La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of bilateral changes in TID1 expression in the 6-OHDA rat model of Parkinson's disease.

Identifieur interne : 000B93 ( PubMed/Checkpoint ); précédent : 000B92; suivant : 000B94

Identification of bilateral changes in TID1 expression in the 6-OHDA rat model of Parkinson's disease.

Auteurs : Juliane Proft [Canada] ; Jamshid Faraji ; Jerrah C. Robbins ; Fabiola C R. Zucchi ; Xiaoxi Zhao ; Gerlinde A. Metz ; Janice E A. Braun

Source :

RBID : pubmed:22016808

English descriptors

Abstract

Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra and the aggregation of α-synuclein into Lewy bodies. Existing therapies address motor dysfunction but do not halt progression of the disease. A still unresolved question is the biochemical pathway that modulates the outcome of protein misfolding and aggregation processes in PD. The molecular chaperone network plays an important defensive role against cellular protein misfolding and has been identified as protective in experimental models of protein misfolding diseases like PD. Molecular mechanisms underlying chaperone-neuroprotection are actively under investigation. Current evidence implicates a number of molecular chaperones in PD including Hsp25, Hsp70 and Hsp90, however their precise involvement in the neurodegenerative cascade is unresolved. The J protein family (DnaJ or Hsp40 protein family) has long been known to be important in protein conformational processes.We assessed sensory and motor function of control and PD rats and then evaluated the brain region-specific expression levels of select J proteins by Western analysis. Surprisingly, we observed a widespread 26 kDa breakdown product of the J protein, TID1, (tumorous imaginal discs, mtHsp40 or DnaJ3) in a 6-hydroxydopamine (6-OHDA) rat model of PD in which food handling, gait symmetry and sensory performance were impaired. Greater behavioral deficits were associated with lower TID1 expression. Furthermore, direct application of either 6-OHDA or MPP+ (1-methyl-4-phenylpyridinum) to CAD (CNS-derived catecholinaminergic neuronal cell line) cell cultures, reduced TID1 expression levels.Our results suggest that changes in cellular TID1 are a factor in the pathogenesis of PD by impeding functional and structural compensation and exaggerating neurodegenerative processes. In contrast, no changes were observed in CSPα, Hsp40, Hsp70, Hsc70 and PrP(C) levels and no activation of caspase3 was observed. This study links TID1 to PD and provides a new target for therapeutics that halts the PD progression.

