Year>2011</Year>
<Month>08</Month>
<Day>15</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>286</Volume>
<Issue>33</Issue>
<PubDate>
<Year>2011</Year>
<Month>Aug</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J. Biol. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Involvement of the Fc gamma receptor in a chronic N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of dopaminergic loss.</ArticleTitle>
<Pagination>
<MedlinePgn>28783-93</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M111.244830</ELocationID>
<Abstract>
<AbstractText>Although there is growing evidence for a role of the innate immune response in Parkinson's disease, the nature of any humoral response in dopaminergic degeneration is uncertain. Here we report on a protracted N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of dopaminergic death that potentially allows a more full adaptive humoral response to develop. Rag2 mutant mice that lack the full adaptive response (deficient in both T and B cells) are resistant to dopaminergic death and behavioral deficiencies in this model. These mice are resensitized after reconstitution with WT splenocytes. To more directly provide evidence for humoral/IgG involvement, we show that deficiency of Fcγ receptors, which are critical for activation of macrophages/microglia by binding to IgGs, is also protective in this protracted model. FcγR-deficient mice display improved behavior and impaired microglial activation. Interestingly, however, Rag2 mutant but not FcγR-deficient mice are resistant to a more standard N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine paradigm where death is more rapid. Taken together, these data indicate that, provided sufficient time, the humoral arm of the adaptive immune system can play a critical functional role in modulating the microglial response to dopaminergic degeneration and suggest that this humoral component may participate in degeneration in Parkinson's disease.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lira</LastName>
<ForeName>Arman</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kulczycki</LastName>
<ForeName>Jerzy</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Slack</LastName>
<ForeName>Ruth</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anisman</LastName>
<ForeName>Hymie</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>David S</ForeName>
<Initials>DS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>06</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007074">Immunoglobulin G</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009498">Neurotoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C499308">Rag2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017452">Receptors, IgG</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9P21XSP91P</RegistryNumber>
<NameOfSubstance UI="D015632">1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2005 Mar;19(3):407-9</RefSource>
<PMID Version="1">15625078</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neurobiol Exp (Wars). 1999;59(1):1-8</RefSource>
<PMID Version="1">10230070</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 1996 Feb;8(2):365-81</RefSource>
<PMID Version="1">8714707</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Autoimmun Rev. 2008 Jun;7(6):501-7</RefSource>
<PMID Version="1">18558370</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuropathol Exp Neurol. 2008 Aug;67(8):793-802</RefSource>
<PMID Version="1">18648323</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2003 Jan;111(2):163-9</RefSource>
<PMID Version="1">12531868</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 May 13;100(10):6145-50</RefSource>
<PMID Version="1">12721370</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1999 May 1;19(9):3440-7</RefSource>
<PMID Version="1">10212304</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2000 Aug 15;20(16):6309-16</RefSource>
<PMID Version="1">10934283</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuropathol Exp Neurol. 2008 Dec;67(12):1149-58</RefSource>
<PMID Version="1">19018246</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Mol Med. 2002 Nov;2(7):649-65</RefSource>
<PMID Version="1">12420804</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Mol Brain Res. 1995 Jun;30(2):393-6</RefSource>
<PMID Version="1">7637593</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neural Transm (Vienna). 2004 Oct;111(10-11):1267-86</RefSource>
<PMID Version="1">15480838</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2010 Jun 10;66(5):646-61</RefSource>
<PMID Version="1">20547124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1999 Mar;156(1):50-61</RefSource>
<PMID Version="1">10192776</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Sci. 1996 Jul;139(1):66-70</RefSource>
<PMID Version="1">8836974</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Invest Ophthalmol Vis Sci. 2005 Aug;46(8):2992-9</RefSource>
<PMID Version="1">16043876</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Dec 3;279(49):51647-53</RefSource>
<PMID Version="1">15383538</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuropathol Exp Neurol. 1994 Jan;53(1):27-36</RefSource>
<PMID Version="1">8301317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2005 Nov;128(Pt 11):2665-74</RefSource>
<PMID Version="1">16219675</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2002 Feb 1;22(3):782-90</RefSource>
<PMID Version="1">11826108</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 1999 Dec;5(12):1403-9</RefSource>
<PMID Version="1">10581083</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Immunol. 2010 Jan;31(1):7-17</RefSource>
<PMID Version="1">19879804</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2009 Jul;1792(7):651-63</RefSource>
<PMID Version="1">19059336</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1994 Feb 11;76(3):519-29</RefSource>
<PMID Version="1">8313472</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2009 Jan;119(1):182-92</RefSource>
<PMID Version="1">19104149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Neurodegener. 2010 Oct 26;5:42</RefSource>
<PMID Version="1">20977765</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Sci. 1994 Feb;121(2):125-31</RefSource>
<PMID Version="1">8158203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1988 Aug;38(8):1285-91</RefSource>
<PMID Version="1">3399080</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1991 May;41(5 Suppl 2):53-8; discussion 59-60</RefSource>
<PMID Version="1">2041594</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 May 15;23(10):4081-91</RefSource>
<PMID Version="1">12764095</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2008;14 Suppl 2:S189-93</RefSource>
<PMID Version="1">18579428</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 1999 Jun;72(6):2415-25</RefSource>
<PMID Version="1">10349851</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2002 Aug;176(2):322-7</RefSource>
<PMID Version="1">12359173</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8514-9</RefSource>
<PMID Version="1">12824464</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Antioxid Redox Signal. 2009 Sep;11(9):2151-66</RefSource>
<PMID Version="1">19243239</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6664-9</RefSource>
<PMID Version="1">10841564</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2004 Jan 23;116(2 Suppl):S103-6, 2 p following S106</RefSource>
<PMID Version="1">15055595</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurol Sci. 2008 Oct;29(5):293-301</RefSource>
<PMID Version="1">18941931</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2008;3(1):e1376</RefSource>
<PMID Version="1">18167537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Mar 21;27(12):3328-37</RefSource>
<PMID Version="1">17376993</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Antioxid Redox Signal. 2005 Sep-Oct;7(9-10):1223-33</RefSource>
<PMID Version="1">16115027</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2003 Sep 11;39(6):889-909</RefSource>
<PMID Version="1">12971891</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015632" MajorTopicYN="N">1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="N">Cell Death</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007074" MajorTopicYN="N">Immunoglobulin G</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020267" MajorTopicYN="N">MPTP Poisoning</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009498" MajorTopicYN="N">Neurotoxins</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010302" MajorTopicYN="N">Parkinson Disease, Secondary</DescriptorName>
<QualifierName UI="Q000139" MajorTopicYN="Y">chemically induced</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017452" MajorTopicYN="N">Receptors, IgG</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3190686</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21693708</ArticleId>
<ArticleId IdType="pii">M111.244830</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M111.244830</ArticleId>
<ArticleId IdType="pmc">PMC3190686</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B86 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000B86 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21693708
   |texte=   Involvement of the Fc gamma receptor in a chronic N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of dopaminergic loss.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21693708" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022