La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

New tricks for "old" domains: how novel architectures and promiscuous hubs contributed to the organization and evolution of the ECM.

Identifieur interne : 000662 ( PubMed/Corpus ); précédent : 000661; suivant : 000663

New tricks for "old" domains: how novel architectures and promiscuous hubs contributed to the organization and evolution of the ECM.

Auteurs : Graham Cromar ; Ka-Chun Wong ; Noeleen Loughran ; Tuan On ; Hongyan Song ; Xuejian Xiong ; Zhaolei Zhang ; John Parkinson

Source :

RBID : pubmed:25323955

English descriptors

Abstract

The extracellular matrix (ECM) is a defining characteristic of metazoans and consists of a meshwork of self-assembling, fibrous proteins, and their functionally related neighbours. Previous studies, focusing on a limited number of gene families, suggest that vertebrate complexity predominantly arose through the duplication and subsequent modification of retained, preexisting ECM genes. These genes provided the structural underpinnings to support a variety of specialized tissues, as well as a platform for the organization of spatio-temporal signaling and cell migration. However, the relative contributions of ancient versus novel domains to ECM evolution have not been quantified across the full range of ECM proteins. Here, utilizing a high quality list comprising 324 ECM genes, we reveal general and clade-specific domain combinations, identifying domains of eukaryotic and metazoan origin recruited into new roles in approximately two-third of the ECM proteins in humans representing novel vertebrate proteins. We show that, rather than acquiring new domains, sampling of new domain combinations has been key to the innovation of paralogous ECM genes during vertebrate evolution. Applying a novel framework for identifying potentially important, noncontiguous, conserved arrangements of domains, we find that the distinct biological characteristics of the ECM have arisen through unique evolutionary processes. These include the preferential recruitment of novel domains to existing architectures and the utilization of high promiscuity domains in organizing the ECM network around a connected array of structural hubs. Our focus on ECM proteins reveals that distinct types of proteins and/or the biological systems in which they operate have influenced the types of evolutionary forces that drive protein innovation. This emphasizes the need for rigorously defined systems to address questions of evolution that focus on specific systems of interacting proteins.

