La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson's disease with mild cognitive impairment.

Identifieur interne : 000792 ( PubMed/Corpus ); précédent : 000791; suivant : 000793

Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson's disease with mild cognitive impairment.

Auteurs : Leigh Christopher ; Connie Marras ; Sarah Duff-Canning ; Yuko Koshimori ; Robert Chen ; Isabelle Boileau ; Barbara Segura ; Oury Monchi ; Anthony E. Lang ; Pablo Rusjan ; Sylvain Houle ; Antonio P. Strafella

Source :

RBID : pubmed:24334314

English descriptors

Abstract

The ability to dynamically use various aspects of cognition is essential to daily function, and reliant on dopaminergic transmission in cortico-striatal circuitry. Our aim was to investigate both striatal and cortical dopaminergic changes in patients with Parkinson's disease with mild cognitive impairment, who represent a vulnerable group for the development of dementia. We hypothesized severe striatal dopamine denervation in the associative (i.e. cognitive) region and cortical D2 receptor abnormalities in the salience and executive networks in Parkinson's disease with mild cognitive impairment compared with cognitively normal patients with Parkinson's disease and healthy control subjects. We used positron emission tomography imaging with dopaminergic ligands (11)C-dihydrotetrabenazine, to investigate striatal dopamine neuron integrity in the associative subdivision and (11)C-FLB 457, to investigate cortical D2 receptor availability in patients with Parkinson's disease (55-80 years of age) with mild cognitive impairment (n = 11), cognitively normal patients with Parkinson's disease (n = 11) and age-matched healthy control subjects (n = 14). Subjects were administered a neuropsychological test battery to assess cognitive status and determine the relationship between dopaminergic changes and cognitive performance. We found that patients with mild cognitive impairment had severe striatal dopamine depletion in the associative (i.e. cognitive) subdivision as well as reduced D2 receptor availability in the bilateral insula, a key cognitive hub, compared to cognitively normal patients and healthy subjects after controlling for age, disease severity and daily dopaminergic medication intake. Associative striatal dopamine depletion was predictive of D2 receptor loss in the insula of patients with Parkinson's disease with mild cognitive impairment, demonstrating interrelated striatal and cortical changes. Insular D2 levels also predicted executive abilities in these patients as measured using a composite executive z-score obtained from neuropsychological testing. Furthermore we assessed cortical thickness to ensure that D2 receptor changes were not confounded by brain atrophy. There was no difference between groups in cortical thickness in the insula, or any other cortical region of interest. These findings suggest that striatal dopamine denervation combined with insular D2 receptor loss underlie mild cognitive impairment in Parkinson's disease and in particular decline in executive function. Furthermore, these findings suggest a crucial and direct role for dopaminergic modulation in the insula in facilitating cognitive function.

