La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selective loss of bi-directional synaptic plasticity in the direct and indirect striatal output pathways accompanies generation of parkinsonism and l-DOPA induced dyskinesia in mouse models.

Identifieur interne : 000653 ( PubMed/Checkpoint ); précédent : 000652; suivant : 000654

Selective loss of bi-directional synaptic plasticity in the direct and indirect striatal output pathways accompanies generation of parkinsonism and l-DOPA induced dyskinesia in mouse models.

Auteurs : Sherri L. Thiele [Canada] ; Betty Chen [Canada] ; Charlotte Lo [Canada] ; Tracey S. Gertler [États-Unis] ; Ruth Warre [Canada] ; James D. Surmeier [États-Unis] ; Jonathan M. Brotchie [Canada] ; Joanne E. Nash [Canada]

Source :

RBID : pubmed:25171793

English descriptors

Abstract

Parkinsonian symptoms arise due to over-activity of the indirect striatal output pathway, and under-activity of the direct striatal output pathway. l-DOPA-induced dyskinesia (LID) is caused when the opposite circuitry problems are established, with the indirect pathway becoming underactive, and the direct pathway becoming over-active. Here, we define synaptic plasticity abnormalities in these pathways associated with parkinsonism, symptomatic benefits of l-DOPA, and LID. We applied spike-timing dependent plasticity protocols to cortico-striatal synapses in slices from 6-OHDA-lesioned mouse models of parkinsonism and LID, generated in BAC transgenic mice with eGFP targeting the direct or indirect output pathways, with and without l-DOPA present. In naïve mice, bidirectional synaptic plasticity, i.e. LTP and LTD, was induced, resulting in an EPSP amplitude change of approximately 50% in each direction in both striatal output pathways, as shown previously. In parkinsonism and dyskinesia, both pathways exhibited unidirectional plasticity, irrespective of stimulation paradigm. In parkinsonian animals, the indirect pathway only exhibited LTP (LTP protocol: 143.5±14.6%; LTD protocol 177.7±22.3% of baseline), whereas the direct pathway only showed LTD (LTP protocol: 74.3±4.0% and LTD protocol: 63.3±8.7%). A symptomatic dose of l-DOPA restored bidirectional plasticity on both pathways to levels comparable to naïve animals (Indirect pathway: LTP protocol: 124.4±22.0% and LTD protocol: 52.1±18.5% of baseline. Direct pathway: LTP protocol: 140.7±7.3% and LTD protocol: 58.4±6.0% of baseline). In dyskinesia, in the presence of l-DOPA, the indirect pathway exhibited only LTD (LTP protocol: 68.9±21.3% and LTD protocol 52.0±14.2% of baseline), whereas in the direct pathway, only LTP could be induced (LTP protocol: 156.6±13.2% and LTD protocol 166.7±15.8% of baseline). We conclude that normal motor control requires bidirectional plasticity of both striatal outputs, which underlies the symptomatic benefits of l-DOPA. Switching from bidirectional to unidirectional plasticity drives global changes in striatal pathway excitability, and underpins parkinsonism and dyskinesia.