DOI: 10.1093/gbe/evu228
PubMed: 25323955

Links to Exploration step

pubmed:25323955

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">New tricks for "old" domains: how novel architectures and promiscuous hubs contributed to the organization and evolution of the ECM.</title>
<author>
<name sortKey="Cromar, Graham" sort="Cromar, Graham" uniqKey="Cromar G" first="Graham" last="Cromar">Graham Cromar</name>
<affiliation>
<nlm:affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wong, Ka Chun" sort="Wong, Ka Chun" uniqKey="Wong K" first="Ka-Chun" last="Wong">Ka-Chun Wong</name>
<affiliation>
<nlm:affiliation>Department of Computer Science, University of Toronto, Ontario, Canada Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Loughran, Noeleen" sort="Loughran, Noeleen" uniqKey="Loughran N" first="Noeleen" last="Loughran">Noeleen Loughran</name>
<affiliation>
<nlm:affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="On, Tuan" sort="On, Tuan" uniqKey="On T" first="Tuan" last="On">Tuan On</name>
<affiliation>
<nlm:affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Song, Hongyan" sort="Song, Hongyan" uniqKey="Song H" first="Hongyan" last="Song">Hongyan Song</name>
<affiliation>
<nlm:affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiong, Xuejian" sort="Xiong, Xuejian" uniqKey="Xiong X" first="Xuejian" last="Xiong">Xuejian Xiong</name>
<affiliation>
<nlm:affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Zhaolei" sort="Zhang, Zhaolei" uniqKey="Zhang Z" first="Zhaolei" last="Zhang">Zhaolei Zhang</name>
<affiliation>
<nlm:affiliation>Department of Molecular Genetics, University of Toronto, Ontario, Canada Department of Computer Science, University of Toronto, Ontario, Canada Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Parkinson, John" sort="Parkinson, John" uniqKey="Parkinson J" first="John" last="Parkinson">John Parkinson</name>
<affiliation>
<nlm:affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Ontario, Canada Department of Biochemistry, University of Toronto, Ontario, Canada john.parkinson@utoronto.ca.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25323955</idno>
<idno type="pmid">25323955</idno>
<idno type="doi">10.1093/gbe/evu228</idno>
<idno type="wicri:Area/PubMed/Corpus">000662</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000662</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">New tricks for "old" domains: how novel architectures and promiscuous hubs contributed to the organization and evolution of the ECM.</title>
<author>
<name sortKey="Cromar, Graham" sort="Cromar, Graham" uniqKey="Cromar G" first="Graham" last="Cromar">Graham Cromar</name>
<affiliation>
<nlm:affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wong, Ka Chun" sort="Wong, Ka Chun" uniqKey="Wong K" first="Ka-Chun" last="Wong">Ka-Chun Wong</name>
<affiliation>
<nlm:affiliation>Department of Computer Science, University of Toronto, Ontario, Canada Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Loughran, Noeleen" sort="Loughran, Noeleen" uniqKey="Loughran N" first="Noeleen" last="Loughran">Noeleen Loughran</name>
<affiliation>
<nlm:affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="On, Tuan" sort="On, Tuan" uniqKey="On T" first="Tuan" last="On">Tuan On</name>
<affiliation>
<nlm:affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Song, Hongyan" sort="Song, Hongyan" uniqKey="Song H" first="Hongyan" last="Song">Hongyan Song</name>
<affiliation>
<nlm:affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiong, Xuejian" sort="Xiong, Xuejian" uniqKey="Xiong X" first="Xuejian" last="Xiong">Xuejian Xiong</name>
<affiliation>
<nlm:affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Zhaolei" sort="Zhang, Zhaolei" uniqKey="Zhang Z" first="Zhaolei" last="Zhang">Zhaolei Zhang</name>
<affiliation>
<nlm:affiliation>Department of Molecular Genetics, University of Toronto, Ontario, Canada Department of Computer Science, University of Toronto, Ontario, Canada Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Parkinson, John" sort="Parkinson, John" uniqKey="Parkinson J" first="John" last="Parkinson">John Parkinson</name>
<affiliation>
<nlm:affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Ontario, Canada Department of Biochemistry, University of Toronto, Ontario, Canada john.parkinson@utoronto.ca.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genome biology and evolution</title>
<idno type="eISSN">1759-6653</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Evolution, Molecular</term>
<term>Extracellular Matrix (metabolism)</term>
<term>Extracellular Matrix Proteins (metabolism)</term>
<term>Humans</term>
<term>Tandem Repeat Sequences (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Extracellular Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Tandem Repeat Sequences</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Extracellular Matrix</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Evolution, Molecular</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The extracellular matrix (ECM) is a defining characteristic of metazoans and consists of a meshwork of self-assembling, fibrous proteins, and their functionally related neighbours. Previous studies, focusing on a limited number of gene families, suggest that vertebrate complexity predominantly arose through the duplication and subsequent modification of retained, preexisting ECM genes. These genes provided the structural underpinnings to support a variety of specialized tissues, as well as a platform for the organization of spatio-temporal signaling and cell migration. However, the relative contributions of ancient versus novel domains to ECM evolution