La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Corticostriatal functional interactions in Parkinson's disease: a rTMS/[11C]raclopride PET study.

Identifieur interne : 001236 ( PubMed/Checkpoint ); précédent : 001235; suivant : 001237

Corticostriatal functional interactions in Parkinson's disease: a rTMS/[11C]raclopride PET study.

Auteurs : Antonio P. Strafella [Canada] ; Ji Hyun Ko ; Joshua Grant ; Maria Fraraccio ; Oury Monchi

Source :

RBID : pubmed:16324129

English descriptors

Abstract

Several animal studies have shown that striatal dopamine can be released under direct control of glutamatergic corticostriatal efferents. In Parkinson's disease (PD), abnormalities in corticostriatal interactions are believed to play an important role in the pathophysiology of the disease. Previously, we have reported that, in healthy subjects, repetitive transcranial magnetic stimulation (rTMS) of motor cortex (MC) induces focal dopamine release in the ipsilateral putamen. In the present study, using [11C]raclopride PET, we sought to investigate early PD patients with evidence of unilateral motor symptoms. We measured in the putamen changes in extracellular dopamine concentration following rTMS (intensity, 90% of the resting motor threshold; frequency, 10 Hz) of the left and right MC. The main objective was to identify potential differences in corticostriatal dopamine release between the hemisphere associated with clear contralateral motor symptoms (symptomatic hemisphere) and the presymptomatic stage of the other hemisphere (asymptomatic hemisphere). Repetitive TMS of MC caused a binding reduction in the ipsilateral putamen of both hemispheres. In the symptomatic hemisphere, while the amount of TMS-induced dopamine release was, as expected, smaller, the size of the significant cluster of change in [11C]raclopride binding was, instead, 61.4% greater than in the asymptomatic hemisphere. This finding of a spatially enlarged area of dopamine release, following cortical stimulation, may represent a possible in vivo expression of a loss of functional segregation of cortical information to the striatum and an indirect evidence of abnormal corticostriatal transmission in early PD. This has potential implications for models of basal ganglia function in PD.