DOI: 10.1371/journal.pone.0026045
PubMed: 22016808


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22016808

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of bilateral changes in TID1 expression in the 6-OHDA rat model of Parkinson's disease.</title>
<author>
<name sortKey="Proft, Juliane" sort="Proft, Juliane" uniqKey="Proft J" first="Juliane" last="Proft">Juliane Proft</name>
<affiliation wicri:level="4">
<nlm:affiliation>Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Faraji, Jamshid" sort="Faraji, Jamshid" uniqKey="Faraji J" first="Jamshid" last="Faraji">Jamshid Faraji</name>
</author>
<author>
<name sortKey="Robbins, Jerrah C" sort="Robbins, Jerrah C" uniqKey="Robbins J" first="Jerrah C" last="Robbins">Jerrah C. Robbins</name>
</author>
<author>
<name sortKey="Zucchi, Fabiola C R" sort="Zucchi, Fabiola C R" uniqKey="Zucchi F" first="Fabiola C R" last="Zucchi">Fabiola C R. Zucchi</name>
</author>
<author>
<name sortKey="Zhao, Xiaoxi" sort="Zhao, Xiaoxi" uniqKey="Zhao X" first="Xiaoxi" last="Zhao">Xiaoxi Zhao</name>
</author>
<author>
<name sortKey="Metz, Gerlinde A" sort="Metz, Gerlinde A" uniqKey="Metz G" first="Gerlinde A" last="Metz">Gerlinde A. Metz</name>
</author>
<author>
<name sortKey="Braun, Janice E A" sort="Braun, Janice E A" uniqKey="Braun J" first="Janice E A" last="Braun">Janice E A. Braun</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22016808</idno>
<idno type="pmid">22016808</idno>
<idno type="doi">10.1371/journal.pone.0026045</idno>
<idno type="wicri:Area/PubMed/Corpus">000C78</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C78</idno>
<idno type="wicri:Area/PubMed/Curation">000C78</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000C78</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000C78</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000C78</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of bilateral changes in TID1 expression in the 6-OHDA rat model of Parkinson's disease.</title>
<author>
<name sortKey="Proft, Juliane" sort="Proft, Juliane" uniqKey="Proft J" first="Juliane" last="Proft">Juliane Proft</name>
<affiliation wicri:level="4">
<nlm:affiliation>Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Faraji, Jamshid" sort="Faraji, Jamshid" uniqKey="Faraji J" first="Jamshid" last="Faraji">Jamshid Faraji</name>
</author>
<author>
<name sortKey="Robbins, Jerrah C" sort="Robbins, Jerrah C" uniqKey="Robbins J" first="Jerrah C" last="Robbins">Jerrah C. Robbins</name>
</author>
<author>
<name sortKey="Zucchi, Fabiola C R" sort="Zucchi, Fabiola C R" uniqKey="Zucchi F" first="Fabiola C R" last="Zucchi">Fabiola C R. Zucchi</name>
</author>
<author>
<name sortKey="Zhao, Xiaoxi" sort="Zhao, Xiaoxi" uniqKey="Zhao X" first="Xiaoxi" last="Zhao">Xiaoxi Zhao</name>
</author>
<author>
<name sortKey="Metz, Gerlinde A" sort="Metz, Gerlinde A" uniqKey="Metz G" first="Gerlinde A" last="Metz">Gerlinde A. Metz</name>
</author>
<author>
<name sortKey="Braun, Janice E A" sort="Braun, Janice E A" uniqKey="Braun J" first="Janice E A" last="Braun">Janice E A. Braun</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>1-Methyl-4-phenylpyridinium (pharmacology)</term>
<term>Animals</term>
<term>Cell Line, Tumor</term>
<term>Disease Models, Animal</term>
<term>Female</term>
<term>Gene Expression Regulation (drug effects)</term>
<term>HSP40 Heat-Shock Proteins (chemistry)</term>
<term>HSP40 Heat-Shock Proteins (metabolism)</term>
<term>Homeostasis (drug effects)</term>
<term>Mice</term>
<term>Mitochondria (drug effects)</term>
<term>Mitochondria (metabolism)</term>
<term>Molecular Weight</term>
<term>Oxidopamine (pharmacology)</term>
<term>Parkinson Disease (etiology)</term>
<term>Parkinson Disease (metabolism)</term>
<term>Parkinson Disease (pathology)</term>
<term>Parkinson Disease (physiopathology)</term>
<term>Psychomotor Performance (drug effects)</term>
<term>Rats</term>
<term>Rats, Long-Evans</term>
<term>Signal Transduction (drug effects)</term>
<term>alpha-Synuclein (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>HSP40 Heat-Shock Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>HSP40 Heat-Shock Proteins</term>
<term>alpha-Synuclein</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>1-Methyl-4-phenylpyridinium</term>
<term>Oxidopamine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation</term>
<term>Homeostasis</term>
<term>Mitochondria</term>
<term>Psychomotor Performance</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line, Tumor</term>
<term>Disease Models, Animal</term>
<term>Female</term>
<term>Mice</term>
<term>Molecular Weight</term>
<term>Rats</term>