DOI: 10.1016/j.nbd.2014.08.006
PubMed: 25171793


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25171793

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Selective loss of bi-directional synaptic plasticity in the direct and indirect striatal output pathways accompanies generation of parkinsonism and l-DOPA induced dyskinesia in mouse models.</title>
<author>
<name sortKey="Thiele, Sherri L" sort="Thiele, Sherri L" uniqKey="Thiele S" first="Sherri L" last="Thiele">Sherri L. Thiele</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4</wicri:regionArea>
<wicri:noRegion>ON M1C 1A4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Betty" sort="Chen, Betty" uniqKey="Chen B" first="Betty" last="Chen">Betty Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4</wicri:regionArea>
<wicri:noRegion>ON M1C 1A4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lo, Charlotte" sort="Lo, Charlotte" uniqKey="Lo C" first="Charlotte" last="Lo">Charlotte Lo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4</wicri:regionArea>
<wicri:noRegion>ON M1C 1A4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gertler, Tracey S" sort="Gertler, Tracey S" uniqKey="Gertler T" first="Tracey S" last="Gertler">Tracey S. Gertler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Warre, Ruth" sort="Warre, Ruth" uniqKey="Warre R" first="Ruth" last="Warre">Ruth Warre</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4</wicri:regionArea>
<wicri:noRegion>ON M1C 1A4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Surmeier, James D" sort="Surmeier, James D" uniqKey="Surmeier J" first="James D" last="Surmeier">James D. Surmeier</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brotchie, Jonathan M" sort="Brotchie, Jonathan M" uniqKey="Brotchie J" first="Jonathan M" last="Brotchie">Jonathan M. Brotchie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Brain Imaging & Behaviour Systems - Neuroscience, Toronto Western Research Institute, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Division of Brain Imaging & Behaviour Systems - Neuroscience, Toronto Western Research Institute, 399 Bathurst Street, Toronto, ON M5T 2S8</wicri:regionArea>
<wicri:noRegion>ON M5T 2S8</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nash, Joanne E" sort="Nash, Joanne E" uniqKey="Nash J" first="Joanne E" last="Nash">Joanne E. Nash</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada. Electronic address: jnash@utsc.utoronto.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4</wicri:regionArea>
<wicri:noRegion>ON M1C 1A4</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25171793</idno>
<idno type="pmid">25171793</idno>
<idno type="doi">10.1016/j.nbd.2014.08.006</idno>
<idno type="wicri:Area/PubMed/Corpus">000653</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000653</idno>
<idno type="wicri:Area/PubMed/Curation">000653</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000653</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000653</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000653</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Selective loss of bi-directional synaptic plasticity in the direct and indirect striatal output pathways accompanies generation of parkinsonism and l-DOPA induced dyskinesia in mouse models.</title>
<author>
<name sortKey="Thiele, Sherri L" sort="Thiele, Sherri L" uniqKey="Thiele S" first="Sherri L" last="Thiele">Sherri L. Thiele</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4</wicri:regionArea>
<wicri:noRegion>ON M1C 1A4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Betty" sort="Chen, Betty" uniqKey="Chen B" first="Betty" last="Chen">Betty Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4</wicri:regionArea>
<wicri:noRegion>ON M1C 1A4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lo, Charlotte" sort="Lo, Charlotte" uniqKey="Lo C" first="Charlotte" last="Lo">Charlotte Lo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4</wicri:regionArea>
<wicri:noRegion>ON M1C 1A4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gertler, Tracey S" sort="Gertler, Tracey S" uniqKey="Gertler T" first="Tracey S" last="Gertler">Tracey S. Gertler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Warre, Ruth" sort="Warre, Ruth" uniqKey="Warre R" first="Ruth" last="Warre">Ruth Warre</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4</wicri:regionArea>
<wicri:noRegion>ON M1C 1A4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Surmeier, James D" sort="Surmeier, James D" uniqKey="Surmeier J" first="James D" last="Surmeier">James D. Surmeier</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brotchie, Jonathan M" sort="Brotchie, Jonathan M" uniqKey="Brotchie J" first="Jonathan M" last="Brotchie">Jonathan M. Brotchie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Brain Imaging & Behaviour Systems - Neuroscience, Toronto Western Research Institute, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Division of Brain Imaging & Behaviour Systems - Neuroscience, Toronto Western Research Institute, 399 Bathurst Street, Toronto, ON M5T 2S8</wicri:regionArea>