DOI: 10.1111/j.1460-9568.2005.04476.x
PubMed: 16324129


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16324129

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Corticostriatal functional interactions in Parkinson's disease: a rTMS/[11C]raclopride PET study.</title>
<author>
<name sortKey="Strafella, Antonio P" sort="Strafella, Antonio P" uniqKey="Strafella A" first="Antonio P" last="Strafella">Antonio P. Strafella</name>
<affiliation wicri:level="4">
<nlm:affiliation>Montreal Neurological Institute, Neurology & Neurosurgery Department, McGill University, 3801 University St., Montréal, QC H3A 2B4, Canada. antonio@bic.mni.mcgill.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Montreal Neurological Institute, Neurology & Neurosurgery Department, McGill University, 3801 University St., Montréal, QC H3A 2B4</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ko, Ji Hyun" sort="Ko, Ji Hyun" uniqKey="Ko J" first="Ji Hyun" last="Ko">Ji Hyun Ko</name>
</author>
<author>
<name sortKey="Grant, Joshua" sort="Grant, Joshua" uniqKey="Grant J" first="Joshua" last="Grant">Joshua Grant</name>
</author>
<author>
<name sortKey="Fraraccio, Maria" sort="Fraraccio, Maria" uniqKey="Fraraccio M" first="Maria" last="Fraraccio">Maria Fraraccio</name>
</author>
<author>
<name sortKey="Monchi, Oury" sort="Monchi, Oury" uniqKey="Monchi O" first="Oury" last="Monchi">Oury Monchi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16324129</idno>
<idno type="pmid">16324129</idno>
<idno type="doi">10.1111/j.1460-9568.2005.04476.x</idno>
<idno type="wicri:Area/PubMed/Corpus">001221</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001221</idno>
<idno type="wicri:Area/PubMed/Curation">001221</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001221</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001221</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001221</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Corticostriatal functional interactions in Parkinson's disease: a rTMS/[11C]raclopride PET study.</title>
<author>
<name sortKey="Strafella, Antonio P" sort="Strafella, Antonio P" uniqKey="Strafella A" first="Antonio P" last="Strafella">Antonio P. Strafella</name>
<affiliation wicri:level="4">
<nlm:affiliation>Montreal Neurological Institute, Neurology & Neurosurgery Department, McGill University, 3801 University St., Montréal, QC H3A 2B4, Canada. antonio@bic.mni.mcgill.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Montreal Neurological Institute, Neurology & Neurosurgery Department, McGill University, 3801 University St., Montréal, QC H3A 2B4</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ko, Ji Hyun" sort="Ko, Ji Hyun" uniqKey="Ko J" first="Ji Hyun" last="Ko">Ji Hyun Ko</name>
</author>
<author>
<name sortKey="Grant, Joshua" sort="Grant, Joshua" uniqKey="Grant J" first="Joshua" last="Grant">Joshua Grant</name>
</author>
<author>
<name sortKey="Fraraccio, Maria" sort="Fraraccio, Maria" uniqKey="Fraraccio M" first="Maria" last="Fraraccio">Maria Fraraccio</name>
</author>
<author>
<name sortKey="Monchi, Oury" sort="Monchi, Oury" uniqKey="Monchi O" first="Oury" last="Monchi">Oury Monchi</name>
</author>
</analytic>
<series>
<title level="j">The European journal of neuroscience</title>
<idno type="ISSN">0953-816X</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Aged</term>
<term>Autonomic Nervous System (physiology)</term>
<term>Cerebral Cortex (diagnostic imaging)</term>
<term>Cerebral Cortex (metabolism)</term>
<term>Dopamine (metabolism)</term>
<term>Dopamine Antagonists</term>
<term>Female</term>
<term>Functional Laterality (physiology)</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Magnetic Resonance Imaging</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Neostriatum (diagnostic imaging)</term>
<term>Neostriatum (metabolism)</term>
<term>Parkinson Disease (diagnostic imaging)</term>
<term>Parkinson Disease (metabolism)</term>
<term>Positron-Emission Tomography</term>
<term>Putamen (diagnostic imaging)</term>
<term>Putamen (metabolism)</term>
<term>Raclopride</term>
<term>Transcranial Magnetic Stimulation</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Dopamine</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic imaging" xml:lang="en">
<term>Cerebral Cortex</term>
<term>Neostriatum</term>
<term>Parkinson Disease</term>
<term>Putamen</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cerebral Cortex</term>
<term>Neostriatum</term>
<term>Parkinson Disease</term>
<term>Putamen</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Autonomic Nervous System</term>
<term>Functional Laterality</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Aged</term>
<term>Dopamine Antagonists</term>
<term>Female</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Magnetic Resonance Imaging</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Positron-Emission Tomography</term>
<term>Raclopride</term>
