La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of a functional connectome for long-term fear memory in mice.

Identifieur interne : 000995 ( PubMed/Corpus ); précédent : 000994; suivant : 000996

Identification of a functional connectome for long-term fear memory in mice.

Auteurs : Anne L. Wheeler ; Cátia M. Teixeira ; Afra H. Wang ; Xuejian Xiong ; Natasa Kovacevic ; Jason P. Lerch ; Anthony R. Mcintosh ; John Parkinson ; Paul W. Frankland

Source :

RBID : pubmed:23300432

English descriptors

Abstract

Long-term memories are thought to depend upon the coordinated activation of a broad network of cortical and subcortical brain regions. However, the distributed nature of this representation has made it challenging to define the neural elements of the memory trace, and lesion and electrophysiological approaches provide only a narrow window into what is appreciated a much more global network. Here we used a global mapping approach to identify networks of brain regions activated following recall of long-term fear memories in mice. Analysis of Fos expression across 84 brain regions allowed us to identify regions that were co-active following memory recall. These analyses revealed that the functional organization of long-term fear memories depends on memory age and is altered in mutant mice that exhibit premature forgetting. Most importantly, these analyses indicate that long-term memory recall engages a network that has a distinct thalamic-hippocampal-cortical signature. This network is concurrently integrated and segregated and therefore has small-world properties, and contains hub-like regions in the prefrontal cortex and thalamus that may play privileged roles in memory expression.