<wicri:noRegion>ON M5T 2S8</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nash, Joanne E" sort="Nash, Joanne E" uniqKey="Nash J" first="Joanne E" last="Nash">Joanne E. Nash</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada. Electronic address: jnash@utsc.utoronto.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4</wicri:regionArea>
<wicri:noRegion>ON M1C 1A4</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Neurobiology of disease</title>
<idno type="eISSN">1095-953X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Animals, Newborn</term>
<term>Antiparkinson Agents (adverse effects)</term>
<term>Corpus Striatum (pathology)</term>
<term>Disease Models, Animal</term>
<term>Dopamine Agents (pharmacology)</term>
<term>Dyskinesia, Drug-Induced (etiology)</term>
<term>Dyskinesia, Drug-Induced (pathology)</term>
<term>Excitatory Postsynaptic Potentials (drug effects)</term>
<term>Functional Laterality</term>
<term>Green Fluorescent Proteins (genetics)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>In Vitro Techniques</term>
<term>Levodopa (adverse effects)</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
<term>Neural Pathways (pathology)</term>
<term>Neuronal Plasticity (drug effects)</term>
<term>Neuronal Plasticity (physiology)</term>
<term>Oxidopamine (toxicity)</term>
<term>Parkinsonian Disorders (chemically induced)</term>
<term>Parkinsonian Disorders (drug therapy)</term>
<term>Purinergic Agents (pharmacology)</term>
<term>Receptor, Adenosine A2A (genetics)</term>
<term>Receptor, Adenosine A2A (metabolism)</term>
<term>Receptors, Dopamine D1 (genetics)</term>
<term>Receptors, Dopamine D1 (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Antiparkinson Agents</term>
<term>Levodopa</term>
</keywords>
<keywords scheme="MESH" qualifier="chemically induced" xml:lang="en">
<term>Parkinsonian Disorders</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Excitatory Postsynaptic Potentials</term>
<term>Neuronal Plasticity</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Parkinsonian Disorders</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Dyskinesia, Drug-Induced</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Green Fluorescent Proteins</term>
<term>Receptor, Adenosine A2A</term>
<term>Receptors, Dopamine D1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Green Fluorescent Proteins</term>
<term>Receptor, Adenosine A2A</term>
<term>Receptors, Dopamine D1</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Corpus Striatum</term>
<term>Dyskinesia, Drug-Induced</term>
<term>Neural Pathways</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Dopamine Agents</term>
<term>Purinergic Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Neuronal Plasticity</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Oxidopamine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Animals, Newborn</term>
<term>Disease Models, Animal</term>
<term>Functional Laterality</term>
<term>In Vitro Techniques</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Parkinsonian symptoms arise due to over-activity of the indirect striatal output pathway, and under-activity of the direct striatal output pathway. l-DOPA-induced dyskinesia (LID) is caused when the opposite circuitry problems are established, with the indirect pathway becoming underactive, and the direct pathway becoming over-active. Here, we define synaptic plasticity abnormalities in these pathways associated with parkinsonism, symptomatic benefits of l-DOPA, and LID. We applied spike-timing dependent plasticity protocols to cortico-striatal synapses in slices from 6-OHDA-lesioned mouse models of parkinsonism and LID, generated in BAC transgenic mice with eGFP targeting the direct or indirect output pathways, with and without l-DOPA present. In naïve mice, bidirectional synaptic plasticity, i.e. LTP and LTD, was induced, resulting in an EPSP amplitude change of approximately 50% in each direction in both striatal output pathways, as shown previously. In parkinsonism and dyskinesia, both pathways exhibited unidirectional plasticity, irrespective of stimulation paradigm. In parkinsonian animals, the indirect pathway only exhibited LTP (LTP protocol: 143.5±14.6%; LTD protocol 177.7±22.3% of baseline), whereas the direct pathway only showed LTD (LTP protocol: 74.3±4.0% and LTD protocol: 63.3±8.7%). A symptomatic dose of l-DOPA restored bidirectional plasticity on both pathways to levels comparable to naïve animals (Indirect pathway: LTP protocol: 124.4±22.0% and LTD protocol: 52.1±18.5% of baseline. Direct pathway: LTP protocol: 140.7±7.3% and LTD protocol: 58.4±6.0% of baseline). In dyskinesia, in the presence of l-DOPA, the indirect pathway exhibited only LTD (LTP protocol: 68.9±21.3% and LTD protocol 52.0±14.2% of baseline), whereas in the direct pathway, only LTP could be induced (LTP protocol: 156.6±13.2% and LTD protocol 166.7±15.8% of baseline). We conclude that normal motor control requires bidirectional plasticity of both striatal outputs, which underlies the symptomatic benefits of l-DOPA. Switching from bidirectional to unidirectional plasticity drives global changes in striatal pathway excitability, and underpins parkinsonism and dyskinesia.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25171793</PMID>
