La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impact of Parkinson's disease and dopaminergic medication on adaptation to explicit and implicit visuomotor perturbations.

Identifieur interne : 000949 ( PubMed/Corpus ); précédent : 000948; suivant : 000950

Impact of Parkinson's disease and dopaminergic medication on adaptation to explicit and implicit visuomotor perturbations.

Auteurs : David Mongeon ; Pierre Blanchet ; Julie Messier

Source :

RBID : pubmed:23313834

English descriptors

Abstract

The capacity to learn new visuomotor associations is fundamental to adaptive motor behavior. Evidence suggests visuomotor learning deficits in Parkinson's disease (PD). However, the exact nature of these deficits and the ability of dopamine medication to improve them are under-explored. Previous studies suggested that learning driven by large and small movement errors engaged distinct neural mechanisms. Here, we investigated whether PD patients have a generalized impairment in visuomotor learning or selective deficits in learning from large explicit errors which engages cognitive strategies or small imperceptible movement errors involving primarily implicit learning processes. Visuomotor learning skills of non-medicated and medicated patients were assessed in two reaching tasks in which the size of visuospatial errors experienced during learning was manipulated using a novel three-dimensional virtual reality environment. In the explicit perturbation task, the visuomotor perturbation was applied suddenly resulting in large consciously detected initial spatial errors, whereas in the implicit perturbation task, the perturbation was gradually introduced in small undetectable steps such that subjects never experienced large movement errors. A major finding of this study was that PD patients in non-medicated and medicated conditions displayed slower learning rates and smaller adaptation magnitudes than healthy subjects in the explicit perturbation task, but performance similar to healthy controls in the implicit perturbation task. Also, non-medicated patients showed an average reduced deadaptation relative to healthy controls when exposed to the large errors produced by the sudden removal of the perturbation in both the explicit and implicit perturbation tasks. Although dopaminergic medication consistently improved motor signs, it produced a variable impact on learning the explicit perturbation and deadaptation and unexpectedly worsened performance in some patients. Considered together, these results indicate that PD selectively impairs the ability to learn from large consciously detected visuospatial errors. This finding suggests that basal ganglia-related circuits are important neural structures for adaptation to sudden perturbations requiring awareness and high-cost action selection. Dopaminergic treatment may selectively compromise the ability to learn from large explicit movement errors for reasons that remain to be elucidated.