have not been quantified across the full range of ECM proteins. Here, utilizing a high quality list comprising 324 ECM genes, we reveal general and clade-specific domain combinations, identifying domains of eukaryotic and metazoan origin recruited into new roles in approximately two-third of the ECM proteins in humans representing novel vertebrate proteins. We show that, rather than acquiring new domains, sampling of new domain combinations has been key to the innovation of paralogous ECM genes during vertebrate evolution. Applying a novel framework for identifying potentially important, noncontiguous, conserved arrangements of domains, we find that the distinct biological characteristics of the ECM have arisen through unique evolutionary processes. These include the preferential recruitment of novel domains to existing architectures and the utilization of high promiscuity domains in organizing the ECM network around a connected array of structural hubs. Our focus on ECM proteins reveals that distinct types of proteins and/or the biological systems in which they operate have influenced the types of evolutionary forces that drive protein innovation. This emphasizes the need for rigorously defined systems to address questions of evolution that focus on specific systems of interacting proteins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25323955</PMID>
<DateCreated>
<Year>2014</Year>
<Month>11</Month>
<Day>01</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1759-6653</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2014</Year>
<Month>Oct</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Genome biology and evolution</Title>
<ISOAbbreviation>Genome Biol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>New tricks for "old" domains: how novel architectures and promiscuous hubs contributed to the organization and evolution of the ECM.</ArticleTitle>
<Pagination>
<MedlinePgn>2897-917</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/gbe/evu228</ELocationID>
<Abstract>
<AbstractText>The extracellular matrix (ECM) is a defining characteristic of metazoans and consists of a meshwork of self-assembling, fibrous proteins, and their functionally related neighbours. Previous studies, focusing on a limited number of gene families, suggest that vertebrate complexity predominantly arose through the duplication and subsequent modification of retained, preexisting ECM genes. These genes provided the structural underpinnings to support a variety of specialized tissues, as well as a platform for the organization of spatio-temporal signaling and cell migration. However, the relative contributions of ancient versus novel domains to ECM evolution have not been quantified across the full range of ECM proteins. Here, utilizing a high quality list comprising 324 ECM genes, we reveal general and clade-specific domain combinations, identifying domains of eukaryotic and metazoan origin recruited into new roles in approximately two-third of the ECM proteins in humans representing novel vertebrate proteins. We show that, rather than acquiring new domains, sampling of new domain combinations has been key to the innovation of paralogous ECM genes during vertebrate evolution. Applying a novel framework for identifying potentially important, noncontiguous, conserved arrangements of domains, we find that the distinct biological characteristics of the ECM have arisen through unique evolutionary processes. These include the preferential recruitment of novel domains to existing architectures and the utilization of high promiscuity domains in organizing the ECM network around a connected array of structural hubs. Our focus on ECM proteins reveals that distinct types of proteins and/or the biological systems in which they operate have influenced the types of evolutionary forces that drive protein innovation. This emphasizes the need for rigorously defined systems to address questions of evolution that focus on specific systems of interacting proteins.</AbstractText>
<CopyrightInformation>© The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cromar</LastName>
<ForeName>Graham</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wong</LastName>
<ForeName>Ka-Chun</ForeName>
<Initials>KC</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Science, University of Toronto, Ontario, Canada Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Loughran</LastName>
<ForeName>Noeleen</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>On</LastName>
<ForeName>Tuan</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Hongyan</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiong</LastName>
<ForeName>Xuejian</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhaolei</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics, University of Toronto, Ontario, Canada Department of Computer Science, University of Toronto, Ontario, Canada Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parkinson</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Ontario, Canada Department of Biochemistry, University of Toronto, Ontario, Canada john.parkinson@utoronto.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol Evol</MedlineTA>
<NlmUniqueID>101509707</NlmUniqueID>
<ISSNLinking>1759-6653</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016326">Extracellular Matrix Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Evol Biol. 2005;5:31</RefSource>
<PMID Version="1">15892888</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Feb 14;451(7180):783-8</RefSource>
<PMID Version="1">18273011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(11):e13984</RefSource>