<term>Transcranial Magnetic Stimulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Several animal studies have shown that striatal dopamine can be released under direct control of glutamatergic corticostriatal efferents. In Parkinson's disease (PD), abnormalities in corticostriatal interactions are believed to play an important role in the pathophysiology of the disease. Previously, we have reported that, in healthy subjects, repetitive transcranial magnetic stimulation (rTMS) of motor cortex (MC) induces focal dopamine release in the ipsilateral putamen. In the present study, using [11C]raclopride PET, we sought to investigate early PD patients with evidence of unilateral motor symptoms. We measured in the putamen changes in extracellular dopamine concentration following rTMS (intensity, 90% of the resting motor threshold; frequency, 10 Hz) of the left and right MC. The main objective was to identify potential differences in corticostriatal dopamine release between the hemisphere associated with clear contralateral motor symptoms (symptomatic hemisphere) and the presymptomatic stage of the other hemisphere (asymptomatic hemisphere). Repetitive TMS of MC caused a binding reduction in the ipsilateral putamen of both hemispheres. In the symptomatic hemisphere, while the amount of TMS-induced dopamine release was, as expected, smaller, the size of the significant cluster of change in [11C]raclopride binding was, instead, 61.4% greater than in the asymptomatic hemisphere. This finding of a spatially enlarged area of dopamine release, following cortical stimulation, may represent a possible in vivo expression of a loss of functional segregation of cortical information to the striatum and an indirect evidence of abnormal corticostriatal transmission in early PD. This has potential implications for models of basal ganglia function in PD.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16324129</PMID>
<DateCreated>
<Year>2005</Year>
<Month>12</Month>
<Day>05</Day>
</DateCreated>
<DateCompleted>
<Year>2006</Year>
<Month>02</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0953-816X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>22</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2005</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>The European journal of neuroscience</Title>
<ISOAbbreviation>Eur. J. Neurosci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Corticostriatal functional interactions in Parkinson's disease: a rTMS/[11C]raclopride PET study.</ArticleTitle>
<Pagination>
<MedlinePgn>2946-52</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Several animal studies have shown that striatal dopamine can be released under direct control of glutamatergic corticostriatal efferents. In Parkinson's disease (PD), abnormalities in corticostriatal interactions are believed to play an important role in the pathophysiology of the disease. Previously, we have reported that, in healthy subjects, repetitive transcranial magnetic stimulation (rTMS) of motor cortex (MC) induces focal dopamine release in the ipsilateral putamen. In the present study, using [11C]raclopride PET, we sought to investigate early PD patients with evidence of unilateral motor symptoms. We measured in the putamen changes in extracellular dopamine concentration following rTMS (intensity, 90% of the resting motor threshold; frequency, 10 Hz) of the left and right MC. The main objective was to identify potential differences in corticostriatal dopamine release between the hemisphere associated with clear contralateral motor symptoms (symptomatic hemisphere) and the presymptomatic stage of the other hemisphere (asymptomatic hemisphere). Repetitive TMS of MC caused a binding reduction in the ipsilateral putamen of both hemispheres. In the symptomatic hemisphere, while the amount of TMS-induced dopamine release was, as expected, smaller, the size of the significant cluster of change in [11C]raclopride binding was, instead, 61.4% greater than in the asymptomatic hemisphere. This finding of a spatially enlarged area of dopamine release, following cortical stimulation, may represent a possible in vivo expression of a loss of functional segregation of cortical information to the striatum and an indirect evidence of abnormal corticostriatal transmission in early PD. This has potential implications for models of basal ganglia function in PD.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Strafella</LastName>
<ForeName>Antonio P</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Montreal Neurological Institute, Neurology & Neurosurgery Department, McGill University, 3801 University St., Montréal, QC H3A 2B4, Canada. antonio@bic.mni.mcgill.ca</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ko</LastName>
<ForeName>Ji Hyun</ForeName>
<Initials>JH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grant</LastName>
<ForeName>Joshua</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fraraccio</LastName>
<ForeName>Maria</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Monchi</LastName>
<ForeName>Oury</ForeName>
<Initials>O</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>69128</GrantID>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>France</Country>
<MedlineTA>Eur J Neurosci</MedlineTA>
<NlmUniqueID>8918110</NlmUniqueID>
<ISSNLinking>0953-816X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018492">Dopamine Antagonists</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>430K3SOZ7G</RegistryNumber>
