La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Function of basal ganglia in bridging cognitive and motor modules to perform an action.

Identifieur interne : 000739 ( PubMed/Checkpoint ); précédent : 000738; suivant : 000740

Function of basal ganglia in bridging cognitive and motor modules to perform an action.

Auteurs : Atsuko Nagano-Saito [Canada] ; Kristina Martinu [Canada] ; Oury Monchi [Canada]

Source :

RBID : pubmed:25071432

Abstract

The basal ganglia (BG) are thought to be involved in the integration of multiple sources of information, and their dysfunction can lead to disorders such as Parkinson's disease (PD). PD patients show motor and cognitive dysfunction with specific impairments in the internal generation of motor actions and executive deficits, respectively. The role of the BG, then, would be to integrate information from several sources in order to make a decision on a resulting action adequate for the required task. Reanalyzing the data set from our previous study (Martinu et al., 2012), we investigated this hypothesis by applying a graph theory method to a series of fMRI data during the performance of self-initiated (SI) finger movement tasks obtained in healthy volunteers (HV) and early stage PD patients. Dorsally, connectivity strength between the medial prefrontal areas (mPFC) and cortical regions including the primary motor area (M1), the extrastriate visual cortex, and the associative cortex, was reduced in the PD patients. The connectivity strengths were positively correlated to activity in the striatum in both groups. Ventrally, all connectivity between the striatum, the thalamus, and the extrastriate visual cortex decreased in strength in the PD, as did the connectivity between the striatum and the ventrolateral PFC (VLPFC). Individual response time (RT) was negatively correlated to connectivity strength between the dorsolateral PFC (DLPFC) and the striatum and positively correlated to connectivity between the VLPFC and the striatum in the HV. These results indicate that the BG, with the mPFC and thalamus, are involved in integrating multiple sources of information from areas such as DLPFC, and VLPFC, connecting to M1, thereby determining a network that leads to the adequate decision and performance of the resulting action.

