La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

UBE4B: A Promising Regulatory Molecule in Neuronal Death and Survival

Identifieur interne : 000C45 ( Pmc/Corpus ); précédent : 000C44; suivant : 000C46

UBE4B: A Promising Regulatory Molecule in Neuronal Death and Survival

Auteurs : Rami Abou Zeinab ; Hong Wu ; Consolato Sergi ; Roger Leng

Source :

RBID : PMC:3546727

Abstract

Neuronal survival and death of neurons are considered a fundamental mechanism in the regulation of the nervous system during early development of the system and in adulthood. Defects in this mechanism are highly problematic and are associated with many neurodegenerative diseases. Because neuronal programmed death is apoptotic in nature, indicating that apoptosis is a key regulatory process, the p53 family members (p53, p73, p63) act as checkpoints in neurons due to their role in apoptosis. The complexity of this system is due to the existence of different naturally occurring isoforms that have different functions from the wild types (WT), varying from apoptotic to anti-apoptotic effects. In this review, we focus on the role of UBE4B (known as Ube4b or Ufd2a in mouse), an E3/E4 ligase that triggers substrate polyubiquitination, as a master regulatory ligase associated with the p53 family WT proteins and isoforms in regulating neuronal survival. UBE4B is also associated with other pathways independent of the p53 family, such as polyglutamine aggregation and Wallerian degeneration, both of which are critical in neurodegenerative diseases. Many of the hypotheses presented here are gateways to understanding the programmed death/survival of neurons regulated by UBE4B in normal physiology, and a means of introducing potential therapeutic approaches with implications in treating several neurodegenerative diseases.