<DateCreated>
<Year>2014</Year>
<Month>09</Month>
<Day>29</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>06</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-953X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>71</Volume>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Neurobiology of disease</Title>
<ISOAbbreviation>Neurobiol. Dis.</ISOAbbreviation>
</Journal>
<ArticleTitle>Selective loss of bi-directional synaptic plasticity in the direct and indirect striatal output pathways accompanies generation of parkinsonism and l-DOPA induced dyskinesia in mouse models.</ArticleTitle>
<Pagination>
<MedlinePgn>334-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.nbd.2014.08.006</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0969-9961(14)00235-6</ELocationID>
<Abstract>
<AbstractText>Parkinsonian symptoms arise due to over-activity of the indirect striatal output pathway, and under-activity of the direct striatal output pathway. l-DOPA-induced dyskinesia (LID) is caused when the opposite circuitry problems are established, with the indirect pathway becoming underactive, and the direct pathway becoming over-active. Here, we define synaptic plasticity abnormalities in these pathways associated with parkinsonism, symptomatic benefits of l-DOPA, and LID. We applied spike-timing dependent plasticity protocols to cortico-striatal synapses in slices from 6-OHDA-lesioned mouse models of parkinsonism and LID, generated in BAC transgenic mice with eGFP targeting the direct or indirect output pathways, with and without l-DOPA present. In naïve mice, bidirectional synaptic plasticity, i.e. LTP and LTD, was induced, resulting in an EPSP amplitude change of approximately 50% in each direction in both striatal output pathways, as shown previously. In parkinsonism and dyskinesia, both pathways exhibited unidirectional plasticity, irrespective of stimulation paradigm. In parkinsonian animals, the indirect pathway only exhibited LTP (LTP protocol: 143.5±14.6%; LTD protocol 177.7±22.3% of baseline), whereas the direct pathway only showed LTD (LTP protocol: 74.3±4.0% and LTD protocol: 63.3±8.7%). A symptomatic dose of l-DOPA restored bidirectional plasticity on both pathways to levels comparable to naïve animals (Indirect pathway: LTP protocol: 124.4±22.0% and LTD protocol: 52.1±18.5% of baseline. Direct pathway: LTP protocol: 140.7±7.3% and LTD protocol: 58.4±6.0% of baseline). In dyskinesia, in the presence of l-DOPA, the indirect pathway exhibited only LTD (LTP protocol: 68.9±21.3% and LTD protocol 52.0±14.2% of baseline), whereas in the direct pathway, only LTP could be induced (LTP protocol: 156.6±13.2% and LTD protocol 166.7±15.8% of baseline). We conclude that normal motor control requires bidirectional plasticity of both striatal outputs, which underlies the symptomatic benefits of l-DOPA. Switching from bidirectional to unidirectional plasticity drives global changes in striatal pathway excitability, and underpins parkinsonism and dyskinesia.</AbstractText>
<CopyrightInformation>Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Thiele</LastName>
<ForeName>Sherri L</ForeName>
<Initials>SL</Initials>
<AffiliationInfo>
<Affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Betty</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lo</LastName>
<ForeName>Charlotte</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gertler</LastName>
<ForeName>Tracey S</ForeName>
<Initials>TS</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Warre</LastName>
<ForeName>Ruth</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Surmeier</LastName>
<ForeName>James D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brotchie</LastName>
<ForeName>Jonathan M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Division of Brain Imaging & Behaviour Systems - Neuroscience, Toronto Western Research Institute, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nash</LastName>
<ForeName>Joanne E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada. Electronic address: jnash@utsc.utoronto.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DA012958</GrantID>
<Acronym>DA</Acronym>
<Agency>NIDA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS034696</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Neurobiol Dis</MedlineTA>
<NlmUniqueID>9500169</NlmUniqueID>
<ISSNLinking>0969-9961</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000978">Antiparkinson Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015259">Dopamine Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058905">Purinergic Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D043705">Receptor, Adenosine A2A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017447">Receptors, Dopamine D1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>46627O600J</RegistryNumber>
