La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mitochondrial Oxidative Stress Corrupts Coronary Collateral Growth by Activating Adenosine Monophosphate Activated Kinase-α Signaling

Identifieur interne : 000889 ( Pmc/Curation ); précédent : 000888; suivant : 000890

Mitochondrial Oxidative Stress Corrupts Coronary Collateral Growth by Activating Adenosine Monophosphate Activated Kinase-α Signaling

Auteurs : Yuh Fen Pung ; Wai Johnn Sam ; Kelly Stevanov ; Molly Enrick ; Chwen-Lih Chen ; Christopher Kolz ; Prashanth Thakker ; James P. Hardwick ; Yeong-Renn Chen ; Jason R. B. Dyck ; Liya Yin ; William M. Chilian

Source :

RBID : PMC:4402936

Abstract

Objective

Our goal was to determine the mechanism by which mitochondrial oxidative stress impairs collateral growth in the heart.

Approach and Results

Rats were treated with rotenone (mitochondrial complex I inhibitor that increases reactive oxygen species production) or sham-treated with vehicle and subjected to repetitive ischemia protocol for 10 days to induce coronary collateral growth. In control rats, repetitive ischemia increased flow to the collateral-dependent zone; however, rotenone treatment prevented this increase suggesting that mitochondrial oxidative stress compromises coronary collateral growth. In addition, rotenone also attenuated mitochondrial complex I activity and led to excessive mitochondrial aggregation. To further understand the mechanistic pathway(s) involved, human coronary artery endothelial cells were treated with 50 ng/ mL vascular endothelial growth factor, 1 µmol/L rotenone, and rotenone/vascular endothelial growth factor for 48 hours. Vascular endothelial growth factor induced robust tube formation; however, rotenone completely inhibited this effect (P<0.05 rotenone versus vascular endothelial growth factor treatment). Inhibition of tube formation by rotenone was also associated with significant increase in mitochondrial superoxide generation. Immunoblot analyses of human coronary artery endothelial cells with rotenone treatment showed significant activation of adenosine monophosphate activated kinase (AMPK)-α and inhibition of mammalian target of rapamycin and p70 ribosomal S6 kinase. Activation of AMPK-α suggested impairments in energy production, which was reflected by decrease in O2 consumption and bioenergetic reserve capacity of cultured cells. Knockdown of AMPK-α (siRNA) also preserved tube formation during rotenone, suggesting the negative effects were mediated by the activation of AMPK-α. Conversely, expression of a constitutively active AMPK-α blocked tube formation.

Conclusions

We conclude that activation of AMPK-α during mitochondrial oxidative stress inhibits mammalian target of rapamycin signaling, which impairs phenotypic switching necessary for the growth of blood vessels.