DOI: 10.1371/journal.pcbi.1002853
PubMed: 23300432

Links to Exploration step

pubmed:23300432

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of a functional connectome for long-term fear memory in mice.</title>
<author>
<name sortKey="Wheeler, Anne L" sort="Wheeler, Anne L" uniqKey="Wheeler A" first="Anne L" last="Wheeler">Anne L. Wheeler</name>
<affiliation>
<nlm:affiliation>Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Teixeira, Catia M" sort="Teixeira, Catia M" uniqKey="Teixeira C" first="Cátia M" last="Teixeira">Cátia M. Teixeira</name>
</author>
<author>
<name sortKey="Wang, Afra H" sort="Wang, Afra H" uniqKey="Wang A" first="Afra H" last="Wang">Afra H. Wang</name>
</author>
<author>
<name sortKey="Xiong, Xuejian" sort="Xiong, Xuejian" uniqKey="Xiong X" first="Xuejian" last="Xiong">Xuejian Xiong</name>
</author>
<author>
<name sortKey="Kovacevic, Natasa" sort="Kovacevic, Natasa" uniqKey="Kovacevic N" first="Natasa" last="Kovacevic">Natasa Kovacevic</name>
</author>
<author>
<name sortKey="Lerch, Jason P" sort="Lerch, Jason P" uniqKey="Lerch J" first="Jason P" last="Lerch">Jason P. Lerch</name>
</author>
<author>
<name sortKey="Mcintosh, Anthony R" sort="Mcintosh, Anthony R" uniqKey="Mcintosh A" first="Anthony R" last="Mcintosh">Anthony R. Mcintosh</name>
</author>
<author>
<name sortKey="Parkinson, John" sort="Parkinson, John" uniqKey="Parkinson J" first="John" last="Parkinson">John Parkinson</name>
</author>
<author>
<name sortKey="Frankland, Paul W" sort="Frankland, Paul W" uniqKey="Frankland P" first="Paul W" last="Frankland">Paul W. Frankland</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23300432</idno>
<idno type="pmid">23300432</idno>
<idno type="doi">10.1371/journal.pcbi.1002853</idno>
<idno type="wicri:Area/PubMed/Corpus">000995</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000995</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of a functional connectome for long-term fear memory in mice.</title>
<author>
<name sortKey="Wheeler, Anne L" sort="Wheeler, Anne L" uniqKey="Wheeler A" first="Anne L" last="Wheeler">Anne L. Wheeler</name>
<affiliation>
<nlm:affiliation>Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Teixeira, Catia M" sort="Teixeira, Catia M" uniqKey="Teixeira C" first="Cátia M" last="Teixeira">Cátia M. Teixeira</name>
</author>
<author>
<name sortKey="Wang, Afra H" sort="Wang, Afra H" uniqKey="Wang A" first="Afra H" last="Wang">Afra H. Wang</name>
</author>
<author>
<name sortKey="Xiong, Xuejian" sort="Xiong, Xuejian" uniqKey="Xiong X" first="Xuejian" last="Xiong">Xuejian Xiong</name>
</author>
<author>
<name sortKey="Kovacevic, Natasa" sort="Kovacevic, Natasa" uniqKey="Kovacevic N" first="Natasa" last="Kovacevic">Natasa Kovacevic</name>
</author>
<author>
<name sortKey="Lerch, Jason P" sort="Lerch, Jason P" uniqKey="Lerch J" first="Jason P" last="Lerch">Jason P. Lerch</name>
</author>
<author>
<name sortKey="Mcintosh, Anthony R" sort="Mcintosh, Anthony R" uniqKey="Mcintosh A" first="Anthony R" last="Mcintosh">Anthony R. Mcintosh</name>
</author>
<author>
<name sortKey="Parkinson, John" sort="Parkinson, John" uniqKey="Parkinson J" first="John" last="Parkinson">John Parkinson</name>
</author>
<author>
<name sortKey="Frankland, Paul W" sort="Frankland, Paul W" uniqKey="Frankland P" first="Paul W" last="Frankland">Paul W. Frankland</name>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Brain (physiology)</term>
<term>Fear</term>
<term>Immunohistochemistry</term>
<term>Memory</term>
<term>Mice</term>
<term>Mice, Mutant Strains</term>
<term>Nerve Net</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Fear</term>
<term>Immunohistochemistry</term>
<term>Memory</term>
<term>Mice</term>
<term>Mice, Mutant Strains</term>
<term>Nerve Net</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Long-term memories are thought to depend upon the coordinated activation of a broad network of cortical and subcortical brain regions. However, the distributed nature of this representation has made it challenging to define the neural elements of the memory trace, and lesion and electrophysiological approaches provide only a narrow window into what is appreciated a much more global network. Here we used a global mapping approach to identify networks of brain regions activated following recall of long-term fear memories in mice. Analysis of Fos expression across 84 brain regions allowed us to identify regions that were co-active following memory recall. These analyses revealed that the functional organization of long-term fear memories depends on memory age and is altered in mutant mice that exhibit premature forgetting. Most importantly, these analyses indicate that long-term memory recall engages a network that has a distinct thalamic-hippocampal-cortical signature. This network is concurrently integrated and segregated and therefore has small-world properties, and contains hub-like regions in the prefrontal cortex and thalamus that may play privileged roles in memory expression.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23300432</PMID>
<DateCreated>
<Year>2013</Year>
<Month>01</Month>
<Day>09</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of a functional connectome for long-term fear memory in mice.</ArticleTitle>
<Pagination>
<MedlinePgn>e1002853</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1002853</ELocationID>
<Abstract>
<AbstractText>Long-term memories are thought to depend upon the coordinated activation of a broad network of cortical and subcortical brain regions. However, the distributed nature of this representation has made it challenging to define the neural elements of the memory trace, and lesion and electrophysiological approaches provide only a narrow window into what is appreciated a much more global network. Here we used a global mapping approach to identify networks of brain regions activated following recall of long-term fear memories in mice. Analysis of Fos expression across 84 brain regions allowed us to identify regions that were co-active following memory recall. These analyses revealed that the functional organization of long-term fear memories depends on memory age and is altered in mutant mice that exhibit premature forgetting. Most importantly, these analyses indicate that long-term memory recall engages a network that has a distinct thalamic-hippocampal-cortical signature. This network is concurrently integrated and segregated and therefore has small-world properties, and contains hub-like regions in the prefrontal cortex and thalamus that may play privileged roles in memory expression.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wheeler</LastName>
<ForeName>Anne L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Teixeira</LastName>
<ForeName>Cátia M</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Afra H</ForeName>
<Initials>AH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xiong</LastName>
<ForeName>Xuejian</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kovacevic</LastName>
<ForeName>Natasa</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lerch</LastName>
<ForeName>Jason P</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McIntosh</LastName>
<ForeName>Anthony R</ForeName>
<Initials>AR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Parkinson</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Frankland</LastName>
<ForeName>Paul W</ForeName>
<Initials>PW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CTP-82940</GrantID>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
<Grant>
<GrantID>MOP-77561</GrantID>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>01</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2011 Feb 18;331(6019):924-8</RefSource>
<PMID Version="1">21330548</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2010 Nov 4;68(3):362-85</RefSource>
<PMID Version="1">21040841</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Memory. 1999 Sep-Nov;7(5-6):523-48</RefSource>
<PMID Version="1">10659085</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 2):036122</RefSource>
<PMID Version="1">14524847</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2012 Mar;9(3):255-8</RefSource>
<PMID Version="1">22245809</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2008;18(7):710-8</RefSource>
<PMID Version="1">18446823</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2002 Apr 19;296(5567):541-5</RefSource>