Url:
DOI: 10.3390/ijms131216865
PubMed: 23222733
PubMed Central: 3546727

Links to Exploration step

PMC:3546727

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">UBE4B: A Promising Regulatory Molecule in Neuronal Death and Survival</title>
<author>
<name sortKey="Zeinab, Rami Abou" sort="Zeinab, Rami Abou" uniqKey="Zeinab R" first="Rami Abou" last="Zeinab">Rami Abou Zeinab</name>
</author>
<author>
<name sortKey="Wu, Hong" sort="Wu, Hong" uniqKey="Wu H" first="Hong" last="Wu">Hong Wu</name>
</author>
<author>
<name sortKey="Sergi, Consolato" sort="Sergi, Consolato" uniqKey="Sergi C" first="Consolato" last="Sergi">Consolato Sergi</name>
</author>
<author>
<name sortKey="Leng, Roger" sort="Leng, Roger" uniqKey="Leng R" first="Roger" last="Leng">Roger Leng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23222733</idno>
<idno type="pmc">3546727</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546727</idno>
<idno type="RBID">PMC:3546727</idno>
<idno type="doi">10.3390/ijms131216865</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">000C45</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000C45</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">UBE4B: A Promising Regulatory Molecule in Neuronal Death and Survival</title>
<author>
<name sortKey="Zeinab, Rami Abou" sort="Zeinab, Rami Abou" uniqKey="Zeinab R" first="Rami Abou" last="Zeinab">Rami Abou Zeinab</name>
</author>
<author>
<name sortKey="Wu, Hong" sort="Wu, Hong" uniqKey="Wu H" first="Hong" last="Wu">Hong Wu</name>
</author>
<author>
<name sortKey="Sergi, Consolato" sort="Sergi, Consolato" uniqKey="Sergi C" first="Consolato" last="Sergi">Consolato Sergi</name>
</author>
<author>
<name sortKey="Leng, Roger" sort="Leng, Roger" uniqKey="Leng R" first="Roger" last="Leng">Roger Leng</name>
</author>
</analytic>
<series>
<title level="j">International Journal of Molecular Sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Neuronal survival and death of neurons are considered a fundamental mechanism in the regulation of the nervous system during early development of the system and in adulthood. Defects in this mechanism are highly problematic and are associated with many neurodegenerative diseases. Because neuronal programmed death is apoptotic in nature, indicating that apoptosis is a key regulatory process, the p53 family members (p53, p73, p63) act as checkpoints in neurons due to their role in apoptosis. The complexity of this system is due to the existence of different naturally occurring isoforms that have different functions from the wild types (WT), varying from apoptotic to anti-apoptotic effects. In this review, we focus on the role of UBE4B (known as Ube4b or Ufd2a in mouse), an E3/E4 ligase that triggers substrate polyubiquitination, as a master regulatory ligase associated with the p53 family WT proteins and isoforms in regulating neuronal survival. UBE4B is also associated with other pathways independent of the p53 family, such as polyglutamine aggregation and Wallerian degeneration, both of which are critical in neurodegenerative diseases. Many of the hypotheses presented here are gateways to understanding the programmed death/survival of neurons regulated by UBE4B in normal physiology, and a means of introducing potential therapeutic approaches with implications in treating several neurodegenerative diseases.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J. Yuan</name>
</author>
<author>
<name sortKey="Yankner, B A" uniqKey="Yankner B">B.A. Yankner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jacobs, W B" uniqKey="Jacobs W">W.B. Jacobs</name>
</author>
<author>
<name sortKey="Kaplan, D R" uniqKey="Kaplan D">D.R. Kaplan</name>
</author>
<author>