Url:
DOI: 10.1161/ATVBAHA.113.301591
PubMed: 23788766
PubMed Central: 4402936

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4402936

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mitochondrial Oxidative Stress Corrupts Coronary Collateral Growth by Activating Adenosine Monophosphate Activated Kinase-α Signaling</title>
<author>
<name sortKey="Pung, Yuh Fen" sort="Pung, Yuh Fen" uniqKey="Pung Y" first="Yuh Fen" last="Pung">Yuh Fen Pung</name>
</author>
<author>
<name sortKey="Sam, Wai Johnn" sort="Sam, Wai Johnn" uniqKey="Sam W" first="Wai Johnn" last="Sam">Wai Johnn Sam</name>
</author>
<author>
<name sortKey="Stevanov, Kelly" sort="Stevanov, Kelly" uniqKey="Stevanov K" first="Kelly" last="Stevanov">Kelly Stevanov</name>
</author>
<author>
<name sortKey="Enrick, Molly" sort="Enrick, Molly" uniqKey="Enrick M" first="Molly" last="Enrick">Molly Enrick</name>
</author>
<author>
<name sortKey="Chen, Chwen Lih" sort="Chen, Chwen Lih" uniqKey="Chen C" first="Chwen-Lih" last="Chen">Chwen-Lih Chen</name>
</author>
<author>
<name sortKey="Kolz, Christopher" sort="Kolz, Christopher" uniqKey="Kolz C" first="Christopher" last="Kolz">Christopher Kolz</name>
</author>
<author>
<name sortKey="Thakker, Prashanth" sort="Thakker, Prashanth" uniqKey="Thakker P" first="Prashanth" last="Thakker">Prashanth Thakker</name>
</author>
<author>
<name sortKey="Hardwick, James P" sort="Hardwick, James P" uniqKey="Hardwick J" first="James P." last="Hardwick">James P. Hardwick</name>
</author>
<author>
<name sortKey="Chen, Yeong Renn" sort="Chen, Yeong Renn" uniqKey="Chen Y" first="Yeong-Renn" last="Chen">Yeong-Renn Chen</name>
</author>
<author>
<name sortKey="Dyck, Jason R B" sort="Dyck, Jason R B" uniqKey="Dyck J" first="Jason R. B." last="Dyck">Jason R. B. Dyck</name>
</author>
<author>
<name sortKey="Yin, Liya" sort="Yin, Liya" uniqKey="Yin L" first="Liya" last="Yin">Liya Yin</name>
</author>
<author>
<name sortKey="Chilian, William M" sort="Chilian, William M" uniqKey="Chilian W" first="William M." last="Chilian">William M. Chilian</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23788766</idno>
<idno type="pmc">4402936</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402936</idno>
<idno type="RBID">PMC:4402936</idno>
<idno type="doi">10.1161/ATVBAHA.113.301591</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000889</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000889</idno>
<idno type="wicri:Area/Pmc/Curation">000889</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000889</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Mitochondrial Oxidative Stress Corrupts Coronary Collateral Growth by Activating Adenosine Monophosphate Activated Kinase-α Signaling</title>
<author>
<name sortKey="Pung, Yuh Fen" sort="Pung, Yuh Fen" uniqKey="Pung Y" first="Yuh Fen" last="Pung">Yuh Fen Pung</name>
</author>
<author>
<name sortKey="Sam, Wai Johnn" sort="Sam, Wai Johnn" uniqKey="Sam W" first="Wai Johnn" last="Sam">Wai Johnn Sam</name>
</author>
<author>
<name sortKey="Stevanov, Kelly" sort="Stevanov, Kelly" uniqKey="Stevanov K" first="Kelly" last="Stevanov">Kelly Stevanov</name>
</author>
<author>
<name sortKey="Enrick, Molly" sort="Enrick, Molly" uniqKey="Enrick M" first="Molly" last="Enrick">Molly Enrick</name>
</author>
<author>
<name sortKey="Chen, Chwen Lih" sort="Chen, Chwen Lih" uniqKey="Chen C" first="Chwen-Lih" last="Chen">Chwen-Lih Chen</name>
</author>
<author>
<name sortKey="Kolz, Christopher" sort="Kolz, Christopher" uniqKey="Kolz C" first="Christopher" last="Kolz">Christopher Kolz</name>
</author>
<author>
<name sortKey="Thakker, Prashanth" sort="Thakker, Prashanth" uniqKey="Thakker P" first="Prashanth" last="Thakker">Prashanth Thakker</name>
</author>
<author>
<name sortKey="Hardwick, James P" sort="Hardwick, James P" uniqKey="Hardwick J" first="James P." last="Hardwick">James P. Hardwick</name>
</author>
<author>
<name sortKey="Chen, Yeong Renn" sort="Chen, Yeong Renn" uniqKey="Chen Y" first="Yeong-Renn" last="Chen">Yeong-Renn Chen</name>
</author>
<author>
<name sortKey="Dyck, Jason R B" sort="Dyck, Jason R B" uniqKey="Dyck J" first="Jason R. B." last="Dyck">Jason R. B. Dyck</name>
</author>
<author>
<name sortKey="Yin, Liya" sort="Yin, Liya" uniqKey="Yin L" first="Liya" last="Yin">Liya Yin</name>
</author>
<author>
