La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Generation and analysis of a mouse intestinal metatranscriptome through Illumina based RNA-sequencing.

Identifieur interne : 000A70 ( PubMed/Checkpoint ); précédent : 000A69; suivant : 000A71

Generation and analysis of a mouse intestinal metatranscriptome through Illumina based RNA-sequencing.

Auteurs : Xuejian Xiong [Canada] ; Daniel N. Frank ; Charles E. Robertson ; Stacy S. Hung ; Janet Markle ; Angelo J. Canty ; Kathy D. Mccoy ; Andrew J. Macpherson ; Philippe Poussier ; Jayne S. Danska ; John Parkinson

Source :

RBID : pubmed:22558305

English descriptors

Abstract

With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics.

DOI: 10.1371/journal.pone.0036009
PubMed: 22558305


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22558305

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Generation and analysis of a mouse intestinal metatranscriptome through Illumina based RNA-sequencing.</title>
<author>
<name sortKey="Xiong, Xuejian" sort="Xiong, Xuejian" uniqKey="Xiong X" first="Xuejian" last="Xiong">Xuejian Xiong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto</wicri:regionArea>
<wicri:noRegion>Toronto</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Frank, Daniel N" sort="Frank, Daniel N" uniqKey="Frank D" first="Daniel N" last="Frank">Daniel N. Frank</name>
</author>
<author>
<name sortKey="Robertson, Charles E" sort="Robertson, Charles E" uniqKey="Robertson C" first="Charles E" last="Robertson">Charles E. Robertson</name>
</author>
<author>
<name sortKey="Hung, Stacy S" sort="Hung, Stacy S" uniqKey="Hung S" first="Stacy S" last="Hung">Stacy S. Hung</name>
</author>
<author>
<name sortKey="Markle, Janet" sort="Markle, Janet" uniqKey="Markle J" first="Janet" last="Markle">Janet Markle</name>
</author>
<author>
<name sortKey="Canty, Angelo J" sort="Canty, Angelo J" uniqKey="Canty A" first="Angelo J" last="Canty">Angelo J. Canty</name>
</author>
<author>
<name sortKey="Mccoy, Kathy D" sort="Mccoy, Kathy D" uniqKey="Mccoy K" first="Kathy D" last="Mccoy">Kathy D. Mccoy</name>
</author>
<author>
<name sortKey="Macpherson, Andrew J" sort="Macpherson, Andrew J" uniqKey="Macpherson A" first="Andrew J" last="Macpherson">Andrew J. Macpherson</name>
</author>
<author>
<name sortKey="Poussier, Philippe" sort="Poussier, Philippe" uniqKey="Poussier P" first="Philippe" last="Poussier">Philippe Poussier</name>
</author>
<author>
<name sortKey="Danska, Jayne S" sort="Danska, Jayne S" uniqKey="Danska J" first="Jayne S" last="Danska">Jayne S. Danska</name>
</author>
<author>
<name sortKey="Parkinson, John" sort="Parkinson, John" uniqKey="Parkinson J" first="John" last="Parkinson">John Parkinson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22558305</idno>
<idno type="pmid">22558305</idno>
<idno type="doi">10.1371/journal.pone.0036009</idno>
<idno type="wicri:Area/PubMed/Corpus">000B44</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B44</idno>
<idno type="wicri:Area/PubMed/Curation">000B44</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000B44</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000B44</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000B44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Generation and analysis of a mouse intestinal metatranscriptome through Illumina based RNA-sequencing.</title>
<author>
<name sortKey="Xiong, Xuejian" sort="Xiong, Xuejian" uniqKey="Xiong X" first="Xuejian" last="Xiong">Xuejian Xiong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto</wicri:regionArea>
<wicri:noRegion>Toronto</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Frank, Daniel N" sort="Frank, Daniel N" uniqKey="Frank D" first="Daniel N" last="Frank">Daniel N. Frank</name>
</author>
<author>
<name sortKey="Robertson, Charles E" sort="Robertson, Charles E" uniqKey="Robertson C" first="Charles E" last="Robertson">Charles E. Robertson</name>
</author>
<author>
<name sortKey="Hung, Stacy S" sort="Hung, Stacy S" uniqKey="Hung S" first="Stacy S" last="Hung">Stacy S. Hung</name>
</author>
<author>
<name sortKey="Markle, Janet" sort="Markle, Janet" uniqKey="Markle J" first="Janet" last="Markle">Janet Markle</name>
</author>
<author>
<name sortKey="Canty, Angelo J" sort="Canty, Angelo J" uniqKey="Canty A" first="Angelo J" last="Canty">Angelo J. Canty</name>
</author>
<author>
<name sortKey="Mccoy, Kathy D" sort="Mccoy, Kathy D" uniqKey="Mccoy K" first="Kathy D" last="Mccoy">Kathy D. Mccoy</name>
</author>
<author>
<name sortKey="Macpherson, Andrew J" sort="Macpherson, Andrew J" uniqKey="Macpherson A" first="Andrew J" last="Macpherson">Andrew J. Macpherson</name>
</author>
<author>
<name sortKey="Poussier, Philippe" sort="Poussier, Philippe" uniqKey="Poussier P" first="Philippe" last="Poussier">Philippe Poussier</name>