<term>Rats, Long-Evans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra and the aggregation of α-synuclein into Lewy bodies. Existing therapies address motor dysfunction but do not halt progression of the disease. A still unresolved question is the biochemical pathway that modulates the outcome of protein misfolding and aggregation processes in PD. The molecular chaperone network plays an important defensive role against cellular protein misfolding and has been identified as protective in experimental models of protein misfolding diseases like PD. Molecular mechanisms underlying chaperone-neuroprotection are actively under investigation. Current evidence implicates a number of molecular chaperones in PD including Hsp25, Hsp70 and Hsp90, however their precise involvement in the neurodegenerative cascade is unresolved. The J protein family (DnaJ or Hsp40 protein family) has long been known to be important in protein conformational processes.We assessed sensory and motor function of control and PD rats and then evaluated the brain region-specific expression levels of select J proteins by Western analysis. Surprisingly, we observed a widespread 26 kDa breakdown product of the J protein, TID1, (tumorous imaginal discs, mtHsp40 or DnaJ3) in a 6-hydroxydopamine (6-OHDA) rat model of PD in which food handling, gait symmetry and sensory performance were impaired. Greater behavioral deficits were associated with lower TID1 expression. Furthermore, direct application of either 6-OHDA or MPP+ (1-methyl-4-phenylpyridinum) to CAD (CNS-derived catecholinaminergic neuronal cell line) cell cultures, reduced TID1 expression levels.Our results suggest that changes in cellular TID1 are a factor in the pathogenesis of PD by impeding functional and structural compensation and exaggerating neurodegenerative processes. In contrast, no changes were observed in CSPα, Hsp40, Hsp70, Hsc70 and PrP(C) levels and no activation of caspase3 was observed. This study links TID1 to PD and provides a new target for therapeutics that halts the PD progression.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22016808</PMID>
<DateCreated>
<Year>2011</Year>
<Month>10</Month>
<Day>21</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of bilateral changes in TID1 expression in the 6-OHDA rat model of Parkinson's disease.</ArticleTitle>
<Pagination>
<MedlinePgn>e26045</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0026045</ELocationID>
<Abstract>
<AbstractText>Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra and the aggregation of α-synuclein into Lewy bodies. Existing therapies address motor dysfunction but do not halt progression of the disease. A still unresolved question is the biochemical pathway that modulates the outcome of protein misfolding and aggregation processes in PD. The molecular chaperone network plays an important defensive role against cellular protein misfolding and has been identified as protective in experimental models of protein misfolding diseases like PD. Molecular mechanisms underlying chaperone-neuroprotection are actively under investigation. Current evidence implicates a number of molecular chaperones in PD including Hsp25, Hsp70 and Hsp90, however their precise involvement in the neurodegenerative cascade is unresolved. The J protein family (DnaJ or Hsp40 protein family) has long been known to be important in protein conformational processes.We assessed sensory and motor function of control and PD rats and then evaluated the brain region-specific expression levels of select J proteins by Western analysis. Surprisingly, we observed a widespread 26 kDa breakdown product of the J protein, TID1, (tumorous imaginal discs, mtHsp40 or DnaJ3) in a 6-hydroxydopamine (6-OHDA) rat model of PD in which food handling, gait symmetry and sensory performance were impaired. Greater behavioral deficits were associated with lower TID1 expression. Furthermore, direct application of either 6-OHDA or MPP+ (1-methyl-4-phenylpyridinum) to CAD (CNS-derived catecholinaminergic neuronal cell line) cell cultures, reduced TID1 expression levels.Our results suggest that changes in cellular TID1 are a factor in the pathogenesis of PD by impeding functional and structural compensation and exaggerating neurodegenerative processes. In contrast, no changes were observed in CSPα, Hsp40, Hsp70, Hsc70 and PrP(C) levels and no activation of caspase3 was observed. This study links TID1 to PD and provides a new target for therapeutics that halts the PD progression.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Proft</LastName>
<ForeName>Juliane</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Faraji</LastName>
<ForeName>Jamshid</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Robbins</LastName>
<ForeName>Jerrah C</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zucchi</LastName>
<ForeName>Fabiola C R</ForeName>
<Initials>FC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Xiaoxi</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Metz</LastName>
<ForeName>Gerlinde A</ForeName>
<Initials>GA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Braun</LastName>
<ForeName>Janice E A</ForeName>
<Initials>JE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 NS043588</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>MOP74713</GrantID>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
<Grant>
<GrantID>NS043588</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>10</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050956">HSP40 Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051844">alpha-Synuclein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8HW4YBZ748</RegistryNumber>
<NameOfSubstance UI="D016627">Oxidopamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>R865A5OY8J</RegistryNumber>