DOI: 10.3389/fnins.2014.00187
PubMed: 25071432


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25071432

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Function of basal ganglia in bridging cognitive and motor modules to perform an action.</title>
<author>
<name sortKey="Nagano Saito, Atsuko" sort="Nagano Saito, Atsuko" uniqKey="Nagano Saito A" first="Atsuko" last="Nagano-Saito">Atsuko Nagano-Saito</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada ; Department of Radiology, Université de Montréal Montréal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada ; Department of Radiology, Université de Montréal Montréal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Martinu, Kristina" sort="Martinu, Kristina" uniqKey="Martinu K" first="Kristina" last="Martinu">Kristina Martinu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Monchi, Oury" sort="Monchi, Oury" uniqKey="Monchi O" first="Oury" last="Monchi">Oury Monchi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada ; Department of Radiology, Université de Montréal Montréal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada ; Department of Radiology, Université de Montréal Montréal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25071432</idno>
<idno type="pmid">25071432</idno>
<idno type="doi">10.3389/fnins.2014.00187</idno>
<idno type="wicri:Area/PubMed/Corpus">000718</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000718</idno>
<idno type="wicri:Area/PubMed/Curation">000718</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000718</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000718</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000718</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Function of basal ganglia in bridging cognitive and motor modules to perform an action.</title>
<author>
<name sortKey="Nagano Saito, Atsuko" sort="Nagano Saito, Atsuko" uniqKey="Nagano Saito A" first="Atsuko" last="Nagano-Saito">Atsuko Nagano-Saito</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada ; Department of Radiology, Université de Montréal Montréal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada ; Department of Radiology, Université de Montréal Montréal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Martinu, Kristina" sort="Martinu, Kristina" uniqKey="Martinu K" first="Kristina" last="Martinu">Kristina Martinu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Monchi, Oury" sort="Monchi, Oury" uniqKey="Monchi O" first="Oury" last="Monchi">Oury Monchi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada ; Department of Radiology, Université de Montréal Montréal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada ; Department of Radiology, Université de Montréal Montréal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in neuroscience</title>
<idno type="ISSN">1662-4548</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The basal ganglia (BG) are thought to be involved in the integration of multiple sources of information, and their dysfunction can lead to disorders such as Parkinson's disease (PD). PD patients show motor and cognitive dysfunction with specific impairments in the internal generation of motor actions and executive deficits, respectively. The role of the BG, then, would be to integrate information from several sources in order to make a decision on a resulting action adequate for the required task. Reanalyzing the data set from our previous study (Martinu et al., 2012), we investigated this hypothesis by applying a graph theory method to a series of fMRI data during the performance of self-initiated (SI) finger movement tasks obtained in healthy volunteers (HV) and early stage PD patients. Dorsally, connectivity strength between the medial prefrontal areas (mPFC) and cortical regions including the primary motor area (M1), the extrastriate visual cortex, and the associative cortex, was reduced in the PD patients. The connectivity strengths were positively correlated to activity in the striatum in both groups. Ventrally, all connectivity between the striatum, the thalamus, and the extrastriate visual cortex decreased in strength in the PD, as did the connectivity between the striatum and the ventrolateral PFC (VLPFC). Individual response time (RT) was negatively correlated to connectivity strength between the dorsolateral PFC (DLPFC) and the striatum and positively correlated to connectivity between the VLPFC and the striatum in the HV. These results indicate that the BG, with the mPFC and thalamus, are involved in integrating multiple sources of information from areas such as DLPFC, and VLPFC, connecting to M1, thereby determining a network that leads to the adequate decision and performance of the resulting action.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25071432</PMID>
<DateCreated>
<Year>2014</Year>
<Month>07</Month>
<Day>29</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>07</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1662-4548</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in neuroscience</Title>
<ISOAbbreviation>Front Neurosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Function of basal ganglia in bridging cognitive and motor modules to perform an action.</ArticleTitle>
<Pagination>
<MedlinePgn>187</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fnins.2014.00187</ELocationID>
<Abstract>
