La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolomics and in-silico analysis reveal critical energy deregulations in animal models of Parkinson's disease.

Identifieur interne : 000888 ( PubMed/Corpus ); précédent : 000887; suivant : 000889

Metabolomics and in-silico analysis reveal critical energy deregulations in animal models of Parkinson's disease.

Auteurs : Pierre O. Poliquin ; Jingkui Chen ; Mathieu Cloutier ; Louis-Éric Trudeau ; Mario Jolicoeur

Source :

RBID : pubmed:23935941

English descriptors

Abstract

Parkinson's disease (PD) is a multifactorial disease known to result from a variety of factors. Although age is the principal risk factor, other etiological mechanisms have been identified, including gene mutations and exposure to toxins. Deregulation of energy metabolism, mostly through the loss of complex I efficiency, is involved in disease progression in both the genetic and sporadic forms of the disease. In this study, we investigated energy deregulation in the cerebral tissue of animal models (genetic and toxin induced) of PD using an approach that combines metabolomics and mathematical modelling. In a first step, quantitative measurements of energy-related metabolites in mouse brain slices revealed most affected pathways. A genetic model of PD, the Park2 knockout, was compared to the effect of CCCP, a mitochondrial uncoupler [corrected]. Model simulated and experimental results revealed a significant and sustained decrease in ATP after CCCP exposure, but not in the genetic mice model. In support to data analysis, a mathematical model of the relevant metabolic pathways was developed and calibrated onto experimental data. In this work, we show that a short-term stress response in nucleotide scavenging is most probably induced by the toxin exposure. In turn, the robustness of energy-related pathways in the model explains how genetic perturbations, at least in young animals, are not sufficient to induce significant changes at the metabolite level.