DOI: 10.1093/brain/awt337
PubMed: 24334314

Links to Exploration step

pubmed:24334314

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson's disease with mild cognitive impairment.</title>
<author>
<name sortKey="Christopher, Leigh" sort="Christopher, Leigh" uniqKey="Christopher L" first="Leigh" last="Christopher">Leigh Christopher</name>
<affiliation>
<nlm:affiliation>1 Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Ontario, M5T 2S8, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marras, Connie" sort="Marras, Connie" uniqKey="Marras C" first="Connie" last="Marras">Connie Marras</name>
</author>
<author>
<name sortKey="Duff Canning, Sarah" sort="Duff Canning, Sarah" uniqKey="Duff Canning S" first="Sarah" last="Duff-Canning">Sarah Duff-Canning</name>
</author>
<author>
<name sortKey="Koshimori, Yuko" sort="Koshimori, Yuko" uniqKey="Koshimori Y" first="Yuko" last="Koshimori">Yuko Koshimori</name>
</author>
<author>
<name sortKey="Chen, Robert" sort="Chen, Robert" uniqKey="Chen R" first="Robert" last="Chen">Robert Chen</name>
</author>
<author>
<name sortKey="Boileau, Isabelle" sort="Boileau, Isabelle" uniqKey="Boileau I" first="Isabelle" last="Boileau">Isabelle Boileau</name>
</author>
<author>
<name sortKey="Segura, Barbara" sort="Segura, Barbara" uniqKey="Segura B" first="Barbara" last="Segura">Barbara Segura</name>
</author>
<author>
<name sortKey="Monchi, Oury" sort="Monchi, Oury" uniqKey="Monchi O" first="Oury" last="Monchi">Oury Monchi</name>
</author>
<author>
<name sortKey="Lang, Anthony E" sort="Lang, Anthony E" uniqKey="Lang A" first="Anthony E" last="Lang">Anthony E. Lang</name>
</author>
<author>
<name sortKey="Rusjan, Pablo" sort="Rusjan, Pablo" uniqKey="Rusjan P" first="Pablo" last="Rusjan">Pablo Rusjan</name>
</author>
<author>
<name sortKey="Houle, Sylvain" sort="Houle, Sylvain" uniqKey="Houle S" first="Sylvain" last="Houle">Sylvain Houle</name>
</author>
<author>
<name sortKey="Strafella, Antonio P" sort="Strafella, Antonio P" uniqKey="Strafella A" first="Antonio P" last="Strafella">Antonio P. Strafella</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24334314</idno>
<idno type="pmid">24334314</idno>
<idno type="doi">10.1093/brain/awt337</idno>
<idno type="wicri:Area/PubMed/Corpus">000792</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000792</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson's disease with mild cognitive impairment.</title>
<author>
<name sortKey="Christopher, Leigh" sort="Christopher, Leigh" uniqKey="Christopher L" first="Leigh" last="Christopher">Leigh Christopher</name>
<affiliation>
<nlm:affiliation>1 Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Ontario, M5T 2S8, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marras, Connie" sort="Marras, Connie" uniqKey="Marras C" first="Connie" last="Marras">Connie Marras</name>
</author>
<author>
<name sortKey="Duff Canning, Sarah" sort="Duff Canning, Sarah" uniqKey="Duff Canning S" first="Sarah" last="Duff-Canning">Sarah Duff-Canning</name>
</author>
<author>
<name sortKey="Koshimori, Yuko" sort="Koshimori, Yuko" uniqKey="Koshimori Y" first="Yuko" last="Koshimori">Yuko Koshimori</name>
</author>
<author>
<name sortKey="Chen, Robert" sort="Chen, Robert" uniqKey="Chen R" first="Robert" last="Chen">Robert Chen</name>
</author>
<author>
<name sortKey="Boileau, Isabelle" sort="Boileau, Isabelle" uniqKey="Boileau I" first="Isabelle" last="Boileau">Isabelle Boileau</name>
</author>
<author>
<name sortKey="Segura, Barbara" sort="Segura, Barbara" uniqKey="Segura B" first="Barbara" last="Segura">Barbara Segura</name>
</author>
<author>
<name sortKey="Monchi, Oury" sort="Monchi, Oury" uniqKey="Monchi O" first="Oury" last="Monchi">Oury Monchi</name>
</author>
<author>
<name sortKey="Lang, Anthony E" sort="Lang, Anthony E" uniqKey="Lang A" first="Anthony E" last="Lang">Anthony E. Lang</name>
</author>
<author>
<name sortKey="Rusjan, Pablo" sort="Rusjan, Pablo" uniqKey="Rusjan P" first="Pablo" last="Rusjan">Pablo Rusjan</name>
</author>
<author>
<name sortKey="Houle, Sylvain" sort="Houle, Sylvain" uniqKey="Houle S" first="Sylvain" last="Houle">Sylvain Houle</name>
</author>
<author>
<name sortKey="Strafella, Antonio P" sort="Strafella, Antonio P" uniqKey="Strafella A" first="Antonio P" last="Strafella">Antonio P. Strafella</name>
</author>
</analytic>
<series>
<title level="j">Brain : a journal of neurology</title>
<idno type="eISSN">1460-2156</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aged</term>
<term>Aged, 80 and over</term>
<term>Cerebral Cortex (diagnostic imaging)</term>
<term>Cerebral Cortex (metabolism)</term>
<term>Cerebral Cortex (physiopathology)</term>
<term>Cognitive Dysfunction (metabolism)</term>
<term>Cognitive Dysfunction (physiopathology)</term>
<term>Cognitive Dysfunction (psychology)</term>
<term>Corpus Striatum (diagnostic imaging)</term>
<term>Corpus Striatum (metabolism)</term>
<term>Corpus Striatum (physiopathology)</term>
<term>Dopamine D2 Receptor Antagonists</term>
<term>Executive Function (physiology)</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Neuropsychological Tests</term>
<term>Parkinson Disease (metabolism)</term>
<term>Parkinson Disease (physiopathology)</term>
<term>Parkinson Disease (psychology)</term>
<term>Positron-Emission Tomography (methods)</term>
<term>Receptors, Dopamine D2 (genetics)</term>
<term>Receptors, Dopamine D2 (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Receptors, Dopamine D2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Receptors, Dopamine D2</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Dopamine D2 Receptor Antagonists</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic imaging" xml:lang="en">
<term>Cerebral Cortex</term>
