La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcript expression levels of full-length alpha-synuclein and its three alternatively spliced variants in Parkinson's disease brain regions and in a transgenic mouse model of alpha-synuclein overexpression.

Identifieur interne : 000976 ( PubMed/Checkpoint ); précédent : 000975; suivant : 000977

Transcript expression levels of full-length alpha-synuclein and its three alternatively spliced variants in Parkinson's disease brain regions and in a transgenic mouse model of alpha-synuclein overexpression.

Auteurs : Jesse R. Mclean [États-Unis] ; Penelope J. Hallett ; Oliver Cooper ; Michael Stanley ; Ole Isacson

Source :

RBID : pubmed:22155155

English descriptors

Abstract

Alternative splicing is a complex post-transcriptional process that can be regulated by cis-acting elements located within genomic non-coding regions. Recent studies have identified that polymorphic variations in non-coding regions of the α-synuclein gene (SNCA) locus are associated with an increased risk for developing Parkinson's disease (PD). The underlying mechanism(s) for this susceptibility may involve changes in α-synuclein mRNA expression and alternative splicing. As a first step towards understanding the biology of α-synuclein splice variants in PD, we characterized the levels of the full-length SNCA-140 mRNA transcript and SNCA-126, -112, and -98 alternatively spliced variants in different neuronal regions from PD patients or transgenic mice overexpressing human α-synuclein (ASO). In human post-mortem tissue, α-synuclein spliced transcripts were expressed in a region-specific manner in the cortex, substantia nigra, and cerebellum. We observed increased nigral SNCA-140 and SNCA-126 transcript levels in PD patients when compared to neurologically unaffected cases. Human α-synuclein splicing changes were also found to occur in a region-specific manner in ASO mice. Here, SNCA-126, -112, and -98 transcript levels did not increase proportionally with SNCA-140 levels, or parallel the region-specific mouse transcript ratios seen in wild-type (WT) littermates. While most transcripts were elevated in ASO mice when compared to WT mice, the most prominent increase was found in the ventral midbrain of 15-month-old ASO mice. These results demonstrate region-specific human α-synuclein transcript level abnormalities in PD patients and in a transgenic mouse model of α-synucleinopathy. This study is relevant to understanding the normal, adaptive, or pathological role(s) of α-synuclein splice variants.