<AbstractText>The basal ganglia (BG) are thought to be involved in the integration of multiple sources of information, and their dysfunction can lead to disorders such as Parkinson's disease (PD). PD patients show motor and cognitive dysfunction with specific impairments in the internal generation of motor actions and executive deficits, respectively. The role of the BG, then, would be to integrate information from several sources in order to make a decision on a resulting action adequate for the required task. Reanalyzing the data set from our previous study (Martinu et al., 2012), we investigated this hypothesis by applying a graph theory method to a series of fMRI data during the performance of self-initiated (SI) finger movement tasks obtained in healthy volunteers (HV) and early stage PD patients. Dorsally, connectivity strength between the medial prefrontal areas (mPFC) and cortical regions including the primary motor area (M1), the extrastriate visual cortex, and the associative cortex, was reduced in the PD patients. The connectivity strengths were positively correlated to activity in the striatum in both groups. Ventrally, all connectivity between the striatum, the thalamus, and the extrastriate visual cortex decreased in strength in the PD, as did the connectivity between the striatum and the ventrolateral PFC (VLPFC). Individual response time (RT) was negatively correlated to connectivity strength between the dorsolateral PFC (DLPFC) and the striatum and positively correlated to connectivity between the VLPFC and the striatum in the HV. These results indicate that the BG, with the mPFC and thalamus, are involved in integrating multiple sources of information from areas such as DLPFC, and VLPFC, connecting to M1, thereby determining a network that leads to the adequate decision and performance of the resulting action.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nagano-Saito</LastName>
<ForeName>Atsuko</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada ; Department of Radiology, Université de Montréal Montréal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martinu</LastName>
<ForeName>Kristina</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Monchi</LastName>
<ForeName>Oury</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada ; Department of Radiology, Université de Montréal Montréal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>07</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Neurosci</MedlineTA>
<NlmUniqueID>101478481</NlmUniqueID>
<ISSNLinking>1662-453X</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscientist. 2007 Jun;13(3):214-28</RefSource>
<PMID Version="1">17519365</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1967 May;17(5):427-42</RefSource>
<PMID Version="1">6067254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2009 Dec;19(6):621-8</RefSource>
<PMID Version="1">19896832</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropharmacology. 2014 Sep;84:90-100</RefSource>
<PMID Version="1">24412649</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2009 Dec;19(6):615-20</RefSource>
<PMID Version="1">19896833</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Jun 1;31(22):8259-70</RefSource>
<PMID Version="1">21632947</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1993 Dec;116 ( Pt 6):1575-87</RefSource>
<PMID Version="1">8293289</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11747-52</RefSource>
<PMID Version="1">19564605</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2004 Dec;14(12):1302-9</RefSource>
<PMID Version="1">15166103</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 1997 Jan;17(1):64-72</RefSource>
<PMID Version="1">8978388</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2007 Apr;17(2):228-33</RefSource>
<PMID Version="1">17350248</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2001 Oct 1;21(19):7733-41</RefSource>
<PMID Version="1">11567063</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Neuroanat. 2003 Dec;26(4):317-30</RefSource>
<PMID Version="1">14729134</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2014 Jan;35(1):223-31</RefSource>
<PMID Version="1">23932879</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1998 Jul;80(1):1-27</RefSource>
<PMID Version="1">9658025</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neural Comput. 2007 Feb;19(2):442-77</RefSource>
<PMID Version="1">17206871</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2012 Feb;35(4):572-83</RefSource>
<PMID Version="1">22304628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Mar 1;55(1):204-15</RefSource>
<PMID Version="1">21126588</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2013 Feb 14;494(7436):238-42</RefSource>
<PMID Version="1">23354054</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2000 Mar 20;84(12):2758-61</RefSource>
<PMID Version="1">11017318</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2004 Mar 12;1000(1-2):78-84</RefSource>
<PMID Version="1">15053955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1989 Oct;12(10):366-75</RefSource>
<PMID Version="1">2479133</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Apr 2;28(14):3697-706</RefSource>
<PMID Version="1">18385328</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Neuroinform. 2012 Apr 03;6:7</RefSource>
<PMID Version="1">22493575</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2007 Feb 1;34(3):1253-69</RefSource>
<PMID Version="1">17175179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2009 Mar;29(6):1277-86</RefSource>
<PMID Version="1">19302163</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Neurosurg Psychiatry. 1991 Jan;54(1):25-9</RefSource>
<PMID Version="1">2010755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 Jul 21;30(29):9910-8</RefSource>
<PMID Version="1">20660273</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2008 Nov;18(11):2553-9</RefSource>
<PMID Version="1">18296434</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 2010;33:269-98</RefSource>
<PMID Version="1">20345247</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Oct 3;27(40):10659-73</RefSource>
<PMID Version="1">17913900</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2002 Aug;16(4):1094-1102</RefSource>
<PMID Version="1">12202096</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2007 Jan 28;45(2):273-81</RefSource>
<PMID Version="1">16945394</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2011 Jul 15;499(1):47-51</RefSource>
<PMID Version="1">21624430</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Hum Neurosci. 2011 Feb 28;5:21</RefSource>
<PMID Version="1">21427777</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2011 Nov 17;72(4):665-78</RefSource>
<PMID Version="1">22099467</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2009 Mar;10(3):186-98</RefSource>
<PMID Version="1">19190637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscientist. 2006 Dec;12(6):512-23</RefSource>
<PMID Version="1">17079517</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Jan 4;26(1):63-72</RefSource>