</author>
<author>
<name sortKey="Danska, Jayne S" sort="Danska, Jayne S" uniqKey="Danska J" first="Jayne S" last="Danska">Jayne S. Danska</name>
</author>
<author>
<name sortKey="Parkinson, John" sort="Parkinson, John" uniqKey="Parkinson J" first="John" last="Parkinson">John Parkinson</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Databases, Genetic</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (metabolism)</term>
<term>Escherichia coli Proteins (metabolism)</term>
<term>Gene Regulatory Networks (genetics)</term>
<term>Genes, Bacterial (genetics)</term>
<term>Intestines (metabolism)</term>
<term>Metagenomics (methods)</term>
<term>Mice</term>
<term>Mice, Inbred NOD</term>
<term>Molecular Sequence Annotation</term>
<term>Multigene Family</term>
<term>Peptides (metabolism)</term>
<term>Phylogeny</term>
<term>Protein Interaction Maps</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>RNA, Ribosomal (genetics)</term>
<term>Ribosome Subunits, Small, Eukaryotic (genetics)</term>
<term>Sequence Analysis, RNA (methods)</term>
<term>Transcriptome (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
<term>RNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli Proteins</term>
<term>Peptides</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
<term>Gene Regulatory Networks</term>
<term>Genes, Bacterial</term>
<term>Ribosome Subunits, Small, Eukaryotic</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
<term>Intestines</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Metagenomics</term>
<term>Sequence Analysis, RNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Databases, Genetic</term>
<term>Mice</term>
<term>Mice, Inbred NOD</term>
<term>Molecular Sequence Annotation</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Protein Interaction Maps</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22558305</PMID>
<DateCreated>
<Year>2012</Year>
<Month>05</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>09</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Generation and analysis of a mouse intestinal metatranscriptome through Illumina based RNA-sequencing.</ArticleTitle>
<Pagination>
<MedlinePgn>e36009</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0036009</ELocationID>
<Abstract>
<AbstractText>With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xiong</LastName>
<ForeName>Xuejian</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frank</LastName>
<ForeName>Daniel N</ForeName>
<Initials>DN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Robertson</LastName>
<ForeName>Charles E</ForeName>
<Initials>CE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hung</LastName>
<ForeName>Stacy S</ForeName>
<Initials>SS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Markle</LastName>
<ForeName>Janet</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Canty</LastName>
<ForeName>Angelo J</ForeName>
<Initials>AJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McCoy</LastName>
<ForeName>Kathy D</ForeName>
<Initials>KD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Macpherson</LastName>
<ForeName>Andrew J</ForeName>
<Initials>AJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Poussier</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Danska</LastName>
<ForeName>Jayne S</ForeName>
<Initials>JS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Parkinson</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 HG005964</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CTP-82940</GrantID>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
<Grant>
<GrantID>R21HG005964</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>04</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012335">RNA, Ribosomal</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>ISME J. 2011 Mar;5(3):461-72</RefSource>
<PMID Version="1">20844569</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2000 Jan 1;28(1):45-8</RefSource>
<PMID Version="1">10592178</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1997 Oct 24;278(5338):631-7</RefSource>
<PMID Version="1">9381173</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2001 Dec 14;314(5):1041-52</RefSource>
<PMID Version="1">11743721</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Biotechnol. 2003 Jun;14(3):303-10</RefSource>
<PMID Version="1">12849784</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bacteriol. 2003 Oct;185(20):6220-3</RefSource>
<PMID Version="1">14526037</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2003 Sep 11;4:41</RefSource>
<PMID Version="1">12969510</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 1999 Aug;65(8):3287-92</RefSource>
<PMID Version="1">10427008</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2005 Feb 3;433(7025):531-7</RefSource>