DOI: 10.1016/j.mcn.2011.11.006
PubMed: 22155155


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22155155

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcript expression levels of full-length alpha-synuclein and its three alternatively spliced variants in Parkinson's disease brain regions and in a transgenic mouse model of alpha-synuclein overexpression.</title>
<author>
<name sortKey="Mclean, Jesse R" sort="Mclean, Jesse R" uniqKey="Mclean J" first="Jesse R" last="Mclean">Jesse R. Mclean</name>
<affiliation wicri:level="4">
<nlm:affiliation>Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Harvard University, MRC130, Belmont, MA 02478, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Harvard University, MRC130, Belmont, MA 02478</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hallett, Penelope J" sort="Hallett, Penelope J" uniqKey="Hallett P" first="Penelope J" last="Hallett">Penelope J. Hallett</name>
</author>
<author>
<name sortKey="Cooper, Oliver" sort="Cooper, Oliver" uniqKey="Cooper O" first="Oliver" last="Cooper">Oliver Cooper</name>
</author>
<author>
<name sortKey="Stanley, Michael" sort="Stanley, Michael" uniqKey="Stanley M" first="Michael" last="Stanley">Michael Stanley</name>
</author>
<author>
<name sortKey="Isacson, Ole" sort="Isacson, Ole" uniqKey="Isacson O" first="Ole" last="Isacson">Ole Isacson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22155155</idno>
<idno type="pmid">22155155</idno>
<idno type="doi">10.1016/j.mcn.2011.11.006</idno>
<idno type="wicri:Area/PubMed/Corpus">000B07</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B07</idno>
<idno type="wicri:Area/PubMed/Curation">000B07</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000B07</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000B07</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000B07</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcript expression levels of full-length alpha-synuclein and its three alternatively spliced variants in Parkinson's disease brain regions and in a transgenic mouse model of alpha-synuclein overexpression.</title>
<author>
<name sortKey="Mclean, Jesse R" sort="Mclean, Jesse R" uniqKey="Mclean J" first="Jesse R" last="Mclean">Jesse R. Mclean</name>
<affiliation wicri:level="4">
<nlm:affiliation>Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Harvard University, MRC130, Belmont, MA 02478, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Harvard University, MRC130, Belmont, MA 02478</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hallett, Penelope J" sort="Hallett, Penelope J" uniqKey="Hallett P" first="Penelope J" last="Hallett">Penelope J. Hallett</name>
</author>
<author>
<name sortKey="Cooper, Oliver" sort="Cooper, Oliver" uniqKey="Cooper O" first="Oliver" last="Cooper">Oliver Cooper</name>
</author>
<author>
<name sortKey="Stanley, Michael" sort="Stanley, Michael" uniqKey="Stanley M" first="Michael" last="Stanley">Michael Stanley</name>
</author>
<author>
<name sortKey="Isacson, Ole" sort="Isacson, Ole" uniqKey="Isacson O" first="Ole" last="Isacson">Ole Isacson</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular neurosciences</title>
<idno type="eISSN">1095-9327</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alternative Splicing (genetics)</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cerebellum (metabolism)</term>
<term>Disease Models, Animal</term>
<term>Gene Expression</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Transgenic</term>
<term>Molecular Sequence Data</term>
<term>Neurons (metabolism)</term>
<term>Parkinson Disease (genetics)</term>
<term>Substantia Nigra (metabolism)</term>
<term>alpha-Synuclein (genetics)</term>
<term>alpha-Synuclein (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>alpha-Synuclein</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Alternative Splicing</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cerebellum</term>
<term>Neurons</term>
<term>Substantia Nigra</term>
<term>alpha-Synuclein</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Disease Models, Animal</term>
<term>Gene Expression</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Transgenic</term>
<term>Molecular Sequence Data</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Alternative splicing is a complex post-transcriptional process that can be regulated by cis-acting elements located within genomic non-coding regions. Recent studies have identified that polymorphic variations in non-coding regions of the α-synuclein gene (SNCA) locus are associated with an increased risk for developing Parkinson's disease (PD). The underlying mechanism(s) for this susceptibility may involve changes in α-synuclein mRNA expression and alternative splicing. As a first step towards understanding the biology of α-synuclein splice variants in PD, we characterized the levels of the full-length SNCA-140 mRNA transcript and SNCA-126, -112, and -98 alternatively spliced variants in different neuronal regions from PD patients or transgenic mice overexpressing human α-synuclein (ASO). In human post-mortem tissue, α-synuclein spliced transcripts were expressed in a region-specific manner in the cortex, substantia nigra, and cerebellum. We observed increased nigral SNCA-140 and SNCA-126 transcript levels in PD patients when compared to neurologically unaffected cases. Human α-synuclein splicing changes were also found to occur in a region-specific manner in ASO mice. Here, SNCA-126, -112, and -98 transcript levels did not increase proportionally with SNCA-140 levels, or parallel the region-specific mouse transcript ratios seen in wild-type (WT) littermates. While most transcripts were elevated in ASO mice when compared to WT mice, the most prominent increase was found in the ventral midbrain of 15-month-old ASO mice. These results demonstrate region-specific human α-synuclein transcript level abnormalities in PD patients and in a transgenic mouse model of α-synucleinopathy. This study is relevant to understanding the normal, adaptive, or pathological role(s) of α-synuclein splice variants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22155155</PMID>
<DateCreated>
<Year>2012</Year>