<PMID Version="1">11964482</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 1995 Jan 23;66(1-2):187-93</RefSource>
<PMID Version="1">7755889</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 1988 Jul;68(3):649-742</RefSource>
<PMID Version="1">2839857</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13763-8</RefSource>
<PMID Version="1">11698650</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2011 Oct 28;147(3):678-89</RefSource>
<PMID Version="1">22019004</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2010 Jun 24;66(6):921-36</RefSource>
<PMID Version="1">20620877</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2011 Dec;21(12):1348-62</RefSource>
<PMID Version="1">20824726</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2005 Feb;6(2):119-30</RefSource>
<PMID Version="1">15685217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2002 Nov 11;89(20):208701</RefSource>
<PMID Version="1">12443515</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 May 17;108(20):8456-60</RefSource>
<PMID Version="1">21531906</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2008 Nov 26;60(4):683-97</RefSource>
<PMID Version="1">19038224</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Learn Mem. 2008 May;15(5):368-72</RefSource>
<PMID Version="1">18441294</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 1995 Apr;5(2):169-77</RefSource>
<PMID Version="1">7620304</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1999 Oct 1;19(19):8646-55</RefSource>
<PMID Version="1">10493765</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2007 Jan;10(1):100-7</RefSource>
<PMID Version="1">17173043</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Psychol. 2010;61:49-79, C1-4</RefSource>
<PMID Version="1">19575620</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1993 Jan 7;361(6407):31-9</RefSource>
<PMID Version="1">8421494</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2010 Jul;48(8):2357-69</RefSource>
<PMID Version="1">20430043</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2009;10:99</RefSource>
<PMID Version="1">19331680</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2009 Mar;10(3):186-98</RefSource>
<PMID Version="1">19190637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Jan 4;26(1):63-72</RefSource>
<PMID Version="1">16399673</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Sep;52(3):1059-69</RefSource>
<PMID Version="1">19819337</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 Nov 7;322(5903):960-3</RefSource>
<PMID Version="1">18988855</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2010 Aug 6;329(5992):649-56</RefSource>
<PMID Version="1">20689011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Oct 29;23(30):9897-905</RefSource>
<PMID Version="1">14586019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2007 May;10(5):555-7</RefSource>
<PMID Version="1">17396121</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2005 Apr 7;46(1):141-51</RefSource>
<PMID Version="1">15820700</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2005 Apr;6(4):277-84</RefSource>
<PMID Version="1">15803159</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Neurosci. 1998 Aug;112(4):863-74</RefSource>
<PMID Version="1">9733192</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Mar 11;29(10):3302-6</RefSource>
<PMID Version="1">19279267</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2009 Oct;12(10):1222-3</RefSource>
<PMID Version="1">19749750</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2000 Apr;10(2):180-6</RefSource>
<PMID Version="1">10753801</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2010 Jun;13(6):664-6</RefSource>
<PMID Version="1">20495557</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Apr 14;24(15):3810-5</RefSource>
<PMID Version="1">15084662</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2011 Feb;14(2):133-8</RefSource>
<PMID Version="1">21270780</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Aug 12;29(32):10087-93</RefSource>
<PMID Version="1">19675242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 1997;5(4):323-7</RefSource>
<PMID Version="1">20408236</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(6):e21714</RefSource>
<PMID Version="1">21738775</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2001 Nov 2;294(5544):1030-8</RefSource>
<PMID Version="1">11691980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2005 Oct;15(5):599-606</RefSource>
<PMID Version="1">16150584</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Jul 18;32(29):9947-59</RefSource>
<PMID Version="1">22815509</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2001 Nov 5;87(19):198701</RefSource>
<PMID Version="1">11690461</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2009 Jul;12(7):919-26</RefSource>
<PMID Version="1">19483687</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 May 17;26(20):5484-91</RefSource>
<PMID Version="1">16707800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2000 Jul 27;406(6794):378-82</RefSource>
<PMID Version="1">10935628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2011 Aug 12;333(6044):891-5</RefSource>
<PMID Version="1">21737703</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2004 Jan;2(1):E24</RefSource>
<PMID Version="1">14737198</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 1997 Apr;7(2):217-27</RefSource>
<PMID Version="1">9142752</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Jul 21;24(29):6446-56</RefSource>
<PMID Version="1">15269254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Sep;52(3):766-76</RefSource>
<PMID Version="1">20116438</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1992 May 1;256(5057):675-7</RefSource>
<PMID Version="1">1585183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2007;2(10):e1049</RefSource>
<PMID Version="1">17940613</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1998 Jun 4;393(6684):440-2</RefSource>
<PMID Version="1">9623998</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Rev. 1995 Jul;102(3):419-57</RefSource>
<PMID Version="1">7624455</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2004 May 7;304(5672):881-3</RefSource>
<PMID Version="1">15131309</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2010 Dec 22;68(6):1043-50</RefSource>
<PMID Version="1">21172607</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2004 Jul 2;305(5680):96-9</RefSource>
<PMID Version="1">15232109</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurobiol. 1994 Mar;25(3):294-303</RefSource>
<PMID Version="1">7910846</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2004 Oct 14;431(7010):782-8</RefSource>
<PMID Version="1">15483599</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1996 Jun;3(3 Pt 1):143-57</RefSource>
<PMID Version="1">9345485</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2010 Jan;20(1):1-10</RefSource>
<PMID Version="1">19816984</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Aug 10;31(32):11655-9</RefSource>
<PMID Version="1">21832195</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Mar 7;32(10):3393-7</RefSource>
<PMID Version="1">22399761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2011 Jul;15(7):310-8</RefSource>
<PMID Version="1">21696996</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005239" MajorTopicYN="Y">Fear</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007150" MajorTopicYN="N">Immunohistochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008568" MajorTopicYN="Y">Memory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008817" MajorTopicYN="N">Mice, Mutant Strains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009415" MajorTopicYN="Y">Nerve Net</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3536620</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>08</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>11</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23300432</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1002853</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-12-01321</ArticleId>
<ArticleId IdType="pmc">PMC3536620</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000995 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000995 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23300432
   |texte=   Identification of a functional connectome for long-term fear memory in mice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23300432" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022