<PMID Version="1">15690043</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2005 Apr;22(4):803-6</RefSource>
<PMID Version="1">15616139</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Syst Evol Microbiol. 2005 May;55(Pt 3):1199-204</RefSource>
<PMID Version="1">15879255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13950-5</RefSource>
<PMID Version="1">16172379</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Genet Dev. 2005 Dec;15(6):589-94</RefSource>
<PMID Version="1">16185861</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7</RefSource>
<PMID Version="1">16381885</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2006 Jun 2;312(5778):1355-9</RefSource>
<PMID Version="1">16741115</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2006;34(13):3687-97</RefSource>
<PMID Version="1">16893953</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2007 Jan;35(Database issue):D358-62</RefSource>
<PMID Version="1">17098935</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2007 Apr;17(4):527-35</RefSource>
<PMID Version="1">17339371</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Semin Immunol. 2007 Apr;19(2):59-69</RefSource>
<PMID Version="1">17118672</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2007 Mar;5(3):e16</RefSource>
<PMID Version="1">17355171</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</RefSource>
<PMID Version="1">17586664</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13780-5</RefSource>
<PMID Version="1">17699621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Gastroenterol. 2008 Jan;24(1):4-10</RefSource>
<PMID Version="1">18043225</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ISME J. 2007 Sep;1(5):403-18</RefSource>
<PMID Version="1">18043660</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2007;35(21):7188-96</RefSource>
<PMID Version="1">17947321</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2007;8(7):R130</RefSource>
<PMID Version="1">17615063</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2007;8(11):R238</RefSource>
<PMID Version="1">17996061</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Biochem Sci. 2008 Mar;33(3):101-3</RefSource>
<PMID Version="1">18276143</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3805-10</RefSource>
<PMID Version="1">18316740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2008 May;18(5):821-9</RefSource>
<PMID Version="1">18349386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Host Microbe. 2008 Jun 12;3(6):417-27</RefSource>
<PMID Version="1">18541218</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2011;12 Suppl 1:S21</RefSource>
<PMID Version="1">21342551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2011 Sep;21(9):1552-60</RefSource>
<PMID Version="1">21690186</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2011 Oct 6;118(14):e101-11</RefSource>
<PMID Version="1">21596849</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2011;12(3):R26</RefSource>
<PMID Version="1">21426537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Microbiol. 2012 Jan;14(1):23-40</RefSource>
<PMID Version="1">21210935</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):E317-25</RefSource>
<PMID Version="1">22308424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(2):e31828</RefSource>
<PMID Version="1">22384082</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Microbiol. 2012 May;14(5):1308-24</RefSource>
<PMID Version="1">22364353</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</RefSource>
<PMID Version="1">9254694</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2000 Jan 1;28(1):33-6</RefSource>
<PMID Version="1">10592175</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2008 Jul;5(7):621-8</RefSource>
<PMID Version="1">18516045</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2008;3(8):e3042</RefSource>
<PMID Version="1">18725995</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2008;9:386</RefSource>
<PMID Version="1">18803844</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Syst Appl Microbiol. 2008 Sep;31(4):241-50</RefSource>
<PMID Version="1">18692976</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Nov 6;456(7218):53-9</RefSource>
<PMID Version="1">18987734</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis Exp. 2009;(24). pii: 1086. doi: 10.3791/1086</RefSource>
<PMID Version="1">19229184</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Food Microbiol. 2009 Mar 31;130(2):140-6</RefSource>
<PMID Version="1">19215993</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2009 Apr 28;7(4):e96</RefSource>
<PMID Version="1">19402753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2009 May 14;459(7244):266-9</RefSource>