<NameOfSubstance UI="D007980">Levodopa</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8HW4YBZ748</RegistryNumber>
<NameOfSubstance UI="D016627">Oxidopamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Biochem Physiol A Comp Physiol. 1989;93(1):141-9</RefSource>
<PMID Version="1">2568216</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2007 Apr 16;179(1):76-89</RefSource>
<PMID Version="1">17306893</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2000 Mar;12(3):1096-104</RefSource>
<PMID Version="1">10762340</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1994 Aug;72(2):521-30</RefSource>
<PMID Version="1">7983516</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1995 Feb;18(2):63-4</RefSource>
<PMID Version="1">7537410</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 Jul 29;466(7306):622-6</RefSource>
<PMID Version="1">20613723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Apr 15;29(15):4829-35</RefSource>
<PMID Version="1">19369551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2003 Dec 9;61(11 Suppl 6):S24-9</RefSource>
<PMID Version="1">14663005</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2000 Apr;47(4 Suppl 1):S105-12; discussion S112-4</RefSource>
<PMID Version="1">10762137</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Psychiatry. 2007 Oct 1;62(7):800-10</RefSource>
<PMID Version="1">17662258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1994 Jan;125(1):65-71</RefSource>
<PMID Version="1">8307125</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis Exp. 2012;(60). pii: 3234. doi: 10.3791/3234</RefSource>
<PMID Version="1">22370630</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Pharmacol. 1999 Sep 15;58(6):1035-45</RefSource>
<PMID Version="1">10509756</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ACS Chem Neurosci. 2013 May 15;4(5):680-92</RefSource>
<PMID Version="1">23541043</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1999 Feb;155(2):204-20</RefSource>
<PMID Version="1">10072296</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2004 Jun;16(1):110-23</RefSource>
<PMID Version="1">15207268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2013 Jan 23;1491:236-50</RefSource>
<PMID Version="1">23159831</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2004 May;127(Pt 5):1075-84</RefSource>
<PMID Version="1">15033896</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2003 Oct 30;425(6961):917-25</RefSource>
<PMID Version="1">14586460</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2005 Jun;11 Suppl 1:S25-9</RefSource>
<PMID Version="1">15885624</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2002 Jan;15(1):120-32</RefSource>
<PMID Version="1">11860512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2008 Dec;11(12):1402-9</RefSource>
<PMID Version="1">18953346</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1985 Jul 29;339(2):346-50</RefSource>
<PMID Version="1">4027631</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 Feb 10;30(6):2160-4</RefSource>
<PMID Version="1">20147543</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2004 Nov;17(2):219-36</RefSource>
<PMID Version="1">15474360</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1997 Nov;148(1):265-70</RefSource>
<PMID Version="1">9398468</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2013 Feb 14;494(7436):238-42</RefSource>
<PMID Version="1">23354054</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2005 Jan;57(1):17-26</RefSource>
<PMID Version="1">15514976</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2005 Jul;194(1):66-75</RefSource>
<PMID Version="1">15899244</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 1985 Nov;45(5):1396-404</RefSource>
<PMID Version="1">2995585</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1989 Oct;12(10):366-75</RefSource>
<PMID Version="1">2479133</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2001 Sep 6;413(6851):67-70</RefSource>
<PMID Version="1">11544526</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Psychiatry. 2015 Jan 15;77(2):106-15</RefSource>
<PMID Version="1">24844602</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Sci Transl Med. 2010 Apr 21;2(28):28ra28</RefSource>
<PMID Version="1">20410529</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15254-9</RefSource>
<PMID Version="1">17015831</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2008;23 Suppl 3:S585-98</RefSource>
<PMID Version="1">18781676</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Neurobiol. 2010 Aug;30(6):817-25</RefSource>
<PMID Version="1">20232137</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2006 Jun;22(3):586-98</RefSource>
<PMID Version="1">16531050</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Pharmacol. 2005 Feb;67(2):400-7</RefSource>
<PMID Version="1">15539641</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20517-22</RefSource>