<NameOfSubstance UI="D015655">1-Methyl-4-phenylpyridinium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Apr 20;276(16):13087-95</RefSource>
<PMID Version="1">11116152</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(4):e10014</RefSource>
<PMID Version="1">20368804</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1999 Jul 15;400(6741):225-6</RefSource>
<PMID Version="1">10421360</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2011 Jan;13(1):30-9</RefSource>
<PMID Version="1">21151134</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2008 Apr;27(8):2133-46</RefSource>
<PMID Version="1">18412632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Jul 21;475(7356):324-32</RefSource>
<PMID Version="1">21776078</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 May 12;281(19):13150-8</RefSource>
<PMID Version="1">16531398</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2004 Nov 30;372(1-2):146-50</RefSource>
<PMID Version="1">15531106</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 1999 Oct 15;92(1-2):25-9</RefSource>
<PMID Version="1">10595700</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2004 Mar;24(6):2226-36</RefSource>
<PMID Version="1">14993262</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 2008 May 30;170(2):229-44</RefSource>
<PMID Version="1">18325597</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1988 Aug;8(8):2804-15</RefSource>
<PMID Version="1">3411354</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2005 Nov 4;123(3):383-96</RefSource>
<PMID Version="1">16269331</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Oct 19;276(42):39145-9</RefSource>
<PMID Version="1">11522774</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2007 May;101(3):619-31</RefSource>
<PMID Version="1">17254022</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Restor Neurol Neurosci. 2008;26(1):57-64</RefSource>
<PMID Version="1">18431006</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Epilepsia. 1999 Dec;40(12):1679-82</RefSource>
<PMID Version="1">10612329</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2002 Feb 1;295(5556):865-8</RefSource>
<PMID Version="1">11823645</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Mol Med. 2010 Jan;16(1):27-36</RefSource>
<PMID Version="1">20036196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2008 Jul;106(2):529-40</RefSource>
<PMID Version="1">18410502</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(6):e11045</RefSource>
<PMID Version="1">20548785</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Cell Biol. 2010 Apr;88(2):291-300</RefSource>
<PMID Version="1">20453930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 2001 Oct 31;278(1-2):201-10</RefSource>
<PMID Version="1">11707338</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lab Invest. 1999 Jun;79(6):689-97</RefSource>
<PMID Version="1">10378511</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Dec 28;276(52):49034-42</RefSource>
<PMID Version="1">11679576</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Virology. 1998 Jul 20;247(1):74-85</RefSource>
<PMID Version="1">9683573</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2008 Mar;104(6):1599-612</RefSource>
<PMID Version="1">17996028</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oncogene. 2010 Feb 25;29(8):1155-66</RefSource>
<PMID Version="1">19935715</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2002 Nov;83(4):846-54</RefSource>
<PMID Version="1">12421356</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1998 Apr 17;93(2):203-14</RefSource>
<PMID Version="1">9568713</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8499-504</RefSource>
<PMID Version="1">10411904</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 2011 May 15;198(1):16-22</RefSource>
<PMID Version="1">21420432</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Expert Rev Neurother. 2011 Jul;11(7):917-9</RefSource>
<PMID Version="1">21721907</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2008 Nov 26;60(4):625-41</RefSource>
<PMID Version="1">19038220</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13626-31</RefSource>
<PMID Version="1">18757733</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2002;111(2):325-36</RefSource>
<PMID Version="1">11983318</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neuropsychopharmacol Biol Psychiatry. 1999 Nov;23(8):1353-68</RefSource>
<PMID Version="1">10631763</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2009;4(2):e4595</RefSource>
<PMID Version="1">19242542</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2004 Mar;88(6):1439-48</RefSource>
<PMID Version="1">15009645</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1996 Oct 18;271(42):25989-93</RefSource>
<PMID Version="1">8824236</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 1988 Sep 1;30(1):15-24</RefSource>
<PMID Version="1">3139011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2009 Dec 2;28(23):3758-70</RefSource>
<PMID Version="1">19875982</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Pathol. 2004 Jul;165(1):227-35</RefSource>
<PMID Version="1">15215178</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 2008 Aug;65(15):2385-96</RefSource>
<PMID Version="1">18438606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Res. 2010 Mar;88(4):866-76</RefSource>