DOI: 10.1371/journal.pone.0069146
PubMed: 23935941

Links to Exploration step

pubmed:23935941

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolomics and in-silico analysis reveal critical energy deregulations in animal models of Parkinson's disease.</title>
<author>
<name sortKey="Poliquin, Pierre O" sort="Poliquin, Pierre O" uniqKey="Poliquin P" first="Pierre O" last="Poliquin">Pierre O. Poliquin</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jingkui" sort="Chen, Jingkui" uniqKey="Chen J" first="Jingkui" last="Chen">Jingkui Chen</name>
</author>
<author>
<name sortKey="Cloutier, Mathieu" sort="Cloutier, Mathieu" uniqKey="Cloutier M" first="Mathieu" last="Cloutier">Mathieu Cloutier</name>
</author>
<author>
<name sortKey="Trudeau, Louis Eric" sort="Trudeau, Louis Eric" uniqKey="Trudeau L" first="Louis-Éric" last="Trudeau">Louis-Éric Trudeau</name>
</author>
<author>
<name sortKey="Jolicoeur, Mario" sort="Jolicoeur, Mario" uniqKey="Jolicoeur M" first="Mario" last="Jolicoeur">Mario Jolicoeur</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23935941</idno>
<idno type="pmid">23935941</idno>
<idno type="doi">10.1371/journal.pone.0069146</idno>
<idno type="wicri:Area/PubMed/Corpus">000888</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000888</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolomics and in-silico analysis reveal critical energy deregulations in animal models of Parkinson's disease.</title>
<author>
<name sortKey="Poliquin, Pierre O" sort="Poliquin, Pierre O" uniqKey="Poliquin P" first="Pierre O" last="Poliquin">Pierre O. Poliquin</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jingkui" sort="Chen, Jingkui" uniqKey="Chen J" first="Jingkui" last="Chen">Jingkui Chen</name>
</author>
<author>
<name sortKey="Cloutier, Mathieu" sort="Cloutier, Mathieu" uniqKey="Cloutier M" first="Mathieu" last="Cloutier">Mathieu Cloutier</name>
</author>
<author>
<name sortKey="Trudeau, Louis Eric" sort="Trudeau, Louis Eric" uniqKey="Trudeau L" first="Louis-Éric" last="Trudeau">Louis-Éric Trudeau</name>
</author>
<author>
<name sortKey="Jolicoeur, Mario" sort="Jolicoeur, Mario" uniqKey="Jolicoeur M" first="Mario" last="Jolicoeur">Mario Jolicoeur</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Brain (drug effects)</term>
<term>Brain (metabolism)</term>
<term>Brain (pathology)</term>
<term>Carbonyl Cyanide m-Chlorophenyl Hydrazone (toxicity)</term>
<term>Computer Simulation</term>
<term>Disease Models, Animal</term>
<term>Energy Metabolism (drug effects)</term>
<term>Metabolomics</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Parkinson Disease (metabolism)</term>
<term>Parkinson Disease (pathology)</term>
<term>Stress, Physiological (drug effects)</term>
<term>Ubiquitin-Protein Ligases (deficiency)</term>
<term>Ubiquitin-Protein Ligases (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Ubiquitin-Protein Ligases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Ubiquitin-Protein Ligases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Carbonyl Cyanide m-Chlorophenyl Hydrazone</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Brain</term>
<term>Energy Metabolism</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Brain</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Brain</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Computer Simulation</term>
<term>Disease Models, Animal</term>
<term>Metabolomics</term>
<term>Mice</term>
<term>Mice, Knockout</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Parkinson's disease (PD) is a multifactorial disease known to result from a variety of factors. Although age is the principal risk factor, other etiological mechanisms have been identified, including gene mutations and exposure to toxins. Deregulation of energy metabolism, mostly through the loss of complex I efficiency, is involved in disease progression in both the genetic and sporadic forms of the disease. In this study, we investigated energy deregulation in the cerebral tissue of animal models (genetic and toxin induced) of PD using an approach that combines metabolomics and mathematical modelling. In a first step, quantitative measurements of energy-related metabolites in mouse brain slices revealed most affected pathways. A genetic model of PD, the Park2 knockout, was compared to the effect of CCCP, a mitochondrial uncoupler [corrected]. Model simulated and experimental results revealed a significant and sustained decrease in ATP after CCCP exposure, but not in the genetic mice model. In support to data analysis, a mathematical model of the relevant metabolic pathways was developed and calibrated onto experimental data. In this work, we show that a short-term stress response in nucleotide scavenging is most probably induced by the toxin exposure. In turn, the robustness of energy-related pathways in the model explains how genetic perturbations, at least in young animals, are not sufficient to induce significant changes at the metabolite level.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23935941</PMID>
<DateCreated>
<Year>2013</Year>
<Month>08</Month>
<Day>12</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>03</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolomics and in-silico analysis reveal critical energy deregulations in animal models of Parkinson's disease.</ArticleTitle>
<Pagination>
<MedlinePgn>e69146</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0069146</ELocationID>
<Abstract>
<AbstractText>Parkinson's disease (PD) is a multifactorial disease known to result from a variety of factors. Although age is the principal risk factor, other etiological mechanisms have been identified, including gene mutations and exposure to toxins. Deregulation of energy metabolism, mostly through the loss of complex I efficiency, is involved in disease progression in both the genetic and sporadic forms of the disease. In this study, we investigated energy deregulation in the cerebral tissue of animal models (genetic and toxin induced) of PD using an approach that combines metabolomics and mathematical modelling. In a first step, quantitative measurements of energy-related metabolites in mouse brain slices revealed most affected pathways. A genetic model of PD, the Park2 knockout, was compared to the effect of CCCP, a mitochondrial uncoupler [corrected]. Model simulated and experimental results revealed a significant and sustained decrease in ATP after CCCP exposure, but not in the genetic mice model. In support to data analysis, a mathematical model of the relevant metabolic pathways was developed and calibrated onto experimental data. In this work, we show that a short-term stress response in nucleotide scavenging is most probably induced by the toxin exposure. In turn, the robustness of energy-related pathways in the model explains how genetic perturbations, at least in young animals, are not sufficient to induce significant changes at the metabolite level.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Poliquin</LastName>