<term>Corpus Striatum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cerebral Cortex</term>
<term>Cognitive Dysfunction</term>
<term>Corpus Striatum</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Positron-Emission Tomography</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Executive Function</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Cerebral Cortex</term>
<term>Cognitive Dysfunction</term>
<term>Corpus Striatum</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="psychology" xml:lang="en">
<term>Cognitive Dysfunction</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Aged</term>
<term>Aged, 80 and over</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Neuropsychological Tests</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ability to dynamically use various aspects of cognition is essential to daily function, and reliant on dopaminergic transmission in cortico-striatal circuitry. Our aim was to investigate both striatal and cortical dopaminergic changes in patients with Parkinson's disease with mild cognitive impairment, who represent a vulnerable group for the development of dementia. We hypothesized severe striatal dopamine denervation in the associative (i.e. cognitive) region and cortical D2 receptor abnormalities in the salience and executive networks in Parkinson's disease with mild cognitive impairment compared with cognitively normal patients with Parkinson's disease and healthy control subjects. We used positron emission tomography imaging with dopaminergic ligands (11)C-dihydrotetrabenazine, to investigate striatal dopamine neuron integrity in the associative subdivision and (11)C-FLB 457, to investigate cortical D2 receptor availability in patients with Parkinson's disease (55-80 years of age) with mild cognitive impairment (n = 11), cognitively normal patients with Parkinson's disease (n = 11) and age-matched healthy control subjects (n = 14). Subjects were administered a neuropsychological test battery to assess cognitive status and determine the relationship between dopaminergic changes and cognitive performance. We found that patients with mild cognitive impairment had severe striatal dopamine depletion in the associative (i.e. cognitive) subdivision as well as reduced D2 receptor availability in the bilateral insula, a key cognitive hub, compared to cognitively normal patients and healthy subjects after controlling for age, disease severity and daily dopaminergic medication intake. Associative striatal dopamine depletion was predictive of D2 receptor loss in the insula of patients with Parkinson's disease with mild cognitive impairment, demonstrating interrelated striatal and cortical changes. Insular D2 levels also predicted executive abilities in these patients as measured using a composite executive z-score obtained from neuropsychological testing. Furthermore we assessed cortical thickness to ensure that D2 receptor changes were not confounded by brain atrophy. There was no difference between groups in cortical thickness in the insula, or any other cortical region of interest. These findings suggest that striatal dopamine denervation combined with insular D2 receptor loss underlie mild cognitive impairment in Parkinson's disease and in particular decline in executive function. Furthermore, these findings suggest a crucial and direct role for dopaminergic modulation in the insula in facilitating cognitive function.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24334314</PMID>
<DateCreated>
<Year>2014</Year>
<Month>02</Month>
<Day>06</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2156</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>137</Volume>
<Issue>Pt 2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Brain : a journal of neurology</Title>
<ISOAbbreviation>Brain</ISOAbbreviation>
</Journal>
<ArticleTitle>Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson's disease with mild cognitive impairment.</ArticleTitle>
<Pagination>
<MedlinePgn>565-75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/brain/awt337</ELocationID>
<Abstract>
<AbstractText>The ability to dynamically use various aspects of cognition is essential to daily function, and reliant on dopaminergic transmission in cortico-striatal circuitry. Our aim was to investigate both striatal and cortical dopaminergic changes in patients with Parkinson's disease with mild cognitive impairment, who represent a vulnerable group for the development of dementia. We hypothesized severe striatal dopamine denervation in the associative (i.e. cognitive) region and cortical D2 receptor abnormalities in the salience and executive networks in Parkinson's disease with mild cognitive impairment compared with cognitively normal patients with Parkinson's disease and healthy control subjects. We used positron emission tomography imaging with dopaminergic ligands (11)C-dihydrotetrabenazine, to investigate striatal dopamine neuron integrity in the associative subdivision and (11)C-FLB 457, to investigate cortical D2 receptor availability in patients with Parkinson's disease (55-80 years of age) with mild cognitive impairment (n = 11), cognitively normal patients with Parkinson's disease (n = 11) and age-matched healthy control subjects (n = 14). Subjects were administered a neuropsychological test battery to assess cognitive status and determine the relationship between dopaminergic changes and cognitive performance. We found that patients with mild cognitive impairment had severe striatal dopamine depletion in the associative (i.e. cognitive) subdivision as well as reduced D2 receptor availability in the bilateral insula, a key cognitive hub, compared to cognitively normal patients and healthy subjects after controlling for age, disease severity and daily