<name sortKey="Miller, F D" uniqKey="Miller F">F.D. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blaschke, A J" uniqKey="Blaschke A">A.J. Blaschke</name>
</author>
<author>
<name sortKey="Staley, K" uniqKey="Staley K">K. Staley</name>
</author>
<author>
<name sortKey="Chun, J" uniqKey="Chun J">J. Chun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilmore, E C" uniqKey="Gilmore E">E.C. Gilmore</name>
</author>
<author>
<name sortKey="Nowakowski, R S" uniqKey="Nowakowski R">R.S. Nowakowski</name>
</author>
<author>
<name sortKey="Caviness, V S" uniqKey="Caviness V">V.S. Caviness</name>
</author>
<author>
<name sortKey="Herrup, K" uniqKey="Herrup K">K. Herrup</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jacobs, W B" uniqKey="Jacobs W">W.B. Jacobs</name>
</author>
<author>
<name sortKey="Walsh, G S" uniqKey="Walsh G">G.S. Walsh</name>
</author>
<author>
<name sortKey="Miller, F D" uniqKey="Miller F">F.D. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wood, K A" uniqKey="Wood K">K.A. Wood</name>
</author>
<author>
<name sortKey="Youle, R J" uniqKey="Youle R">R.J. Youle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graham, S H" uniqKey="Graham S">S.H. Graham</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Green, D R" uniqKey="Green D">D.R. Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnstone, R W" uniqKey="Johnstone R">R.W. Johnstone</name>
</author>
<author>
<name sortKey="Ruefli, A A" uniqKey="Ruefli A">A.A. Ruefli</name>
</author>
<author>
<name sortKey="Lowe, S W" uniqKey="Lowe S">S.W. Lowe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soussi, T" uniqKey="Soussi T">T. Soussi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B. Vogelstein</name>
</author>
<author>
<name sortKey="Lane, D" uniqKey="Lane D">D. Lane</name>
</author>
<author>
<name sortKey="Levine, A J" uniqKey="Levine A">A.J. Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carter, S" uniqKey="Carter S">S. Carter</name>
</author>
<author>
<name sortKey="Vousden, K H" uniqKey="Vousden K">K.H. Vousden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, H" uniqKey="Wu H">H. Wu</name>
</author>
<author>
<name sortKey="Pomeroy, S L" uniqKey="Pomeroy S">S.L. Pomeroy</name>
</author>
<author>
<name sortKey="Ferreira, M" uniqKey="Ferreira M">M. Ferreira</name>
</author>
<author>
<name sortKey="Teider, N" uniqKey="Teider N">N. Teider</name>
</author>
<author>
<name sortKey="Mariani, J" uniqKey="Mariani J">J. Mariani</name>
</author>
<author>
<name sortKey="Nakayama, K I" uniqKey="Nakayama K">K.I. Nakayama</name>
</author>
<author>
<name sortKey="Hatakeyama, S" uniqKey="Hatakeyama S">S. Hatakeyama</name>
</author>
<author>
<name sortKey="Tron, V A" uniqKey="Tron V">V.A. Tron</name>
</author>
<author>
<name sortKey="Saltibus, L F" uniqKey="Saltibus L">L.F. Saltibus</name>
</author>
<author>
<name sortKey="Spyracopoulos, L" uniqKey="Spyracopoulos L">L. Spyracopoulos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gostissa, M" uniqKey="Gostissa M">M. Gostissa</name>
</author>
<author>
<name sortKey="Hengstermann, A" uniqKey="Hengstermann A">A. Hengstermann</name>
</author>
<author>
<name sortKey="Fogal, V" uniqKey="Fogal V">V. Fogal</name>
</author>
<author>
<name sortKey="Sandy, P" uniqKey="Sandy P">P. Sandy</name>
</author>
<author>
<name sortKey="Schwarz, S E" uniqKey="Schwarz S">S.E. Schwarz</name>
</author>
<author>
<name sortKey="Scheffner, M" uniqKey="Scheffner M">M. Scheffner</name>
</author>
<author>
<name sortKey="Del Sal, G" uniqKey="Del Sal G">G. del Sal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez, M S" uniqKey="Rodriguez M">M.S. Rodriguez</name>
</author>
<author>
<name sortKey="Desterro, J M" uniqKey="Desterro J">J.M. Desterro</name>
</author>
<author>
<name sortKey="Lain, S" uniqKey="Lain S">S. Lain</name>