<name sortKey="Chilian, William M" sort="Chilian, William M" uniqKey="Chilian W" first="William M." last="Chilian">William M. Chilian</name>
</author>
</analytic>
<series>
<title level="j">Arteriosclerosis, thrombosis, and vascular biology</title>
<idno type="ISSN">1079-5642</idno>
<idno type="eISSN">1524-4636</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="S1">
<title>Objective</title>
<p id="P1">Our goal was to determine the mechanism by which mitochondrial oxidative stress impairs collateral growth in the heart.</p>
</sec>
<sec id="S2">
<title>Approach and Results</title>
<p id="P2">Rats were treated with rotenone (mitochondrial complex I inhibitor that increases reactive oxygen species production) or sham-treated with vehicle and subjected to repetitive ischemia protocol for 10 days to induce coronary collateral growth. In control rats, repetitive ischemia increased flow to the collateral-dependent zone; however, rotenone treatment prevented this increase suggesting that mitochondrial oxidative stress compromises coronary collateral growth. In addition, rotenone also attenuated mitochondrial complex I activity and led to excessive mitochondrial aggregation. To further understand the mechanistic pathway(s) involved, human coronary artery endothelial cells were treated with 50 ng/ mL vascular endothelial growth factor, 1 µmol/L rotenone, and rotenone/vascular endothelial growth factor for 48 hours. Vascular endothelial growth factor induced robust tube formation; however, rotenone completely inhibited this effect (
<italic>P</italic>
<0.05 rotenone versus vascular endothelial growth factor treatment). Inhibition of tube formation by rotenone was also associated with significant increase in mitochondrial superoxide generation. Immunoblot analyses of human coronary artery endothelial cells with rotenone treatment showed significant activation of adenosine monophosphate activated kinase (AMPK)-α and inhibition of mammalian target of rapamycin and p70 ribosomal S6 kinase. Activation of AMPK-α suggested impairments in energy production, which was reflected by decrease in O
<sub>2</sub>
consumption and bioenergetic reserve capacity of cultured cells. Knockdown of AMPK-α (siRNA) also preserved tube formation during rotenone, suggesting the negative effects were mediated by the activation of AMPK-α. Conversely, expression of a constitutively active AMPK-α blocked tube formation.</p>
</sec>
<sec id="S3">
<title>Conclusions</title>
<p id="P3">We conclude that activation of AMPK-α during mitochondrial oxidative stress inhibits mammalian target of rapamycin signaling, which impairs phenotypic switching necessary for the growth of blood vessels.</p>
</sec>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">9505803</journal-id>
<journal-id journal-id-type="pubmed-jr-id">8623</journal-id>
<journal-id journal-id-type="nlm-ta">Arterioscler Thromb Vasc Biol</journal-id>
<journal-id journal-id-type="iso-abbrev">Arterioscler. Thromb. Vasc. Biol.</journal-id>
<journal-title-group>
<journal-title>Arteriosclerosis, thrombosis, and vascular biology</journal-title>
</journal-title-group>
<issn pub-type="ppub">1079-5642</issn>
<issn pub-type="epub">1524-4636</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23788766</article-id>
<article-id pub-id-type="pmc">4402936</article-id>
<article-id pub-id-type="doi">10.1161/ATVBAHA.113.301591</article-id>
<article-id pub-id-type="manuscript">NIHMS572238</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Mitochondrial Oxidative Stress Corrupts Coronary Collateral Growth by Activating Adenosine Monophosphate Activated Kinase-α Signaling</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Pung</surname>
<given-names>Yuh Fen</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sam</surname>
<given-names>Wai Johnn</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Stevanov</surname>
<given-names>Kelly</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Enrick</surname>
<given-names>Molly</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Chwen-Lih</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kolz</surname>
<given-names>Christopher</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Thakker</surname>
<given-names>Prashanth</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hardwick</surname>