<PMID Version="1">19830841</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2005 Nov;20(2):442-9</RefSource>
<PMID Version="1">15893468</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 1997 Mar;84(1-2):167-77</RefSource>
<PMID Version="1">9079783</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Cell Physiol. 2008 Jun;294(6):C1531-41</RefSource>
<PMID Version="1">18367584</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Cell Dev Biol. 2010;26:211-33</RefSource>
<PMID Version="1">20500090</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2008 May 5;181(3):551-65</RefSource>
<PMID Version="1">18443219</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 May 20;280(20):19461-71</RefSource>
<PMID Version="1">15753086</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2011 Sep 12;222(1):33-42</RefSource>
<PMID Version="1">21419806</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2005 Aug;22(3):735-44</RefSource>
<PMID Version="1">16101755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Transl Stroke Med. 2010 Sep 22;2(1):18</RefSource>
<PMID Version="1">20858282</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Jul 6;31(27):10076-87</RefSource>
<PMID Version="1">21734300</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Pathol. 2007 Apr;17(2):174-83</RefSource>
<PMID Version="1">17388948</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Lipid Res. 2010 Oct;49(4):420-8</RefSource>
<PMID Version="1">20580911</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2010;184:17-33</RefSource>
<PMID Version="1">20887868</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Jun 11;279(24):25497-502</RefSource>
<PMID Version="1">15044495</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2007 Aug 1;120(Pt 15):2663-71</RefSource>
<PMID Version="1">17635996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropharmacology. 1995 Nov;34(11):1361-9</RefSource>
<PMID Version="1">8606785</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2005 Feb;18(1):54-74</RefSource>
<PMID Version="1">15649696</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuropathol Exp Neurol. 1996 Mar;55(3):259-72</RefSource>
<PMID Version="1">8786384</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2004 Dec 16;44(6):931-45</RefSource>
<PMID Version="1">15603737</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2005 Sep 28;25(39):8967-77</RefSource>
<PMID Version="1">16192387</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2008 Nov 25;47(47):12614-25</RefSource>
<PMID Version="1">18975920</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2004 Dec 17;578(3):323-30</RefSource>
<PMID Version="1">15589840</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015655" MajorTopicYN="N">1-Methyl-4-phenylpyridinium</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050956" MajorTopicYN="N">HSP40 Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016627" MajorTopicYN="N">Oxidopamine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010300" MajorTopicYN="N">Parkinson Disease</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="Y">etiology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011597" MajorTopicYN="N">Psychomotor Performance</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020318" MajorTopicYN="N">Rats, Long-Evans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051844" MajorTopicYN="N">alpha-Synuclein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3189242</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22016808</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0026045</ArticleId>
<ArticleId IdType="pii">PONE-D-11-13403</ArticleId>
<ArticleId IdType="pmc">PMC3189242</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Alberta</li>
</region>
<settlement>
<li>Calgary</li>
</settlement>
<orgName>
<li>Université de Calgary</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Braun, Janice E A" sort="Braun, Janice E A" uniqKey="Braun J" first="Janice E A" last="Braun">Janice E A. Braun</name>
<name sortKey="Faraji, Jamshid" sort="Faraji, Jamshid" uniqKey="Faraji J" first="Jamshid" last="Faraji">Jamshid Faraji</name>
<name sortKey="Metz, Gerlinde A" sort="Metz, Gerlinde A" uniqKey="Metz G" first="Gerlinde A" last="Metz">Gerlinde A. Metz</name>
<name sortKey="Robbins, Jerrah C" sort="Robbins, Jerrah C" uniqKey="Robbins J" first="Jerrah C" last="Robbins">Jerrah C. Robbins</name>
<name sortKey="Zhao, Xiaoxi" sort="Zhao, Xiaoxi" uniqKey="Zhao X" first="Xiaoxi" last="Zhao">Xiaoxi Zhao</name>
<name sortKey="Zucchi, Fabiola C R" sort="Zucchi, Fabiola C R" uniqKey="Zucchi F" first="Fabiola C R" last="Zucchi">Fabiola C R. Zucchi</name>
</noCountry>
<country name="Canada">
<region name="Alberta">
<name sortKey="Proft, Juliane" sort="Proft, Juliane" uniqKey="Proft J" first="Juliane" last="Proft">Juliane Proft</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000B93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:22016808
   |texte=   Identification of bilateral changes in TID1 expression in the 6-OHDA rat model of Parkinson's disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:22016808" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022