dopaminergic medication intake. Associative striatal dopamine depletion was predictive of D2 receptor loss in the insula of patients with Parkinson's disease with mild cognitive impairment, demonstrating interrelated striatal and cortical changes. Insular D2 levels also predicted executive abilities in these patients as measured using a composite executive z-score obtained from neuropsychological testing. Furthermore we assessed cortical thickness to ensure that D2 receptor changes were not confounded by brain atrophy. There was no difference between groups in cortical thickness in the insula, or any other cortical region of interest. These findings suggest that striatal dopamine denervation combined with insular D2 receptor loss underlie mild cognitive impairment in Parkinson's disease and in particular decline in executive function. Furthermore, these findings suggest a crucial and direct role for dopaminergic modulation in the insula in facilitating cognitive function.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Christopher</LastName>
<ForeName>Leigh</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>1 Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Ontario, M5T 2S8, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marras</LastName>
<ForeName>Connie</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Duff-Canning</LastName>
<ForeName>Sarah</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Koshimori</LastName>
<ForeName>Yuko</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boileau</LastName>
<ForeName>Isabelle</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Segura</LastName>
<ForeName>Barbara</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Monchi</LastName>
<ForeName>Oury</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lang</LastName>
<ForeName>Anthony E</ForeName>
<Initials>AE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rusjan</LastName>
<ForeName>Pablo</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Houle</LastName>
<ForeName>Sylvain</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Strafella</LastName>
<ForeName>Antonio P</ForeName>
<Initials>AP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>110962-1</GrantID>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
<Grant>
<GrantID>MOP 110962</GrantID>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Brain</MedlineTA>
<NlmUniqueID>0372537</NlmUniqueID>
<ISSNLinking>0006-8950</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D065127">Dopamine D2 Receptor Antagonists</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017448">Receptors, Dopamine D2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2005 Dec 13;65(11):1716-22</RefSource>
<PMID Version="1">16344512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 1988 Apr;50(4):1131-6</RefSource>
<PMID Version="1">3346671</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 2001 Sep;21(9):1034-57</RefSource>
<PMID Version="1">11524609</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2009 Jun;46(2):516-21</RefSource>
<PMID Version="1">19264140</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1999 Feb;9(2):195-207</RefSource>
<PMID Version="1">9931269</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychiatry Res. 2006 Jun 30;147(1):79-89</RefSource>
<PMID Version="1">16797168</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74</RefSource>
<PMID Version="1">18723676</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 1999 Oct;19(10):1164-73</RefSource>
<PMID Version="1">10532641</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1999 Jul;14(4):572-84</RefSource>
<PMID Version="1">10435493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 1988 Apr 7;318(14):876-80</RefSource>
<PMID Version="1">3352672</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2013 Mar;23(3):739-49</RefSource>
<PMID Version="1">22437053</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Occup Ther. 1999 Sep-Oct;53(5):471-81</RefSource>
<PMID Version="1">10500855</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2007 Sep 15;22(12):1689-707; quiz 1837</RefSource>
<PMID Version="1">17542011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2008 Nov;86(3):141-55</RefSource>
<PMID Version="1">18824075</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205</RefSource>
<PMID Version="1">8126267</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2008 Mar;63(3):388-94</RefSource>
<PMID Version="1">18240153</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Exp Neuropsychol. 2004 May;26(3):347-55</RefSource>
<PMID Version="1">15512925</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Synapse. 2008 Nov;62(11):873-6</RefSource>
<PMID Version="1">18720517</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Nucl Med. 1998 May;39(5):904-11</RefSource>
<PMID Version="1">9591599</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 1996 Nov;8(6):588-602</RefSource>
<PMID Version="1">23961986</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2003 Sep;183(1):81-6</RefSource>
<PMID Version="1">12957491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2006 Nov 15;33(3):907-12</RefSource>
<PMID Version="1">16982202</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2010 Mar 16;74(11):885-92</RefSource>
<PMID Version="1">20181924</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 2006 Sep;26(9):1198-212</RefSource>
<PMID Version="1">16421508</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2000 Sep;12(3):245-56</RefSource>
<PMID Version="1">10944407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Med Imaging. 1997 Apr;16(2):145-58</RefSource>
<PMID Version="1">9101324</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Gen Psychiatry. 1961 Jun;4:561-71</RefSource>