<given-names>James P.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Yeong-Renn</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dyck</surname>
<given-names>Jason R.B.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yin</surname>
<given-names>Liya</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chilian</surname>
<given-names>William M.</given-names>
</name>
</contrib>
<aff id="A1">Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH (Y.F.P., W.J.S., K.S., M.E., C.-L.C., C.K., P.T., J.P.H., Y.-R.C., L.Y., W.M.C.); and Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (J.R.B.D.)</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">Correspondence to William M. Chilian, PhD, Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272.
<email>wchilian@neomed.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>14</day>
<month>4</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>20</day>
<month>6</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="ppub">
<month>8</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>20</day>
<month>4</month>
<year>2015</year>
</pub-date>
<volume>33</volume>
<issue>8</issue>
<fpage>1911</fpage>
<lpage>1919</lpage>
<pmc-comment>elocation-id from pubmed: 10.1161/ATVBAHA.113.301591</pmc-comment>
<permissions>
<copyright-statement>© 2013 American Heart Association, Inc.</copyright-statement>
<copyright-year>2013</copyright-year>
</permissions>
<abstract>
<sec id="S1">
<title>Objective</title>
<p id="P1">Our goal was to determine the mechanism by which mitochondrial oxidative stress impairs collateral growth in the heart.</p>
</sec>
<sec id="S2">
<title>Approach and Results</title>
<p id="P2">Rats were treated with rotenone (mitochondrial complex I inhibitor that increases reactive oxygen species production) or sham-treated with vehicle and subjected to repetitive ischemia protocol for 10 days to induce coronary collateral growth. In control rats, repetitive ischemia increased flow to the collateral-dependent zone; however, rotenone treatment prevented this increase suggesting that mitochondrial oxidative stress compromises coronary collateral growth. In addition, rotenone also attenuated mitochondrial complex I activity and led to excessive mitochondrial aggregation. To further understand the mechanistic pathway(s) involved, human coronary artery endothelial cells were treated with 50 ng/ mL vascular endothelial growth factor, 1 µmol/L rotenone, and rotenone/vascular endothelial growth factor for 48 hours. Vascular endothelial growth factor induced robust tube formation; however, rotenone completely inhibited this effect (
<italic>P</italic>
<0.05 rotenone versus vascular endothelial growth factor treatment). Inhibition of tube formation by rotenone was also associated with significant increase in mitochondrial superoxide generation. Immunoblot analyses of human coronary artery endothelial cells with rotenone treatment showed significant activation of adenosine monophosphate activated kinase (AMPK)-α and inhibition of mammalian target of rapamycin and p70 ribosomal S6 kinase. Activation of AMPK-α suggested impairments in energy production, which was reflected by decrease in O
<sub>2</sub>
consumption and bioenergetic reserve capacity of cultured cells. Knockdown of AMPK-α (siRNA) also preserved tube formation during rotenone, suggesting the negative effects were mediated by the activation of AMPK-α. Conversely, expression of a constitutively active AMPK-α blocked tube formation.</p>
</sec>
<sec id="S3">
<title>Conclusions</title>
<p id="P3">We conclude that activation of AMPK-α during mitochondrial oxidative stress inhibits mammalian target of rapamycin signaling, which impairs phenotypic switching necessary for the growth of blood vessels.</p>
</sec>
</abstract>
<kwd-group>
<kwd>collateral circulation</kwd>
<kwd>coronary circulation</kwd>
<kwd>mitochondria</kwd>
<kwd>reactive oxygen species</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000889 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000889 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4402936
   |texte=   Mitochondrial Oxidative Stress Corrupts Coronary Collateral Growth by Activating Adenosine Monophosphate Activated Kinase-α Signaling
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:23788766" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022