<PMID Version="1">19074268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Neurol. 2011 Dec;68(12):1550-6</RefSource>
<PMID Version="1">21825213</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Protoc Neurosci. 2007 Oct;Chapter 9:Unit 9.25</RefSource>
<PMID Version="1">18428668</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 1998 Aug;10(8):2694-706</RefSource>
<PMID Version="1">9767399</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Pharmacol Toxicol (Copenh). 1965;23(2):189-93</RefSource>
<PMID Version="1">5899279</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2007 Dec;83(5):293-309</RefSource>
<PMID Version="1">17826884</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2011 Mar;41(3):591-604</RefSource>
<PMID Version="1">20971190</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2009 Dec;15 Suppl 3:S64-7</RefSource>
<PMID Version="1">20083011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2004 Feb;88(3):726-34</RefSource>
<PMID Version="1">14720222</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1991;6(2):133-8</RefSource>
<PMID Version="1">1647492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2013 Nov;110(9):2027-36</RefSource>
<PMID Version="1">23926032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2008 Feb;29(2):327-35</RefSource>
<PMID Version="1">17997101</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5644-9</RefSource>
<PMID Version="1">17372196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuromodulation. 2010 Oct;13(4):255-60</RefSource>
<PMID Version="1">21992878</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2005 Nov 9;25(45):10537-45</RefSource>
<PMID Version="1">16280591</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2012 Aug 30;218:243-56</RefSource>
<PMID Version="1">22659568</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1970 Dec 18;24(3):485-93</RefSource>
<PMID Version="1">5494536</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Synaptic Neurosci. 2010 Jun 10;2:6</RefSource>
<PMID Version="1">21423492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2000 Sep;165(1):136-42</RefSource>
<PMID Version="1">10964492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2006 Jun 19;140(1):77-86</RefSource>
<PMID Version="1">16580149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Mar 5;28(10):2435-46</RefSource>
<PMID Version="1">18322089</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 May;97(5):3800-5</RefSource>
<PMID Version="1">17329629</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Med Scand. 1970 Apr;187(4):247-55</RefSource>
<PMID Version="1">4911257</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1995 Dec 1;701(1-2):13-8</RefSource>
<PMID Version="1">8925275</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Neurosci. 2005;25(2):191-200</RefSource>
<PMID Version="1">15784967</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neural Transm (Vienna). 2005 Mar;112(3):359-91</RefSource>
<PMID Version="1">15614429</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2001 Aug;2(8):577-88</RefSource>
<PMID Version="1">11484001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 1991 Sep 16;130(2):177-81</RefSource>
<PMID Version="1">1795877</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2011 Feb;134(Pt 2):375-87</RefSource>
<PMID Version="1">21183486</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1998 Jun;151(2):334-42</RefSource>
<PMID Version="1">9628768</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1985 Jun;108 ( Pt 2):405-22</RefSource>
<PMID Version="1">4005529</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Jul 25;27(30):8011-22</RefSource>
<PMID Version="1">17652591</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1990 Jul;13(7):281-5</RefSource>
<PMID Version="1">1695404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2007 Aug;102(4):1395-409</RefSource>
<PMID Version="1">17532790</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1998 Apr;150(2):223-34</RefSource>
<PMID Version="1">9527891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1990;5(2):100-8</RefSource>
<PMID Version="1">1970120</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 Aug 8;321(5890):848-51</RefSource>
<PMID Version="1">18687967</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2009 Mar;12(3):333-41</RefSource>
<PMID Version="1">19198605</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dtsch Med Wochenschr. 1962 Sep 7;87:1807-10</RefSource>
<PMID Version="1">14448985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2010 Aug;13(8):958-66</RefSource>
<PMID Version="1">20601948</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2010;183:209-33</RefSource>
<PMID Version="1">20696322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2010 Mar;112(6):1465-76</RefSource>
<PMID Version="1">20050978</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1990 Dec 7;250(4986):1429-32</RefSource>
<PMID Version="1">2147780</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2005 Aug;20(8):919-31</RefSource>