DOI: 10.1016/j.bandc.2012.12.001
PubMed: 23313834

Links to Exploration step

pubmed:23313834

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Impact of Parkinson's disease and dopaminergic medication on adaptation to explicit and implicit visuomotor perturbations.</title>
<author>
<name sortKey="Mongeon, David" sort="Mongeon, David" uniqKey="Mongeon D" first="David" last="Mongeon">David Mongeon</name>
<affiliation>
<nlm:affiliation>Département de Kinésiologie, Université de Montréal, Montréal, Québec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blanchet, Pierre" sort="Blanchet, Pierre" uniqKey="Blanchet P" first="Pierre" last="Blanchet">Pierre Blanchet</name>
</author>
<author>
<name sortKey="Messier, Julie" sort="Messier, Julie" uniqKey="Messier J" first="Julie" last="Messier">Julie Messier</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23313834</idno>
<idno type="pmid">23313834</idno>
<idno type="doi">10.1016/j.bandc.2012.12.001</idno>
<idno type="wicri:Area/PubMed/Corpus">000949</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000949</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Impact of Parkinson's disease and dopaminergic medication on adaptation to explicit and implicit visuomotor perturbations.</title>
<author>
<name sortKey="Mongeon, David" sort="Mongeon, David" uniqKey="Mongeon D" first="David" last="Mongeon">David Mongeon</name>
<affiliation>
<nlm:affiliation>Département de Kinésiologie, Université de Montréal, Montréal, Québec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blanchet, Pierre" sort="Blanchet, Pierre" uniqKey="Blanchet P" first="Pierre" last="Blanchet">Pierre Blanchet</name>
</author>
<author>
<name sortKey="Messier, Julie" sort="Messier, Julie" uniqKey="Messier J" first="Julie" last="Messier">Julie Messier</name>
</author>
</analytic>
<series>
<title level="j">Brain and cognition</title>
<idno type="eISSN">1090-2147</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (drug effects)</term>
<term>Adaptation, Physiological (physiology)</term>
<term>Aged</term>
<term>Antiparkinson Agents (pharmacology)</term>
<term>Antiparkinson Agents (therapeutic use)</term>
<term>Biomechanical Phenomena (drug effects)</term>
<term>Biomechanical Phenomena (physiology)</term>
<term>Cognition (drug effects)</term>
<term>Cognition (physiology)</term>
<term>Female</term>
<term>Humans</term>
<term>Learning (drug effects)</term>
<term>Learning (physiology)</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Movement (drug effects)</term>
<term>Movement (physiology)</term>
<term>Neuropsychological Tests</term>
<term>Parkinson Disease (drug therapy)</term>
<term>Parkinson Disease (physiopathology)</term>
<term>Psychomotor Performance (drug effects)</term>
<term>Psychomotor Performance (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiparkinson Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Biomechanical Phenomena</term>
<term>Cognition</term>
<term>Learning</term>
<term>Movement</term>
<term>Psychomotor Performance</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Biomechanical Phenomena</term>
<term>Cognition</term>
<term>Learning</term>
<term>Movement</term>
<term>Psychomotor Performance</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antiparkinson Agents</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Aged</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Neuropsychological Tests</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The capacity to learn new visuomotor associations is fundamental to adaptive motor behavior. Evidence suggests visuomotor learning deficits in Parkinson's disease (PD). However, the exact nature of these deficits and the ability of dopamine medication to improve them are under-explored. Previous studies suggested that learning driven by large and small movement errors engaged distinct neural mechanisms. Here, we investigated whether PD patients have a generalized impairment in visuomotor learning or selective deficits in learning from large explicit errors which engages cognitive strategies or small imperceptible movement errors involving primarily implicit learning processes. Visuomotor learning skills of non-medicated and medicated patients were assessed in two reaching tasks in which the size of visuospatial errors experienced during learning was manipulated using a novel three-dimensional virtual reality environment. In the explicit perturbation task, the visuomotor perturbation was applied suddenly resulting in large consciously detected initial spatial errors, whereas in the implicit perturbation task, the perturbation was gradually introduced in small undetectable steps such that subjects never experienced large movement errors. A major finding of this study was that PD patients in non-medicated and medicated conditions displayed slower learning rates and smaller adaptation magnitudes than healthy subjects in the explicit perturbation task, but performance similar to healthy controls in the implicit perturbation task. Also, non-medicated patients showed an average reduced deadaptation relative to healthy controls when exposed to the large errors produced by the sudden removal of the perturbation in both the explicit and implicit perturbation tasks. Although dopaminergic medication consistently improved motor signs, it produced a variable impact on learning the explicit perturbation and deadaptation and unexpectedly worsened performance in some patients. Considered together, these results indicate that PD selectively impairs the ability to learn from large consciously detected visuospatial errors. This finding suggests that basal ganglia-related circuits are important neural structures for adaptation to sudden perturbations requiring awareness and high-cost action selection. Dopaminergic treatment may selectively compromise the ability to learn from large explicit movement errors for reasons that remain to be elucidated.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23313834</PMID>
<DateCreated>
<Year>2013</Year>
<Month>01</Month>
<Day>30</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>07</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1090-2147</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>81</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2013</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Brain and cognition</Title>
<ISOAbbreviation>Brain Cogn</ISOAbbreviation>
</Journal>
<ArticleTitle>Impact of Parkinson's disease and dopaminergic medication on adaptation to explicit and implicit visuomotor perturbations.</ArticleTitle>
<Pagination>
<MedlinePgn>271-82</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bandc.2012.12.001</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0278-2626(12)00172-8</ELocationID>
<Abstract>
<AbstractText>The capacity to learn new visuomotor associations is fundamental to adaptive motor behavior. Evidence suggests visuomotor learning deficits in Parkinson's disease (PD). However, the exact nature of these deficits and the ability of dopamine medication to improve them are under-explored. Previous studies suggested that learning driven by large and small movement errors engaged distinct neural mechanisms. Here, we investigated whether PD patients have a generalized impairment in visuomotor learning or selective deficits in learning from large explicit errors which engages cognitive strategies or small imperceptible movement errors involving primarily implicit learning processes. Visuomotor learning skills of non-medicated and medicated patients were assessed in two reaching tasks in which the size of visuospatial errors experienced during learning was manipulated using a novel three-dimensional virtual reality environment. In the explicit perturbation task, the visuomotor perturbation was applied suddenly resulting in large consciously detected initial spatial errors, whereas in the implicit perturbation task, the perturbation was gradually introduced in small undetectable steps such that subjects never experienced large movement errors. A major finding of this study was that PD patients in non-medicated and medicated conditions displayed slower learning rates and smaller adaptation magnitudes than healthy subjects in the explicit perturbation task, but performance similar to healthy controls in the implicit perturbation task. Also, non-medicated patients showed an average reduced deadaptation relative to healthy controls when exposed to the large errors produced by the sudden removal of the perturbation in both the explicit and implicit perturbation tasks. Although dopaminergic medication consistently improved motor signs, it produced a variable impact on learning the explicit perturbation and deadaptation and unexpectedly worsened performance in some patients. Considered together, these results indicate that PD selectively impairs the ability to learn from large consciously detected visuospatial errors. This finding suggests that basal ganglia-related circuits are important neural structures for adaptation to sudden perturbations requiring awareness and high-cost action selection. Dopaminergic treatment may selectively compromise the ability to learn from large explicit movement errors for reasons that remain to be elucidated.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mongeon</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Département de Kinésiologie, Université de Montréal, Montréal, Québec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blanchet</LastName>
<ForeName>Pierre</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Messier</LastName>
<ForeName>Julie</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>01</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Brain Cogn</MedlineTA>
<NlmUniqueID>8218014</NlmUniqueID>
<ISSNLinking>0278-2626</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000978">Antiparkinson Agents</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000978" MajorTopicYN="N">Antiparkinson Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001696" MajorTopicYN="N">Biomechanical Phenomena</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003071" MajorTopicYN="N">Cognition</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007858" MajorTopicYN="N">Learning</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009068" MajorTopicYN="N">Movement</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009483" MajorTopicYN="N">Neuropsychological Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010300" MajorTopicYN="N">Parkinson Disease</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="Y">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011597" MajorTopicYN="N">Psychomotor Performance</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>04</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>11</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>12</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23313834</ArticleId>
<ArticleId IdType="pii">S0278-2626(12)00172-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.bandc.2012.12.001</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000949 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000949 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23313834
   |texte=   Impact of Parkinson's disease and dopaminergic medication on adaptation to explicit and implicit visuomotor perturbations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23313834" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022