<PMID Version="1">16399673</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2009 Aug 21;460(1):6-10</RefSource>
<PMID Version="1">19463891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2003 Dec;71(6):439-73</RefSource>
<PMID Version="1">15013228</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Jul 9;28(28):7143-52</RefSource>
<PMID Version="1">18614684</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2007 May 29;419(2):113-8</RefSource>
<PMID Version="1">17485168</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1995 Feb 13;352(3):436-57</RefSource>
<PMID Version="1">7706560</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>AJNR Am J Neuroradiol. 2011 Nov-Dec;32(10):1969-74</RefSource>
<PMID Version="1">21998100</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2008 Jul 1;6(7):e159</RefSource>
<PMID Version="1">18597554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2007 Oct;26(7):2005-24</RefSource>
<PMID Version="1">17892479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2007 Jan;130(Pt 1):233-44</RefSource>
<PMID Version="1">17121746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1992 Jun;42(6):1142-6</RefSource>
<PMID Version="1">1603339</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 2004 Apr;90(4):302-9</RefSource>
<PMID Version="1">15085349</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1998 Apr 27;791(1-2):335-40</RefSource>
<PMID Version="1">9593979</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurol. 2010 Aug;23(4):341-50</RefSource>
<PMID Version="1">20581686</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8</RefSource>
<PMID Version="1">15976020</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Brain Res Rev. 1995 Jan;20(1):91-127</RefSource>
<PMID Version="1">7711769</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013 Oct 28;8(10):e77336</RefSource>
<PMID Version="1">24204812</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2008 Mar;12(3):99-105</RefSource>
<PMID Version="1">18262825</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2005 Aug;28(8):401-7</RefSource>
<PMID Version="1">15982753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet. 2004 May 29;363(9423):1783-93</RefSource>
<PMID Version="1">15172778</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2001 Nov 5;87(19):198701</RefSource>
<PMID Version="1">11690461</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2013 Sep;78:426-38</RefSource>
<PMID Version="1">23624492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2000 Feb;10(2):127-41</RefSource>
<PMID Version="1">10667981</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 May 3;108(18):7641-6</RefSource>
<PMID Version="1">21502525</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Neurol. 2013 Jun 05;4:67</RefSource>
<PMID Version="1">23761780</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Biomed Imaging. 2008;2008:789539</RefSource>
<PMID Version="1">18274667</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Jul 16;23(15):6351-6</RefSource>
<PMID Version="1">12867520</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Jan 21;24(3):702-10</RefSource>
<PMID Version="1">14736856</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2013 Aug 29;500(7464):575-9</RefSource>
<PMID Version="1">23913271</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2007 Feb 2;3(2):e17</RefSource>
<PMID Version="1">17274684</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8</RefSource>
<PMID Version="1">12506194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 1986;9:357-81</RefSource>
<PMID Version="1">3085570</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8</RefSource>
<PMID Version="1">17576922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1998 Jun 4;393(6684):440-2</RefSource>
<PMID Version="1">9623998</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2002 Sep 15;22(18):8117-32</RefSource>
<PMID Version="1">12223566</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2001 Dec;11(6):663-72</RefSource>
<PMID Version="1">11741015</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Bull. 2010 Sep;136(5):849-74</RefSource>
<PMID Version="1">20804238</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 May 27;29(21):6926-31</RefSource>
<PMID Version="1">19474319</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2001 Jul 1;21(13):4801-8</RefSource>
<PMID Version="1">11425907</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2004 Sep;74(1):1-58</RefSource>
<PMID Version="1">15381316</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2013 Jun 19;33(25):10209-20</RefSource>
<PMID Version="1">23785137</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1995 Oct;34(4):537-41</RefSource>
<PMID Version="1">8524021</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4086202</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Parkinson's disease</Keyword>
<Keyword MajorTopicYN="N">basal ganglia</Keyword>
<Keyword MajorTopicYN="N">cross-network synchrony</Keyword>
<Keyword MajorTopicYN="N">dopamine</Keyword>
<Keyword MajorTopicYN="N">fMRI</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>04</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>06</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25071432</ArticleId>
<ArticleId IdType="doi">10.3389/fnins.2014.00187</ArticleId>
<ArticleId IdType="pmc">PMC4086202</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Nagano Saito, Atsuko" sort="Nagano Saito, Atsuko" uniqKey="Nagano Saito A" first="Atsuko" last="Nagano-Saito">Atsuko Nagano-Saito</name>
</noRegion>
<name sortKey="Martinu, Kristina" sort="Martinu, Kristina" uniqKey="Martinu K" first="Kristina" last="Martinu">Kristina Martinu</name>
<name sortKey="Monchi, Oury" sort="Monchi, Oury" uniqKey="Monchi O" first="Oury" last="Monchi">Oury Monchi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000739 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000739 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:25071432
   |texte=   Function of basal ganglia in bridging cognitive and motor modules to perform an action.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:25071432" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022