<PMID Version="1">21085593</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301</RefSource>
<PMID Version="1">22127870</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Q Rev Biophys. 1996 May;29(2):119-67</RefSource>
<PMID Version="1">8870072</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 2001 Apr;268(7):2064-73</RefSource>
<PMID Version="1">11277929</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Jun 26;453(7199):1199-204</RefSource>
<PMID Version="1">18580942</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 1997 Jan;11(1):51-9</RefSource>
<PMID Version="1">9034166</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cold Spring Harb Perspect Med. 2012 May;2(5):a006684</RefSource>
<PMID Version="1">22553495</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Source Code Biol Med. 2011 Apr 07;6:7</RefSource>
<PMID Version="1">21473782</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Matrix Biol. 2001 Jan;19(8):755-60</RefSource>
<PMID Version="1">11223334</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2008 Jan;36(Database issue):D263-6</RefSource>
<PMID Version="1">18055500</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2013 Jul;23(7):1069-80</RefSource>
<PMID Version="1">23817048</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2004 Jul 1;430(6995):88-93</RefSource>
<PMID Version="1">15190252</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2006 Dec 22;314(5807):1938-41</RefSource>
<PMID Version="1">17185604</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Evol Biol. 2006;6:33</RefSource>
<PMID Version="1">16620379</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1999 Jun 11;274(24):17384-93</RefSource>
<PMID Version="1">10358101</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2004 Jun 12;20(9):1453-4</RefSource>
<PMID Version="1">14871861</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2011 Mar 15;27(6):877-8</RefSource>
<PMID Version="1">21252074</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2010;11(7):R74</RefSource>
<PMID Version="1">20633280</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Braz J Biol. 2009 Aug;69(3):957-62</RefSource>
<PMID Version="1">19802458</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2005 Feb 11;346(1):355-65</RefSource>
<PMID Version="1">15663950</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Struct Funct Genomics. 2003;4(2-3):67-78</RefSource>
<PMID Version="1">14649290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Sci. 2010 Aug;19(8):1461-8</RefSource>
<PMID Version="1">20509167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2003 Nov;13(11):2498-504</RefSource>
<PMID Version="1">14597658</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Matrix Biol. 2005 Apr;24(2):83-95</RefSource>
<PMID Version="1">15890260</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Matrix Biol. 2002 Mar;21(2):115-28</RefSource>
<PMID Version="1">11852228</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2009;10:39</RefSource>
<PMID Version="1">19178743</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1506-11</RefSource>
<PMID Version="1">22307605</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Struct Biol. 2013 Jun;23(3):459-66</RefSource>
<PMID Version="1">23562500</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Eng. 2001 Aug;14(8):533-42</RefSource>
<PMID Version="1">11579221</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2006 Mar 1;119(Pt 5):846-57</RefSource>
<PMID Version="1">16478786</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microsc Res Tech. 2002 Dec 1;59(5):352-72</RefSource>
<PMID Version="1">12430166</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ISME J. 2011 Mar;5(3):379-88</RefSource>
<PMID Version="1">20882058</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2003 May 9;278(19):17500-8</RefSource>
<PMID Version="1">12615915</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Genet. 1997 May;99(5):578-84</RefSource>
<PMID Version="1">9150721</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(2):e16719</RefSource>
<PMID Version="1">21386897</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2012 Sep 15;28(18):i409-i415</RefSource>
<PMID Version="1">22962460</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Matrix Biol. 2007 Jan;26(1):2-11</RefSource>
<PMID Version="1">17055232</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2006 Aug 25;2(8):e114</RefSource>
<PMID Version="1">16933986</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Zool B Mol Dev Evol. 2006 May 15;306(3):278-94</RefSource>
<PMID Version="1">16555304</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1990 Jun;87(12):4473-5</RefSource>
<PMID Version="1">1693772</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Mol Sci. 2010;11(4):1930-43</RefSource>
<PMID Version="1">20480050</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cold Spring Harb Perspect Biol. 2012 Jan;4(1):a004903</RefSource>
<PMID Version="1">21937732</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2010;11(7):126</RefSource>
<PMID Version="1">20630117</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Nov 12;279(46):47711-9</RefSource>
<PMID Version="1">15358765</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2012 Jun 1;287(23):18913-24</RefSource>
<PMID Version="1">22493511</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Struct Biol. 2010 Jun;20(3):390-6</RefSource>
<PMID Version="1">20347587</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Cell. 2010 Dec;21(24):4300-5</RefSource>
<PMID Version="1">21160071</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2012 Feb;29(2):787-96</RefSource>