<Month>02</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>06</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-9327</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>49</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular neurosciences</Title>
<ISOAbbreviation>Mol. Cell. Neurosci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcript expression levels of full-length alpha-synuclein and its three alternatively spliced variants in Parkinson's disease brain regions and in a transgenic mouse model of alpha-synuclein overexpression.</ArticleTitle>
<Pagination>
<MedlinePgn>230-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.mcn.2011.11.006</ELocationID>
<Abstract>
<AbstractText>Alternative splicing is a complex post-transcriptional process that can be regulated by cis-acting elements located within genomic non-coding regions. Recent studies have identified that polymorphic variations in non-coding regions of the α-synuclein gene (SNCA) locus are associated with an increased risk for developing Parkinson's disease (PD). The underlying mechanism(s) for this susceptibility may involve changes in α-synuclein mRNA expression and alternative splicing. As a first step towards understanding the biology of α-synuclein splice variants in PD, we characterized the levels of the full-length SNCA-140 mRNA transcript and SNCA-126, -112, and -98 alternatively spliced variants in different neuronal regions from PD patients or transgenic mice overexpressing human α-synuclein (ASO). In human post-mortem tissue, α-synuclein spliced transcripts were expressed in a region-specific manner in the cortex, substantia nigra, and cerebellum. We observed increased nigral SNCA-140 and SNCA-126 transcript levels in PD patients when compared to neurologically unaffected cases. Human α-synuclein splicing changes were also found to occur in a region-specific manner in ASO mice. Here, SNCA-126, -112, and -98 transcript levels did not increase proportionally with SNCA-140 levels, or parallel the region-specific mouse transcript ratios seen in wild-type (WT) littermates. While most transcripts were elevated in ASO mice when compared to WT mice, the most prominent increase was found in the ventral midbrain of 15-month-old ASO mice. These results demonstrate region-specific human α-synuclein transcript level abnormalities in PD patients and in a transgenic mouse model of α-synucleinopathy. This study is relevant to understanding the normal, adaptive, or pathological role(s) of α-synuclein splice variants.</AbstractText>
<CopyrightInformation>Copyright © 2011 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>McLean</LastName>
<ForeName>Jesse R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Harvard University, MRC130, Belmont, MA 02478, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hallett</LastName>
<ForeName>Penelope J</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cooper</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stanley</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Isacson</LastName>
<ForeName>Ole</ForeName>
<Initials>O</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R24 MH068855-10</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50 NS39793</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
<Grant>
<GrantID>P50 NS039793</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50 NS039793-10</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R24 MH068855</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>12</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Neurosci</MedlineTA>
<NlmUniqueID>9100095</NlmUniqueID>
<ISSNLinking>1044-7431</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C497604">SNCA protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051844">alpha-Synuclein</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2006 Aug 21;17(12):1327-30</RefSource>
<PMID Version="1">16951579</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neuropathol. 2006 Sep;112(3):237-51</RefSource>
<PMID Version="1">16845533</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2007 Jan;25(1):134-49</RefSource>
<PMID Version="1">17055279</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Res. 2007 May 15;85(7):1538-46</RefSource>
<PMID Version="1">17387688</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Synapse. 2007 Dec;61(12):991-1001</RefSource>
<PMID Version="1">17879265</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Biosci. 2008;13:867-78</RefSource>
<PMID Version="1">17981595</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurogenetics. 2008 Feb;9(1):15-23</RefSource>
<PMID Version="1">17955272</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2007;13 Suppl 3:S309-15</RefSource>
<PMID Version="1">18267256</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2008 Apr;36(7):e38</RefSource>
<PMID Version="1">18332041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>RNA. 2008 May;14(5):802-13</RefSource>
<PMID Version="1">18369186</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2008 May;22(5):1327-34</RefSource>
<PMID Version="1">18162487</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurogenetics. 2008 Jul;9(3):163-72</RefSource>
<PMID Version="1">18335262</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2008 Sep;36(15):4823-32</RefSource>
<PMID Version="1">18653532</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2008 Oct;107(2):303-16</RefSource>
<PMID Version="1">18691382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Neurol. 2009 Jan;66(1):32-8</RefSource>
<PMID Version="1">19139297</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2009 Feb;23(2):329-40</RefSource>
<PMID Version="1">18948383</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2009 Jul;1792(7):597-603</RefSource>
<PMID Version="1">19063963</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2009 Sep 1;18(17):3274-85</RefSource>
<PMID Version="1">19498036</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Protein Pept Sci. 2009 Oct;10(5):476-82</RefSource>
<PMID Version="1">19538156</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2009 Dec;220(2):359-65</RefSource>
<PMID Version="1">19800328</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2009 Dec;41(12):1308-12</RefSource>