<PMID Version="1">13688369</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2004 Apr;19(4):397-405</RefSource>
<PMID Version="1">15077237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2001 Mar;13(3):531-9</RefSource>
<PMID Version="1">11170818</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1996 Dec;4(3 Pt 1):153-8</RefSource>
<PMID Version="1">9345505</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychopharmacology (Berl). 2006 Nov;188(4):567-85</RefSource>
<PMID Version="1">16670842</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2007 Jan;130(Pt 1):233-44</RefSource>
<PMID Version="1">17121746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurotherapeutics. 2011 Jan;8(1):72-81</RefSource>
<PMID Version="1">21274687</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Feb 28;27(9):2349-56</RefSource>
<PMID Version="1">17329432</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2005 Dec;22(11):2946-52</RefSource>
<PMID Version="1">16324129</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2000 Mar 15;20(6):2369-82</RefSource>
<PMID Version="1">10704511</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1997 Nov;6(4):279-87</RefSource>
<PMID Version="1">9417971</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2012 Mar;27(3):349-56</RefSource>
<PMID Version="1">22275317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2007 Jul 15;22(9):1272-7</RefSource>
<PMID Version="1">17415797</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucl Med Biol. 1996 May;23(4):467-71</RefSource>
<PMID Version="1">8832701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 1996 Nov;16(6):1288-99</RefSource>
<PMID Version="1">8898703</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Neurosurg Psychiatry. 2009 Aug;80(8):928-30</RefSource>
<PMID Version="1">19608786</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2009;4(8):e6725</RefSource>
<PMID Version="1">19696930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1996 Dec;40(6):873-84</RefSource>
<PMID Version="1">9007092</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 1996 Jun;2(6):699-703</RefSource>
<PMID Version="1">8640565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Semin Nucl Med. 2008 Jul;38(4):287-304</RefSource>
<PMID Version="1">18514084</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Jan 21;24(3):702-10</RefSource>
<PMID Version="1">14736856</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5</RefSource>
<PMID Version="1">10984517</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1990 Jul;13(7):266-71</RefSource>
<PMID Version="1">1695401</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Sep 24;28(39):9850-6</RefSource>
<PMID Version="1">18815269</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1999 Feb;9(2):179-94</RefSource>
<PMID Version="1">9931268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychopharmacology (Berl). 2011 Dec;218(3):567-78</RefSource>
<PMID Version="1">21611724</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Assist Tomogr. 1993 Jul-Aug;17(4):536-46</RefSource>
<PMID Version="1">8331222</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Biobehav Rev. 2006;30(1):1-23</RefSource>
<PMID Version="1">15935475</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Struct Funct. 2010 Jun;214(5-6):655-67</RefSource>
<PMID Version="1">20512370</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2004 Sep;74(1):1-58</RefSource>
<PMID Version="1">15381316</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Nucl Med. 1999 Feb;40(2):283-9</RefSource>
<PMID Version="1">10025836</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000369" MajorTopicYN="N">Aged, 80 and over</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002540" MajorTopicYN="N">Cerebral Cortex</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060825" MajorTopicYN="N">Cognitive Dysfunction</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
<QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003342" MajorTopicYN="N">Corpus Striatum</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065127" MajorTopicYN="N">Dopamine D2 Receptor Antagonists</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056344" MajorTopicYN="N">Executive Function</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009483" MajorTopicYN="N">Neuropsychological Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010300" MajorTopicYN="N">Parkinson Disease</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
<QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049268" MajorTopicYN="N">Positron-Emission Tomography</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017448" MajorTopicYN="N">Receptors, Dopamine D2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">CAMS4600</OtherID>
<OtherID Source="NLM">PMC4454524</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Parkinson’s disease</Keyword>
<Keyword MajorTopicYN="N">dopamine</Keyword>
<Keyword MajorTopicYN="N">mild cognitive impairment</Keyword>
<Keyword MajorTopicYN="N">positron emission tomography</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24334314</ArticleId>
<ArticleId IdType="pii">awt337</ArticleId>
<ArticleId IdType="doi">10.1093/brain/awt337</ArticleId>
<ArticleId IdType="pmc">PMC4454524</ArticleId>
<ArticleId IdType="mid">CAMS4600</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000792 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000792 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24334314
   |texte=   Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson's disease with mild cognitive impairment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24334314" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022