</author>
<author>
<name sortKey="Midgley, C A" uniqKey="Midgley C">C.A. Midgley</name>
</author>
<author>
<name sortKey="Lane, D P" uniqKey="Lane D">D.P. Lane</name>
</author>
<author>
<name sortKey="Hay, R T" uniqKey="Hay R">R.T. Hay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, L N" uniqKey="Shen L">L.N. Shen</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
<author>
<name sortKey="Dong, C" uniqKey="Dong C">C. Dong</name>
</author>
<author>
<name sortKey="Xirodimas, D" uniqKey="Xirodimas D">D. Xirodimas</name>
</author>
<author>
<name sortKey="Naismith, J H" uniqKey="Naismith J">J.H. Naismith</name>
</author>
<author>
<name sortKey="Hay, R T" uniqKey="Hay R">R.T. Hay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whitby, F G" uniqKey="Whitby F">F.G. Whitby</name>
</author>
<author>
<name sortKey="Xia, G" uniqKey="Xia G">G. Xia</name>
</author>
<author>
<name sortKey="Pickart, C M" uniqKey="Pickart C">C.M. Pickart</name>
</author>
<author>
<name sortKey="Hill, C P" uniqKey="Hill C">C.P. Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, L" uniqKey="Feng L">L. Feng</name>
</author>
<author>
<name sortKey="Lin, T" uniqKey="Lin T">T. Lin</name>
</author>
<author>
<name sortKey="Uranishi, H" uniqKey="Uranishi H">H. Uranishi</name>
</author>
<author>
<name sortKey="Gu, W" uniqKey="Gu W">W. Gu</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ozeki, C" uniqKey="Ozeki C">C. Ozeki</name>
</author>
<author>
<name sortKey="Sawai, Y" uniqKey="Sawai Y">Y. Sawai</name>
</author>
<author>
<name sortKey="Shibata, T" uniqKey="Shibata T">T. Shibata</name>
</author>
<author>
<name sortKey="Kohno, T" uniqKey="Kohno T">T. Kohno</name>
</author>
<author>
<name sortKey="Okamoto, K" uniqKey="Okamoto K">K. Okamoto</name>
</author>
<author>
<name sortKey="Yokota, J" uniqKey="Yokota J">J. Yokota</name>
</author>
<author>
<name sortKey="Tashiro, F" uniqKey="Tashiro F">F. Tashiro</name>
</author>
<author>
<name sortKey="Tanuma, S" uniqKey="Tanuma S">S. Tanuma</name>
</author>
<author>
<name sortKey="Sakai, R" uniqKey="Sakai R">R. Sakai</name>
</author>
<author>
<name sortKey="Kawase, T" uniqKey="Kawase T">T. Kawase</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Li, C C" uniqKey="Li C">C.C. Li</name>
</author>
<author>
<name sortKey="Weissman, A M" uniqKey="Weissman A">A.M. Weissman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Watson, I R" uniqKey="Watson I">I.R. Watson</name>
</author>
<author>
<name sortKey="Irwin, M S" uniqKey="Irwin M">M.S. Irwin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tan, J M" uniqKey="Tan J">J.M. Tan</name>
</author>
<author>
<name sortKey="Wong, E S" uniqKey="Wong E">E.S. Wong</name>
</author>
<author>
<name sortKey="Kirkpatrick, D S" uniqKey="Kirkpatrick D">D.S. Kirkpatrick</name>
</author>
<author>
<name sortKey="Pletnikova, O" uniqKey="Pletnikova O">O. Pletnikova</name>
</author>
<author>
<name sortKey="Ko, H S" uniqKey="Ko H">H.S. Ko</name>
</author>
<author>
<name sortKey="Tay, S P" uniqKey="Tay S">S.P. Tay</name>
</author>
<author>
<name sortKey="Ho, M W" uniqKey="Ho M">M.W. Ho</name>
</author>
<author>
<name sortKey="Troncoso, J" uniqKey="Troncoso J">J. Troncoso</name>
</author>
<author>
<name sortKey="Gygi, S P" uniqKey="Gygi S">S.P. Gygi</name>
</author>
<author>
<name sortKey="Lee, M K" uniqKey="Lee M">M.K. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, X" uniqKey="Zeng X">X. Zeng</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L. Chen</name>
</author>
<author>
<name sortKey="Jost, C A" uniqKey="Jost C">C.A. Jost</name>
</author>
<author>
<name sortKey="Maya, R" uniqKey="Maya R">R. Maya</name>
</author>
<author>
<name sortKey="Keller, D" uniqKey="Keller D">D. Keller</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Kaelin, W G" uniqKey="Kaelin W">W.G. Kaelin</name>