<PMID Version="1">19915575</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2009 Dec;41(12):1303-7</RefSource>
<PMID Version="1">19915576</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2010 Feb;221(2):267-74</RefSource>
<PMID Version="1">19944097</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Free Radic Biol Med. 2010 Feb 1;48(3):377-83</RefSource>
<PMID Version="1">19857570</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2010 Apr;133(Pt 4):957-72</RefSource>
<PMID Version="1">20150322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2010 May;11(5):345-55</RefSource>
<PMID Version="1">20376054</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 May 6;465(7294):53-9</RefSource>
<PMID Version="1">20445623</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mutat. 2010 Jul;31(7):763-80</RefSource>
<PMID Version="1">20506312</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2010;183:115-45</RefSource>
<PMID Version="1">20696318</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurotoxicology. 2010 Sep;31(5):598-602</RefSource>
<PMID Version="1">20430055</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Cell Dev Biol. 2010;26:211-33</RefSource>
<PMID Version="1">20500090</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2010 Sep 24;329(5999):1663-7</RefSource>
<PMID Version="1">20798282</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurogenetics. 2011 Feb;12(1):59-64</RefSource>
<PMID Version="1">21046180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2000;920:16-27</RefSource>
<PMID Version="1">11193145</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2001 Dec 15;10(26):3101-9</RefSource>
<PMID Version="1">11751692</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2002 May 3;323(3):219-23</RefSource>
<PMID Version="1">11959424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Res. 2002 Jun 1;68(5):568-78</RefSource>
<PMID Version="1">12111846</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomol Struct Dyn. 2003 Oct;21(2):211-34</RefSource>
<PMID Version="1">12956606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2004 Apr;186(2):158-72</RefSource>
<PMID Version="1">15026254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2004 Nov;17(2):123-30</RefSource>
<PMID Version="1">15474350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1988 Aug;8(8):2804-15</RefSource>
<PMID Version="1">3411354</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11282-6</RefSource>
<PMID Version="1">8248242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 1994 Dec 15;205(2):1366-72</RefSource>
<PMID Version="1">7802671</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 1995 Feb;14(2):467-75</RefSource>
<PMID Version="1">7857654</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genomics. 1995 Mar 20;26(2):254-7</RefSource>
<PMID Version="1">7601450</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1998 Apr 17;273(16):9443-9</RefSource>
<PMID Version="1">9545270</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1999 May;14(3):417-22</RefSource>
<PMID Version="1">10348463</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 1999;91(2):651-9</RefSource>
<PMID Version="1">10366022</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2004 Nov 1;64(21):7647-54</RefSource>
<PMID Version="1">15520162</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol Pharmacol. 2005 Mar;56(1):29-37</RefSource>
<PMID Version="1">15795473</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Genet. 2005 Oct;42(10):737-48</RefSource>
<PMID Version="1">16199547</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2006 Oct;21(10):1703-8</RefSource>
<PMID Version="1">16795004</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017398" MajorTopicYN="N">Alternative Splicing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002531" MajorTopicYN="N">Cerebellum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008822" MajorTopicYN="N">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009474" MajorTopicYN="N">Neurons</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010300" MajorTopicYN="N">Parkinson Disease</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013378" MajorTopicYN="N">Substantia Nigra</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051844" MajorTopicYN="N">alpha-Synuclein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS343015</OtherID>
<OtherID Source="NLM">PMC3340908</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>10</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>11</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22155155</ArticleId>
<ArticleId IdType="pii">S1044-7431(11)00262-4</ArticleId>
<ArticleId IdType="doi">10.1016/j.mcn.2011.11.006</ArticleId>
<ArticleId IdType="pmc">PMC3340908</ArticleId>
<ArticleId IdType="mid">NIHMS343015</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Cambridge (Massachusetts)</li>
</settlement>
<orgName>
<li>Université Harvard</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Cooper, Oliver" sort="Cooper, Oliver" uniqKey="Cooper O" first="Oliver" last="Cooper">Oliver Cooper</name>
<name sortKey="Hallett, Penelope J" sort="Hallett, Penelope J" uniqKey="Hallett P" first="Penelope J" last="Hallett">Penelope J. Hallett</name>
<name sortKey="Isacson, Ole" sort="Isacson, Ole" uniqKey="Isacson O" first="Ole" last="Isacson">Ole Isacson</name>
<name sortKey="Stanley, Michael" sort="Stanley, Michael" uniqKey="Stanley M" first="Michael" last="Stanley">Michael Stanley</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Mclean, Jesse R" sort="Mclean, Jesse R" uniqKey="Mclean J" first="Jesse R" last="Mclean">Jesse R. Mclean</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000976 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000976 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:22155155
   |texte=   Transcript expression levels of full-length alpha-synuclein and its three alternatively spliced variants in Parkinson's disease brain regions and in a transgenic mouse model of alpha-synuclein overexpression.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:22155155" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022