<PMID Version="1">22016574</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2011 Jan;39(Database issue):D235-40</RefSource>
<PMID Version="1">20852260</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Insect Biochem Mol Biol. 2011 Sep;41(9):688-95</RefSource>
<PMID Version="1">21571068</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 2012 Jun;80(6):1522-44</RefSource>
<PMID Version="1">22275077</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Naturwissenschaften. 1998 Jan;85(1):11-25</RefSource>
<PMID Version="1">9484707</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Oct 16;455(7215):925-9</RefSource>
<PMID Version="1">18923515</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2001 Jul 6;310(2):311-25</RefSource>
<PMID Version="1">11428892</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2009 Jan;37(Database issue):D211-5</RefSource>
<PMID Version="1">18940856</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2011 Oct;7(10):e1002195</RefSource>
<PMID Version="1">22039361</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2002 Apr 1;30(7):1575-84</RefSource>
<PMID Version="1">11917018</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Genomics Hum Genet. 2000;1:99-116</RefSource>
<PMID Version="1">11701626</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2004 Feb 20;336(3):809-23</RefSource>
<PMID Version="1">15095989</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Biochem Cell Biol. 2005 Sep;37(9):1838-45</RefSource>
<PMID Version="1">15899586</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 2002 Jan 23;283(1-2):245-54</RefSource>
<PMID Version="1">11867231</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Biol. 2006 Mar;13(2):320-35</RefSource>
<PMID Version="1">16597243</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Endocrinol Metab. 2003 Jul;285(1):E1-9</RefSource>
<PMID Version="1">12791601</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2001 Apr 6;307(4):1113-43</RefSource>
<PMID Version="1">11286560</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2002 Feb 8;277(6):4223-31</RefSource>
<PMID Version="1">11704682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2012 Mar 19;196(6):671-9</RefSource>
<PMID Version="1">22431747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2007 May 15;23(10):1282-8</RefSource>
<PMID Version="1">17379688</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2007 Oct 5;372(5):1337-48</RefSource>
<PMID Version="1">17689563</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 2002 Aug 1;48(2):377-87</RefSource>
<PMID Version="1">12112704</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2012;8(11):e1002701</RefSource>
<PMID Version="1">23166479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2007;2(4):e383</RefSource>
<PMID Version="1">17440619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Evol Biol. 2013;13:47</RefSource>
<PMID Version="1">23425224</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Exp Pathol. 2009 Apr;90(2):95-100</RefSource>
<PMID Version="1">19335547</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2013 May;1834(5):898-907</RefSource>
<PMID Version="1">23376183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2000 Jul;2(7):407-14</RefSource>
<PMID Version="1">10878805</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2008 Mar;18(3):449-61</RefSource>
<PMID Version="1">18230802</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1992 May 15;267(14):10087-95</RefSource>
<PMID Version="1">1374398</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Expert Rev Mol Med. 2013;15:e8</RefSource>
<PMID Version="1">23962539</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2000 May;25(1):25-9</RefSource>
<PMID Version="1">10802651</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2002 Jan 25;315(4):927-39</RefSource>
<PMID Version="1">11812158</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Invest Ophthalmol Vis Sci. 2011 Jan;52(1):45-50</RefSource>
<PMID Version="1">20720231</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 Nov 27;326(5957):1216-9</RefSource>
<PMID Version="1">19965464</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1998 Mar 20;273(12):6591-4</RefSource>
<PMID Version="1">9506951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brief Bioinform. 2009 May;10(3):205-16</RefSource>
<PMID Version="1">19151098</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005109" MajorTopicYN="N">Extracellular Matrix</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016326" MajorTopicYN="N">Extracellular Matrix Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020080" MajorTopicYN="N">Tandem Repeat Sequences</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4224354</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">domain architecture</Keyword>
<Keyword MajorTopicYN="N">domain networks</Keyword>
<Keyword MajorTopicYN="N">evolution</Keyword>
<Keyword MajorTopicYN="N">extracellular matrix</Keyword>
<Keyword MajorTopicYN="N">protein domains</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25323955</ArticleId>
<ArticleId IdType="pii">evu228</ArticleId>
<ArticleId IdType="doi">10.1093/gbe/evu228</ArticleId>
<ArticleId IdType="pmc">PMC4224354</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000662 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000662 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25323955
   |texte=   New tricks for "old" domains: how novel architectures and promiscuous hubs contributed to the organization and evolution of the ECM.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25323955" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022