</author>
<author>
<name sortKey="Oren, M" uniqKey="Oren M">M. Oren</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaneko, C" uniqKey="Kaneko C">C. Kaneko</name>
</author>
<author>
<name sortKey="Hatakeyama, S" uniqKey="Hatakeyama S">S. Hatakeyama</name>
</author>
<author>
<name sortKey="Matsumoto, M" uniqKey="Matsumoto M">M. Matsumoto</name>
</author>
<author>
<name sortKey="Yada, M" uniqKey="Yada M">M. Yada</name>
</author>
<author>
<name sortKey="Nakayama, K" uniqKey="Nakayama K">K. Nakayama</name>
</author>
<author>
<name sortKey="Nakayama, K I" uniqKey="Nakayama K">K.I. Nakayama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donehower, L A" uniqKey="Donehower L">L.A. Donehower</name>
</author>
<author>
<name sortKey="Harvey, M" uniqKey="Harvey M">M. Harvey</name>
</author>
<author>
<name sortKey="Slagle, B L" uniqKey="Slagle B">B.L. Slagle</name>
</author>
<author>
<name sortKey="Mcarthur, M J" uniqKey="Mcarthur M">M.J. McArthur</name>
</author>
<author>
<name sortKey="Montgomery, C A" uniqKey="Montgomery C">C.A. Montgomery</name>
</author>
<author>
<name sortKey="Butel, J S" uniqKey="Butel J">J.S. Butel</name>
</author>
<author>
<name sortKey="Bradley, A" uniqKey="Bradley A">A. Bradley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Armstrong, J F" uniqKey="Armstrong J">J.F. Armstrong</name>
</author>
<author>
<name sortKey="Kaufman, M H" uniqKey="Kaufman M">M.H. Kaufman</name>
</author>
<author>
<name sortKey="Harrison, D J" uniqKey="Harrison D">D.J. Harrison</name>
</author>
<author>
<name sortKey="Clarke, A R" uniqKey="Clarke A">A.R. Clarke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sah, V P" uniqKey="Sah V">V.P. Sah</name>
</author>
<author>
<name sortKey="Attardi, L D" uniqKey="Attardi L">L.D. Attardi</name>
</author>
<author>
<name sortKey="Mulligan, G J" uniqKey="Mulligan G">G.J. Mulligan</name>
</author>
<author>
<name sortKey="Williams, B O" uniqKey="Williams B">B.O. Williams</name>
</author>
<author>
<name sortKey="Bronson, R T" uniqKey="Bronson R">R.T. Bronson</name>
</author>
<author>
<name sortKey="Jacks, T" uniqKey="Jacks T">T. Jacks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mihara, M" uniqKey="Mihara M">M. Mihara</name>
</author>
<author>
<name sortKey="Erster, S" uniqKey="Erster S">S. Erster</name>
</author>
<author>
<name sortKey="Zaika, A" uniqKey="Zaika A">A. Zaika</name>
</author>
<author>
<name sortKey="Petrenko, O" uniqKey="Petrenko O">O. Petrenko</name>
</author>
<author>
<name sortKey="Chittenden, T" uniqKey="Chittenden T">T. Chittenden</name>
</author>
<author>
<name sortKey="Pancoska, P" uniqKey="Pancoska P">P. Pancoska</name>
</author>
<author>
<name sortKey="Moll, U M" uniqKey="Moll U">U.M. Moll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cecconi, F" uniqKey="Cecconi F">F. Cecconi</name>
</author>
<author>
<name sortKey="Alvarez Bolado, G" uniqKey="Alvarez Bolado G">G. Alvarez-Bolado</name>
</author>
<author>
<name sortKey="Meyer, B I" uniqKey="Meyer B">B.I. Meyer</name>
</author>
<author>
<name sortKey="Roth, K A" uniqKey="Roth K">K.A. Roth</name>
</author>
<author>
<name sortKey="Gruss, P" uniqKey="Gruss P">P. Gruss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuida, K" uniqKey="Kuida K">K. Kuida</name>
</author>
<author>
<name sortKey="Haydar, T F" uniqKey="Haydar T">T.F. Haydar</name>
</author>
<author>
<name sortKey="Kuan, C Y" uniqKey="Kuan C">C.Y. Kuan</name>
</author>
<author>
<name sortKey="Gu, Y" uniqKey="Gu Y">Y. Gu</name>
</author>
<author>
<name sortKey="Taya, C" uniqKey="Taya C">C. Taya</name>
</author>
<author>
<name sortKey="Karasuyama, H" uniqKey="Karasuyama H">H. Karasuyama</name>
</author>
<author>
<name sortKey="Su, M S" uniqKey="Su M">M.S. Su</name>