<NameOfSubstance UI="D020891">Raclopride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>VTD58H1Z2X</RegistryNumber>
<NameOfSubstance UI="D004298">Dopamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2001 Mar;49(3):298-303</RefSource>
<PMID Version="1">11261503</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 1996;4(1):58-73</RefSource>
<PMID Version="1">20408186</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2003 Dec;126(Pt 12):2609-15</RefSource>
<PMID Version="1">12937078</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1984 Jun 8;302(2):267-75</RefSource>
<PMID Version="1">6145508</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 1997 Aug 18;8(12):2787-91</RefSource>
<PMID Version="1">9295118</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1985 Jul 29;339(2):245-55</RefSource>
<PMID Version="1">4027623</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2004 Oct;20(8):2245-9</RefSource>
<PMID Version="1">15450105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 1994 Aug 1;6(8):1371-83</RefSource>
<PMID Version="1">7981878</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1975 May 2;88(2):195-209</RefSource>
<PMID Version="1">50112</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 1999 Jul 2;269(1):33-6</RefSource>
<PMID Version="1">10821638</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Synapse. 1999 Jul;33(1):1-15</RefSource>
<PMID Version="1">10380846</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1977 May 1;173(1):53-80</RefSource>
<PMID Version="1">403206</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2569-74</RefSource>
<PMID Version="1">9122236</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2003 Feb;126(Pt 2):312-25</RefSource>
<PMID Version="1">12538400</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2000 Oct;23(10 Suppl):S57-63</RefSource>
<PMID Version="1">11052221</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1970;93(3):525-46</RefSource>
<PMID Version="1">4990231</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1993 Apr;116 ( Pt 2):433-52</RefSource>
<PMID Version="1">8096420</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1991 May 8;307(2):177-88</RefSource>
<PMID Version="1">1713229</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Synapse. 1993 Apr;13(4):350-6</RefSource>
<PMID Version="1">8480281</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropharmacology. 2002 Jul;43(1):101-9</RefSource>
<PMID Version="1">12213264</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Sci. 2004 Jan 15;217(1):73-81</RefSource>
<PMID Version="1">14675613</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Suppl Clin Neurophysiol. 2003;56:63-72</RefSource>
<PMID Version="1">14677383</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1998 May;120(1):114-28</RefSource>
<PMID Version="1">9628410</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1998 May 21;393(6682):266-8</RefSource>
<PMID Version="1">9607763</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 1990;39(2):305-12</RefSource>
<PMID Version="1">1982344</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1998 Feb;79(2):1102-7</RefSource>
<PMID Version="1">9463466</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205</RefSource>
<PMID Version="1">8126267</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 1993 Jul 9;157(1):53-6</RefSource>
<PMID Version="1">7901810</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1993 Mar;16(3):111-6</RefSource>
<PMID Version="1">7681234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 1990 Jul 31;115(2-3):248-52</RefSource>
<PMID Version="1">1978265</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 2002 Jun;22(6):746-52</RefSource>
<PMID Version="1">12045673</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2001 Jun;85(6):2624-9</RefSource>
<PMID Version="1">11387406</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2000 Sep;12(3):245-56</RefSource>
<PMID Version="1">10944407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2003 May;53(5):647-53</RefSource>
<PMID Version="1">12730999</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1990 Jul;13(7):272-6</RefSource>
<PMID Version="1">1695402</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Neurol. 2003 Oct;60(10):1365-8</RefSource>
<PMID Version="1">14568805</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurol. 2004 Aug;17(4):459-66</RefSource>
<PMID Version="1">15247543</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1996 Dec;4(3 Pt 1):153-8</RefSource>
<PMID Version="1">9345505</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2004 Apr;19(7):1950-62</RefSource>
<PMID Version="1">15078569</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Neurol. 2003;91:65-71</RefSource>
<PMID Version="1">12442664</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1996 Sep 16;373(2):283-96</RefSource>
<PMID Version="1">8889928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2001 Aug 1;21(15):RC157</RefSource>
<PMID Version="1">11459878</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1993 Mar;13(3):1120-37</RefSource>
