La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Application of texture analysis to DAT SPECT imaging: Relationship to clinical assessments.

Identifieur interne : 000292 ( PubMed/Corpus ); précédent : 000291; suivant : 000293

Application of texture analysis to DAT SPECT imaging: Relationship to clinical assessments.

Auteurs : Arman Rahmim ; Yousef Salimpour ; Saurabh Jain ; Stephan A L. Blinder ; Ivan S. Klyuzhin ; Gwenn S. Smith ; Zoltan Mari ; Vesna Sossi

Source :

RBID : pubmed:27995072

Abstract

Dopamine transporter (DAT) SPECT imaging is increasingly utilized for diagnostic purposes in suspected Parkinsonian syndromes. We performed a cross-sectional study to investigate whether assessment of texture in DAT SPECT radiotracer uptake enables enhanced correlations with severity of motor and cognitive symptoms in Parkinson's disease (PD), with the long-term goal of enabling clinical utility of DAT SPECT imaging, beyond standard diagnostic tasks, to tracking of progression in PD. Quantitative analysis in routine DAT SPECT imaging, if performed at all, has been restricted to assessment of mean regional uptake. We applied a framework wherein textural features were extracted from the images. Notably, the framework did not require registration to a common template, and worked in the subject-native space. Image analysis included registration of SPECT images onto corresponding MRI images, automatic region-of-interest (ROI) extraction on the MRI images, followed by computation of Haralick texture features. We analyzed 141 subjects from the Parkinson's Progressive Marker Initiative (PPMI) database, including 85 PD and 56 healthy controls (HC) (baseline scans with accompanying 3 T MRI images). We performed univariate and multivariate regression analyses between the quantitative metrics and different clinical measures, namely (i) the UPDRS (part III - motor) score, disease duration as measured from (ii) time of diagnosis (DD-diag.) and (iii) time of appearance of symptoms (DD-sympt.), as well as (iv) the Montreal Cognitive Assessment (MoCA) score. For conventional mean uptake analysis in the putamen, we showed significant correlations with clinical measures only when both HC and PD were included (Pearson correlation r = - 0.74, p-value < 0.001). However, this was not significant when applied to PD subjects only (r = - 0.19, p-value = 0.084), and no such correlations were observed in the caudate. By contrast, for the PD subjects, significant correlations were observed in the caudate when including texture metrics, with (i) UPDRS (p-values < 0.01), (ii) DD-diag. (p-values < 0.001), (iii) DD-sympt (p-values < 0.05), and (iv) MoCA (p-values < 0.01), while no correlations were observed for conventional analysis (p-values = 0.94, 0.34, 0.88 and 0.96, respectively). Our results demonstrated the ability to capture valuable information using advanced texture metrics from striatal DAT SPECT, enabling significant correlations of striatal DAT binding with clinical, motor and cognitive outcomes, and suggesting that textural features hold potential as biomarkers of PD severity and progression.