<PMID Version="1">16007614</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2003 May;6(5):501-6</RefSource>
<PMID Version="1">12665799</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 2011 Apr 30;197(2):193-208</RefSource>
<PMID Version="1">21352853</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pharmacol Rev. 2013 Jan;65(1):171-222</RefSource>
<PMID Version="1">23319549</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 1999 Nov;59(4):355-96</RefSource>
<PMID Version="1">10501634</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2010 Nov;68(5):619-28</RefSource>
<PMID Version="1">20882603</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Neurol. 1998;78:53-61</RefSource>
<PMID Version="1">9750903</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2001 May;16(3):448-58</RefSource>
<PMID Version="1">11391738</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000831" MajorTopicYN="N">Animals, Newborn</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000978" MajorTopicYN="N">Antiparkinson Agents</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003342" MajorTopicYN="N">Corpus Striatum</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015259" MajorTopicYN="N">Dopamine Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004409" MajorTopicYN="N">Dyskinesia, Drug-Induced</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019706" MajorTopicYN="N">Excitatory Postsynaptic Potentials</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007839" MajorTopicYN="N">Functional Laterality</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066298" MajorTopicYN="N">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007980" MajorTopicYN="N">Levodopa</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008822" MajorTopicYN="N">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009434" MajorTopicYN="N">Neural Pathways</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009473" MajorTopicYN="N">Neuronal Plasticity</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016627" MajorTopicYN="N">Oxidopamine</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020734" MajorTopicYN="N">Parkinsonian Disorders</DescriptorName>
<QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058905" MajorTopicYN="N">Purinergic Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043705" MajorTopicYN="N">Receptor, Adenosine A2A</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017447" MajorTopicYN="N">Receptors, Dopamine D1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS687314</OtherID>
<OtherID Source="NLM">PMC4486078</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">BAC transgenic mouse models</Keyword>
<Keyword MajorTopicYN="N">Dyskinesia</Keyword>
<Keyword MajorTopicYN="N">Parkinson's disease</Keyword>
<Keyword MajorTopicYN="N">Slice electrophysiology</Keyword>
<Keyword MajorTopicYN="N">Striatum</Keyword>
<Keyword MajorTopicYN="N">Synaptic plasticity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>07</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>08</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25171793</ArticleId>
<ArticleId IdType="pii">S0969-9961(14)00235-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.nbd.2014.08.006</ArticleId>
<ArticleId IdType="pmc">PMC4486078</ArticleId>
<ArticleId IdType="mid">NIHMS687314</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
</region>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Thiele, Sherri L" sort="Thiele, Sherri L" uniqKey="Thiele S" first="Sherri L" last="Thiele">Sherri L. Thiele</name>
</noRegion>
<name sortKey="Brotchie, Jonathan M" sort="Brotchie, Jonathan M" uniqKey="Brotchie J" first="Jonathan M" last="Brotchie">Jonathan M. Brotchie</name>
<name sortKey="Chen, Betty" sort="Chen, Betty" uniqKey="Chen B" first="Betty" last="Chen">Betty Chen</name>
<name sortKey="Lo, Charlotte" sort="Lo, Charlotte" uniqKey="Lo C" first="Charlotte" last="Lo">Charlotte Lo</name>
<name sortKey="Nash, Joanne E" sort="Nash, Joanne E" uniqKey="Nash J" first="Joanne E" last="Nash">Joanne E. Nash</name>
<name sortKey="Warre, Ruth" sort="Warre, Ruth" uniqKey="Warre R" first="Ruth" last="Warre">Ruth Warre</name>
</country>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Gertler, Tracey S" sort="Gertler, Tracey S" uniqKey="Gertler T" first="Tracey S" last="Gertler">Tracey S. Gertler</name>
</region>
<name sortKey="Surmeier, James D" sort="Surmeier, James D" uniqKey="Surmeier J" first="James D" last="Surmeier">James D. Surmeier</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000653 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000653 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:25171793
   |texte=   Selective loss of bi-directional synaptic plasticity in the direct and indirect striatal output pathways accompanies generation of parkinsonism and l-DOPA induced dyskinesia in mouse models.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:25171793" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022