<PMID Version="1">19444216</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Natl Cancer Inst. 2009 May 20;101(10):736-50</RefSource>
<PMID Version="1">19436038</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2009 Jul 15;25(14):1754-60</RefSource>
<PMID Version="1">19451168</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2009;10(6):R63</RefSource>
<PMID Version="1">19523219</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol Methods. 2009 Sep 30;349(1-2):56-60</RefSource>
<PMID Version="1">19660464</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2009 Oct;5(10):e1000523</RefSource>
<PMID Version="1">19798435</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2010 Jan;38(Database issue):D331-5</RefSource>
<PMID Version="1">19920128</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 Mar 4;464(7285):59-65</RefSource>
<PMID Version="1">20203603</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7503-8</RefSource>
<PMID Version="1">20363958</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2010 Jul 15;26(14):1690-8</RefSource>
<PMID Version="1">20513663</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2010 Aug;76(16):5533-40</RefSource>
<PMID Version="1">20562280</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(8):e12459</RefSource>
<PMID Version="1">20805981</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(11):e15545</RefSource>
<PMID Version="1">21124740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2010 Dec;42(12):1043-7</RefSource>
<PMID Version="1">21102464</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ISME J. 2011 Jan;5(1):82-91</RefSource>
<PMID Version="1">20613793</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2011 Jan;77(2):618-26</RefSource>
<PMID Version="1">21097589</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005798" MajorTopicYN="N">Genes, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007422" MajorTopicYN="N">Intestines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056186" MajorTopicYN="N">Metagenomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016688" MajorTopicYN="N">Mice, Inbred NOD</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060066" MajorTopicYN="N">Protein Interaction Maps</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012335" MajorTopicYN="N">RNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054682" MajorTopicYN="N">Ribosome Subunits, Small, Eukaryotic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017423" MajorTopicYN="N">Sequence Analysis, RNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3338770</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>12</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>03</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22558305</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0036009</ArticleId>
<ArticleId IdType="pii">PONE-D-12-00232</ArticleId>
<ArticleId IdType="pmc">PMC3338770</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Canty, Angelo J" sort="Canty, Angelo J" uniqKey="Canty A" first="Angelo J" last="Canty">Angelo J. Canty</name>
<name sortKey="Danska, Jayne S" sort="Danska, Jayne S" uniqKey="Danska J" first="Jayne S" last="Danska">Jayne S. Danska</name>
<name sortKey="Frank, Daniel N" sort="Frank, Daniel N" uniqKey="Frank D" first="Daniel N" last="Frank">Daniel N. Frank</name>
<name sortKey="Hung, Stacy S" sort="Hung, Stacy S" uniqKey="Hung S" first="Stacy S" last="Hung">Stacy S. Hung</name>
<name sortKey="Macpherson, Andrew J" sort="Macpherson, Andrew J" uniqKey="Macpherson A" first="Andrew J" last="Macpherson">Andrew J. Macpherson</name>
<name sortKey="Markle, Janet" sort="Markle, Janet" uniqKey="Markle J" first="Janet" last="Markle">Janet Markle</name>
<name sortKey="Mccoy, Kathy D" sort="Mccoy, Kathy D" uniqKey="Mccoy K" first="Kathy D" last="Mccoy">Kathy D. Mccoy</name>
<name sortKey="Parkinson, John" sort="Parkinson, John" uniqKey="Parkinson J" first="John" last="Parkinson">John Parkinson</name>
<name sortKey="Poussier, Philippe" sort="Poussier, Philippe" uniqKey="Poussier P" first="Philippe" last="Poussier">Philippe Poussier</name>
<name sortKey="Robertson, Charles E" sort="Robertson, Charles E" uniqKey="Robertson C" first="Charles E" last="Robertson">Charles E. Robertson</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Xiong, Xuejian" sort="Xiong, Xuejian" uniqKey="Xiong X" first="Xuejian" last="Xiong">Xuejian Xiong</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000A70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:22558305
   |texte=   Generation and analysis of a mouse intestinal metatranscriptome through Illumina based RNA-sequencing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:22558305" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022