DOI: 10.1016/j.nicl.2016.02.012
PubMed: 27995072

Links to Exploration step

pubmed:27995072

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Application of texture analysis to DAT SPECT imaging: Relationship to clinical assessments.</title>
<author>
<name sortKey="Rahmim, Arman" sort="Rahmim, Arman" uniqKey="Rahmim A" first="Arman" last="Rahmim">Arman Rahmim</name>
<affiliation>
<nlm:affiliation>Department of Radiology, Johns Hopkins University, Baltimore, MD, United States; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Salimpour, Yousef" sort="Salimpour, Yousef" uniqKey="Salimpour Y" first="Yousef" last="Salimpour">Yousef Salimpour</name>
<affiliation>
<nlm:affiliation>Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jain, Saurabh" sort="Jain, Saurabh" uniqKey="Jain S" first="Saurabh" last="Jain">Saurabh Jain</name>
<affiliation>
<nlm:affiliation>Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blinder, Stephan A L" sort="Blinder, Stephan A L" uniqKey="Blinder S" first="Stephan A L" last="Blinder">Stephan A L. Blinder</name>
<affiliation>
<nlm:affiliation>Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Klyuzhin, Ivan S" sort="Klyuzhin, Ivan S" uniqKey="Klyuzhin I" first="Ivan S" last="Klyuzhin">Ivan S. Klyuzhin</name>
<affiliation>
<nlm:affiliation>Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smith, Gwenn S" sort="Smith, Gwenn S" uniqKey="Smith G" first="Gwenn S" last="Smith">Gwenn S. Smith</name>
<affiliation>
<nlm:affiliation>Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mari, Zoltan" sort="Mari, Zoltan" uniqKey="Mari Z" first="Zoltan" last="Mari">Zoltan Mari</name>
<affiliation>
<nlm:affiliation>Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sossi, Vesna" sort="Sossi, Vesna" uniqKey="Sossi V" first="Vesna" last="Sossi">Vesna Sossi</name>
<affiliation>
<nlm:affiliation>Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27995072</idno>
<idno type="pmid">27995072</idno>
<idno type="doi">10.1016/j.nicl.2016.02.012</idno>
<idno type="wicri:Area/PubMed/Corpus">000292</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000292</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Application of texture analysis to DAT SPECT imaging: Relationship to clinical assessments.</title>
<author>
<name sortKey="Rahmim, Arman" sort="Rahmim, Arman" uniqKey="Rahmim A" first="Arman" last="Rahmim">Arman Rahmim</name>
<affiliation>
<nlm:affiliation>Department of Radiology, Johns Hopkins University, Baltimore, MD, United States; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Salimpour, Yousef" sort="Salimpour, Yousef" uniqKey="Salimpour Y" first="Yousef" last="Salimpour">Yousef Salimpour</name>
<affiliation>
<nlm:affiliation>Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jain, Saurabh" sort="Jain, Saurabh" uniqKey="Jain S" first="Saurabh" last="Jain">Saurabh Jain</name>
<affiliation>
<nlm:affiliation>Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blinder, Stephan A L" sort="Blinder, Stephan A L" uniqKey="Blinder S" first="Stephan A L" last="Blinder">Stephan A L. Blinder</name>
<affiliation>
<nlm:affiliation>Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Klyuzhin, Ivan S" sort="Klyuzhin, Ivan S" uniqKey="Klyuzhin I" first="Ivan S" last="Klyuzhin">Ivan S. Klyuzhin</name>
<affiliation>
<nlm:affiliation>Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smith, Gwenn S" sort="Smith, Gwenn S" uniqKey="Smith G" first="Gwenn S" last="Smith">Gwenn S. Smith</name>
<affiliation>
<nlm:affiliation>Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mari, Zoltan" sort="Mari, Zoltan" uniqKey="Mari Z" first="Zoltan" last="Mari">Zoltan Mari</name>
<affiliation>
<nlm:affiliation>Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sossi, Vesna" sort="Sossi, Vesna" uniqKey="Sossi V" first="Vesna" last="Sossi">Vesna Sossi</name>
<affiliation>
<nlm:affiliation>Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">NeuroImage. Clinical</title>
<idno type="eISSN">2213-1582</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dopamine transporter (DAT) SPECT imaging is increasingly utilized for diagnostic purposes in suspected Parkinsonian syndromes. We performed a cross-sectional study to investigate whether assessment of texture in DAT SPECT radiotracer uptake enables enhanced correlations with severity of motor and cognitive symptoms in Parkinson's disease (PD), with the long-term goal of enabling clinical utility of DAT SPECT imaging, beyond standard diagnostic tasks, to tracking of progression in PD. Quantitative analysis in routine DAT SPECT imaging, if performed at all, has been restricted to assessment of mean regional uptake. We applied a framework wherein textural features were extracted from the images. Notably, the framework did not require registration to a common template, and worked in the subject-native space. Image analysis included registration of SPECT images onto corresponding MRI images, automatic region-of-interest (ROI) extraction on the MRI images, followed by computation of Haralick texture features. We analyzed 141 subjects from the Parkinson's Progressive Marker Initiative (PPMI) database, including 85 PD and 56 healthy controls (HC) (baseline scans with accompanying 3 T MRI images). We performed univariate and multivariate regression analyses between the quantitative metrics and different clinical measures, namely (i) the UPDRS (part III - motor) score, disease duration as measured from (ii) time of diagnosis (DD-diag.) and (iii) time of appearance of symptoms (DD-sympt.), as well as (iv) the Montreal Cognitive Assessment (MoCA) score. For conventional mean uptake analysis in the putamen, we showed significant correlations with clinical measures only when both HC and PD were included (Pearson correlation r = - 0.74, p-value < 0.001). However, this was not significant when applied to PD subjects only (r = - 0.19, p-value = 0.084), and no such correlations were observed in the caudate. By contrast, for the PD subjects, significant correlations were observed in the caudate when including texture metrics, with (i) UPDRS (p-values < 0.01), (ii) DD-diag. (p-values < 0.001), (iii) DD-sympt (p-values < 0.05), and (iv) MoCA (p-values < 0.01), while no correlations were observed for conventional analysis (p-values = 0.94, 0.34, 0.88 and 0.96, respectively). Our results demonstrated the ability to capture valuable information using advanced texture metrics from striatal DAT SPECT, enabling significant correlations of striatal DAT binding with clinical, motor and cognitive outcomes, and suggesting that textural features hold potential as biomarkers of PD severity and progression.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">27995072</PMID>