<PMID Version="1">7680067</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 1996 Nov;50(4):381-425</RefSource>
<PMID Version="1">9004351</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 2000 Mar;20(3):423-51</RefSource>
<PMID Version="1">10724107</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Brain Res Rev. 1995 Jan;20(1):91-127</RefSource>
<PMID Version="1">7711769</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2004 Dec;127(Pt 12):2747-54</RefSource>
<PMID Version="1">15329355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1997 Nov;6(4):279-87</RefSource>
<PMID Version="1">9417971</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 1996 Feb;66(2):589-98</RefSource>
<PMID Version="1">8592128</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2000 Oct;23(10 Suppl):S48-56</RefSource>
<PMID Version="1">11052220</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1990 Jul;13(7):290-6</RefSource>
<PMID Version="1">1695406</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 1998 Mar 30;9(5):943-8</RefSource>
<PMID Version="1">9579695</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2000 Apr;47(4):493-503</RefSource>
<PMID Version="1">10762161</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 1986;9:357-81</RefSource>
<PMID Version="1">3085570</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Psychiatry. 2004 Jun 15;55(12):1188-94</RefSource>
<PMID Version="1">15184038</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2001 Oct;86(4):1983-90</RefSource>
<PMID Version="1">11600655</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1993 Aug 13;619(1-2):180-8</RefSource>
<PMID Version="1">8374776</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 1997 Sep;17(9):932-42</RefSource>
<PMID Version="1">9307606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 1986 Dec;19(4):1081-90</RefSource>
<PMID Version="1">2881227</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Assist Tomogr. 1993 Jul-Aug;17(4):536-46</RefSource>
<PMID Version="1">8331222</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1994 Feb 21;637(1-2):317-22</RefSource>
<PMID Version="1">7514084</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1992 Jun 8;320(2):145-60</RefSource>
<PMID Version="1">1377716</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001341" MajorTopicYN="N">Autonomic Nervous System</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002540" MajorTopicYN="N">Cerebral Cortex</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004298" MajorTopicYN="N">Dopamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018492" MajorTopicYN="Y">Dopamine Antagonists</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007839" MajorTopicYN="N">Functional Laterality</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007091" MajorTopicYN="N">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008279" MajorTopicYN="N">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017072" MajorTopicYN="N">Neostriatum</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010300" MajorTopicYN="N">Parkinson Disease</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049268" MajorTopicYN="N">Positron-Emission Tomography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011699" MajorTopicYN="N">Putamen</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020891" MajorTopicYN="Y">Raclopride</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050781" MajorTopicYN="Y">Transcranial Magnetic Stimulation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">CAMS1536</OtherID>
<OtherID Source="NLM">PMC2967526</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16324129</ArticleId>
<ArticleId IdType="pii">EJN4476</ArticleId>
<ArticleId IdType="doi">10.1111/j.1460-9568.2005.04476.x</ArticleId>
<ArticleId IdType="pmc">PMC2967526</ArticleId>
<ArticleId IdType="mid">CAMS1536</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Québec</li>
</region>
<settlement>
<li>Montréal</li>
</settlement>
<orgName>
<li>Université McGill</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Fraraccio, Maria" sort="Fraraccio, Maria" uniqKey="Fraraccio M" first="Maria" last="Fraraccio">Maria Fraraccio</name>
<name sortKey="Grant, Joshua" sort="Grant, Joshua" uniqKey="Grant J" first="Joshua" last="Grant">Joshua Grant</name>
<name sortKey="Ko, Ji Hyun" sort="Ko, Ji Hyun" uniqKey="Ko J" first="Ji Hyun" last="Ko">Ji Hyun Ko</name>
<name sortKey="Monchi, Oury" sort="Monchi, Oury" uniqKey="Monchi O" first="Oury" last="Monchi">Oury Monchi</name>
</noCountry>
<country name="Canada">
<region name="Québec">
<name sortKey="Strafella, Antonio P" sort="Strafella, Antonio P" uniqKey="Strafella A" first="Antonio P" last="Strafella">Antonio P. Strafella</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001236 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001236 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:16324129
   |texte=   Corticostriatal functional interactions in Parkinson's disease: a rTMS/[11C]raclopride PET study.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:16324129" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022