<ForeName>Pierre O</ForeName>
<Initials>PO</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jingkui</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cloutier</LastName>
<ForeName>Mathieu</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Trudeau</LastName>
<ForeName>Louis-Éric</ForeName>
<Initials></Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jolicoeur</LastName>
<ForeName>Mario</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>555-60-2</RegistryNumber>
<NameOfSubstance UI="D002258">Carbonyl Cyanide m-Chlorophenyl Hydrazone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.27</RegistryNumber>
<NameOfSubstance UI="D044767">Ubiquitin-Protein Ligases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.27</RegistryNumber>
<NameOfSubstance UI="C111567">parkin protein</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>PLoS One. 2014;9(10):e112009</RefSource>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mutat. 2010 Jul;31(7):763-80</RefSource>
<PMID Version="1">20506312</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NeuroRx. 2004 Jan;1(1):139-54</RefSource>
<PMID Version="1">15717014</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2006 Feb 15;22(4):514-5</RefSource>
<PMID Version="1">16317076</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2003 Sep 15;12(18):2277-91</RefSource>
<PMID Version="1">12915482</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Hum Genet. 1997 Mar;60(3):588-96</RefSource>
<PMID Version="1">9042918</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2007 Nov 23;149(4):917-30</RefSource>
<PMID Version="1">17936517</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microb Cell Fact. 2007 Aug 20;6:27</RefSource>
<PMID Version="1">17708760</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2012 Sep 7;425(4):724-9</RefSource>
<PMID Version="1">22885179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2010 Jan;38(Database issue):D473-9</RefSource>
<PMID Version="1">19850718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1998 Apr 9;392(6676):605-8</RefSource>
<PMID Version="1">9560156</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Toxicol Sci. 2007 Nov;100(1):1-2</RefSource>
<PMID Version="1">17934192</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2003 Jun 12;545(1):61-70</RefSource>
<PMID Version="1">12788493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):378-83</RefSource>
<PMID Version="1">19966284</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Biol. 2009;6(3):036005</RefSource>
<PMID Version="1">19411740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Biochem. 2008 Feb 15;373(2):349-69</RefSource>
<PMID Version="1">18036549</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IET Syst Biol. 2012 Jun;6(3):65-72</RefSource>
<PMID Version="1">22757585</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IET Syst Biol. 2012 Jun;6(3):86-93</RefSource>
<PMID Version="1">22757587</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J R Soc Interface. 2010 Apr 6;7(45):651-65</RefSource>
<PMID Version="1">19828503</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chromatogr A. 2007 Apr 20;1147(2):153-64</RefSource>
<PMID Version="1">17376459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1989 Jul;26(1):47-50</RefSource>
<PMID Version="1">2549846</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2007 Oct;103(1):17-37</RefSource>
<PMID Version="1">17623039</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1995 Sep;38(3):357-66</RefSource>
<PMID Version="1">7668820</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2003 Oct 31;302(5646):819-22</RefSource>
<PMID Version="1">14593166</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Wiley Interdiscip Rev Syst Biol Med. 2011 Jan-Feb;3(1):1-6</RefSource>
<PMID Version="1">21061310</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2010;648:269-77</RefSource>
<PMID Version="1">20700719</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2011 Jan;39(Database issue):D670-6</RefSource>
<PMID Version="1">21062828</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2001 Jul;2(7):492-501</RefSource>
<PMID Version="1">11433374</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2004 Jun;73(3):151-77</RefSource>
<PMID Version="1">15236834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol. 2004 Mar;251(3):340-5</RefSource>
<PMID Version="1">15015016</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1983 Feb 25;219(4587):979-80</RefSource>
<PMID Version="1">6823561</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioprocess Biosyst Eng. 2013 Apr;36(4):469-87</RefSource>
<PMID Version="1">22976819</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Synapse. 2009 Dec;63(12):1133-42</RefSource>
<PMID Version="1">19670315</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Cell Biol. 2003 Apr;15(2):221-31</RefSource>
<PMID Version="1">12648679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Neurosci. 2009 Dec;27(3):391-414</RefSource>
<PMID Version="1">19396534</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002258" MajorTopicYN="N">Carbonyl Cyanide m-Chlorophenyl Hydrazone</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="Y">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004734" MajorTopicYN="Y">Energy Metabolism</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055432" MajorTopicYN="Y">Metabolomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010300" MajorTopicYN="N">Parkinson Disease</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044767" MajorTopicYN="N">Ubiquitin-Protein Ligases</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3720533</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>04</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23935941</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0069146</ArticleId>
<ArticleId IdType="pii">PONE-D-13-15453</ArticleId>
<ArticleId IdType="pmc">PMC3720533</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000888 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000888 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23935941
   |texte=   Metabolomics and in-silico analysis reveal critical energy deregulations in animal models of Parkinson's disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23935941" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022