<DateCreated>
<Year>2016</Year>
<Month>12</Month>
<Day>20</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">2213-1582</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>NeuroImage. Clinical</Title>
<ISOAbbreviation>Neuroimage Clin</ISOAbbreviation>
</Journal>
<ArticleTitle>Application of texture analysis to DAT SPECT imaging: Relationship to clinical assessments.</ArticleTitle>
<Pagination>
<MedlinePgn>e1-e9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Dopamine transporter (DAT) SPECT imaging is increasingly utilized for diagnostic purposes in suspected Parkinsonian syndromes. We performed a cross-sectional study to investigate whether assessment of texture in DAT SPECT radiotracer uptake enables enhanced correlations with severity of motor and cognitive symptoms in Parkinson's disease (PD), with the long-term goal of enabling clinical utility of DAT SPECT imaging, beyond standard diagnostic tasks, to tracking of progression in PD. Quantitative analysis in routine DAT SPECT imaging, if performed at all, has been restricted to assessment of mean regional uptake. We applied a framework wherein textural features were extracted from the images. Notably, the framework did not require registration to a common template, and worked in the subject-native space. Image analysis included registration of SPECT images onto corresponding MRI images, automatic region-of-interest (ROI) extraction on the MRI images, followed by computation of Haralick texture features. We analyzed 141 subjects from the Parkinson's Progressive Marker Initiative (PPMI) database, including 85 PD and 56 healthy controls (HC) (baseline scans with accompanying 3 T MRI images). We performed univariate and multivariate regression analyses between the quantitative metrics and different clinical measures, namely (i) the UPDRS (part III - motor) score, disease duration as measured from (ii) time of diagnosis (DD-diag.) and (iii) time of appearance of symptoms (DD-sympt.), as well as (iv) the Montreal Cognitive Assessment (MoCA) score. For conventional mean uptake analysis in the putamen, we showed significant correlations with clinical measures only when both HC and PD were included (Pearson correlation r = - 0.74, p-value < 0.001). However, this was not significant when applied to PD subjects only (r = - 0.19, p-value = 0.084), and no such correlations were observed in the caudate. By contrast, for the PD subjects, significant correlations were observed in the caudate when including texture metrics, with (i) UPDRS (p-values < 0.01), (ii) DD-diag. (p-values < 0.001), (iii) DD-sympt (p-values < 0.05), and (iv) MoCA (p-values < 0.01), while no correlations were observed for conventional analysis (p-values = 0.94, 0.34, 0.88 and 0.96, respectively). Our results demonstrated the ability to capture valuable information using advanced texture metrics from striatal DAT SPECT, enabling significant correlations of striatal DAT binding with clinical, motor and cognitive outcomes, and suggesting that textural features hold potential as biomarkers of PD severity and progression.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rahmim</LastName>
<ForeName>Arman</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, Johns Hopkins University, Baltimore, MD, United States; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Salimpour</LastName>
<ForeName>Yousef</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jain</LastName>
<ForeName>Saurabh</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blinder</LastName>
<ForeName>Stephan A L</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Klyuzhin</LastName>
<ForeName>Ivan S</ForeName>
<Initials>IS</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Gwenn S</ForeName>
<Initials>GS</Initials>
<AffiliationInfo>
<Affiliation>Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mari</LastName>
<ForeName>Zoltan</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sossi</LastName>
<ForeName>Vesna</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Neuroimage Clin</MedlineTA>
<NlmUniqueID>101597070</NlmUniqueID>
<ISSNLinking>2213-1582</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2011 Dec;95(4):629-35</RefSource>
<PMID Version="1">21930184</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1999 Aug;122 ( Pt 8):1449-68</RefSource>
<PMID Version="1">10430831</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Radiother Oncol. 2014 Jan;110(1):182-8</RefSource>
<PMID Version="1">23993398</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Nucl Med. 2015 Jan;56(1):38-44</RefSource>
<PMID Version="1">25500829</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Imaging (Bellingham). 2015 Oct;2(4):041011</RefSource>
<PMID Version="1">26587549</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2014 Jun;17(6):791-800</RefSource>
<PMID Version="1">24866045</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 2015 Dec 30;256:30-40</RefSource>
<PMID Version="1">26304693</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 May 4;107(18):8452-6</RefSource>
<PMID Version="1">20404184</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Nucl Med Mol Imaging. 2011 Apr;38(4):764-73</RefSource>
<PMID Version="1">21125269</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Phys. 2014 Jan;41(1):012502</RefSource>
<PMID Version="1">24387526</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2014 Sep 16;83(12):1096-103</RefSource>
<PMID Version="1">25128183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2011 Nov;10 (11):987-1001</RefSource>
<PMID Version="1">22014434</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Nucl Med. 2008 Dec;49(12 ):1973-9</RefSource>
<PMID Version="1">18997052</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013 Jun 18;8(6):e65591</RefSource>
<PMID Version="1">23824159</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Cancer. 2012 Mar;48(4):441-6</RefSource>
<PMID Version="1">22257792</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 1988 Apr 7;318(14):876-80</RefSource>
<PMID Version="1">3352672</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2011 Nov;134(Pt 11):3290-8</RefSource>
<PMID Version="1">22075521</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Neurosurg Psychiatry. 2012 Jun;83(6):620-8</RefSource>
<PMID Version="1">22492213</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Nucl Med. 2011 Mar;52(3):369-78</RefSource>
<PMID Version="1">21321270</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Oncol. 2013 Oct;52(7):1391-7</RefSource>
<PMID Version="1">24047337</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Nucl Med. 2014 Aug;55(8):1235-41</RefSource>
<PMID Version="1">24904113</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Nucl Med Mol Imaging. 2013 Jan;40(1):133-40</RefSource>
<PMID Version="1">23064544</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2014 Jan 29;34(5):1806-18</RefSource>
<PMID Version="1">24478362</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Anal. 2001 Jun;5(2):143-56</RefSource>
<PMID Version="1">11516708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2015 Jun 16;84(24):2422-9</RefSource>
<PMID Version="1">25995056</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EJNMMI Res. 2015 Mar 17;5:12</RefSource>
<PMID Version="1">25853018</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2008 Nov 25;71(22):1790-5</RefSource>
<PMID Version="1">19029519</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Radiat Oncol Biol Phys. 2012 Apr 1;82(5):e725-31</RefSource>
<PMID Version="1">22330998</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Cancer. 2012 Mar;48(4):447-55</RefSource>
<PMID Version="1">22265426</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 2016 Jun;36(6):1122-34</RefSource>
<PMID Version="1">26661171</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Imaging. 2012 Nov;30(9):1234-48</RefSource>
<PMID Version="1">22898692</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Imaging Biol. 2016 Oct;18(5):788-95</RefSource>
<PMID Version="1">26920355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2004 Oct;19(10):1175-82</RefSource>
<PMID Version="1">15390019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2015 Oct;14 (10 ):1002-9</RefSource>
<PMID Version="1">26271532</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Nucl Med. 2012 Jan;53(1):154-63</RefSource>
<PMID Version="1">22159160</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Br Med Bull. 2003;65:259-70</RefSource>
<PMID Version="1">12697630</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Nucl Med Mol Imaging. 2011 Sep;38(9):1636-47</RefSource>
<PMID Version="1">21617975</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2013 Mar;68:11-21</RefSource>
<PMID Version="1">23246861</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2009 Nov;132(Pt 11):2970-9</RefSource>
<PMID Version="1">19690093</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2010 Dec 15;25(16):2717-23</RefSource>
<PMID Version="1">20939082</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Med Biol. 2016 Jan 7;61(1):227-42</RefSource>
<PMID Version="1">26639024</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>AJNR Am J Neuroradiol. 2015 Nov;36(11):2010-6</RefSource>
<PMID Version="1">26294646</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1990 Oct;28(4):547-55</RefSource>
<PMID Version="1">2132742</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Can J Neurol Sci. 1987 Aug;14(3 Suppl):444-7</RefSource>
<PMID Version="1">3119181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pattern Recognit. 2009 Jun 1;42(6):1162-1171</RefSource>
<PMID Version="1">20161266</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Nucl Med. 2005 Jul;46(7):1109-18</RefSource>
<PMID Version="1">16000279</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Nucl Med. 2012 May;53(5):693-700</RefSource>
<PMID Version="1">22454484</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2014 Jun 03;5:4006</RefSource>
<PMID Version="1">24892406</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DAT SPECT</Keyword>
<Keyword MajorTopicYN="N">Disease progression</Keyword>
<Keyword MajorTopicYN="N">Heterogeneity</Keyword>
<Keyword MajorTopicYN="N">Parkinson's disease</Keyword>
<Keyword MajorTopicYN="N">Textural features</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>01</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27995072</ArticleId>
<ArticleId IdType="doi">10.1016/j.nicl.2016.02.012</ArticleId>
<ArticleId IdType="pii">S2213-1582(16)30034-1</ArticleId>
<ArticleId IdType="pmc">PMC5153560</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000292 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000292 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27995072
   |texte=   Application of texture analysis to DAT SPECT imaging: Relationship to clinical assessments.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27995072" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022