</author>
<author>
<name sortKey="Rakic, P" uniqKey="Rakic P">P. Rakic</name>
</author>
<author>
<name sortKey="Flavell, R A" uniqKey="Flavell R">R.A. Flavell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoshida, H" uniqKey="Yoshida H">H. Yoshida</name>
</author>
<author>
<name sortKey="Kong, Y Y" uniqKey="Kong Y">Y.Y. Kong</name>
</author>
<author>
<name sortKey="Yoshida, R" uniqKey="Yoshida R">R. Yoshida</name>
</author>
<author>
<name sortKey="Elia, A J" uniqKey="Elia A">A.J. Elia</name>
</author>
<author>
<name sortKey="Hakem, A" uniqKey="Hakem A">A. Hakem</name>
</author>
<author>
<name sortKey="Hakem, R" uniqKey="Hakem R">R. Hakem</name>
</author>
<author>
<name sortKey="Penninger, J M" uniqKey="Penninger J">J.M. Penninger</name>
</author>
<author>
<name sortKey="Mak, T W" uniqKey="Mak T">T.W. Mak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuida, K" uniqKey="Kuida K">K. Kuida</name>
</author>
<author>
<name sortKey="Zheng, T S" uniqKey="Zheng T">T.S. Zheng</name>
</author>
<author>
<name sortKey="Na, S" uniqKey="Na S">S. Na</name>
</author>
<author>
<name sortKey="Kuan, C" uniqKey="Kuan C">C. Kuan</name>
</author>
<author>
<name sortKey="Yang, D" uniqKey="Yang D">D. Yang</name>
</author>
<author>
<name sortKey="Karasuyama, H" uniqKey="Karasuyama H">H. Karasuyama</name>
</author>
<author>
<name sortKey="Rakic, P" uniqKey="Rakic P">P. Rakic</name>
</author>
<author>
<name sortKey="Flavell, R A" uniqKey="Flavell R">R.A. Flavell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Slack, R S" uniqKey="Slack R">R.S. Slack</name>
</author>
<author>
<name sortKey="Belliveau, D J" uniqKey="Belliveau D">D.J. Belliveau</name>
</author>
<author>
<name sortKey="Rosenberg, M" uniqKey="Rosenberg M">M. Rosenberg</name>
</author>
<author>
<name sortKey="Atwal, J" uniqKey="Atwal J">J. Atwal</name>
</author>
<author>
<name sortKey="Lochmuller, H" uniqKey="Lochmuller H">H. Lochmuller</name>
</author>
<author>
<name sortKey="Aloyz, R" uniqKey="Aloyz R">R. Aloyz</name>
</author>
<author>
<name sortKey="Haghighi, A" uniqKey="Haghighi A">A. Haghighi</name>
</author>
<author>
<name sortKey="Lach, B" uniqKey="Lach B">B. Lach</name>
</author>
<author>
<name sortKey="Seth, P" uniqKey="Seth P">P. Seth</name>
</author>
<author>
<name sortKey="Cooper, E" uniqKey="Cooper E">E. Cooper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, F D" uniqKey="Miller F">F.D. Miller</name>
</author>
<author>
<name sortKey="Kaplan, D R" uniqKey="Kaplan D">D.R. Kaplan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aloyz, R S" uniqKey="Aloyz R">R.S. Aloyz</name>
</author>
<author>
<name sortKey="Bamji, S X" uniqKey="Bamji S">S.X. Bamji</name>
</author>
<author>
<name sortKey="Pozniak, C D" uniqKey="Pozniak C">C.D. Pozniak</name>
</author>
<author>
<name sortKey="Toma, J G" uniqKey="Toma J">J.G. Toma</name>
</author>
<author>
<name sortKey="Atwal, J" uniqKey="Atwal J">J. Atwal</name>
</author>
<author>
<name sortKey="Kaplan, D R" uniqKey="Kaplan D">D.R. Kaplan</name>
</author>
<author>
<name sortKey="Miller, F D" uniqKey="Miller F">F.D. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Y" uniqKey="Lee Y">Y. Lee</name>
</author>
<author>
<name sortKey="Mckinnon, P J" uniqKey="Mckinnon P">P.J. McKinnon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chopp, M" uniqKey="Chopp M">M. Chopp</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Zhang, Z G" uniqKey="Zhang Z">Z.G. Zhang</name>
</author>
<author>
<name sortKey="Freytag, S O" uniqKey="Freytag S">S.O. Freytag</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Watanabe, H" uniqKey="Watanabe H">H. Watanabe</name>
</author>
<author>
<name sortKey="Ohta, S" uniqKey="Ohta S">S. Ohta</name>
</author>
<author>
<name sortKey="Kumon, Y" uniqKey="Kumon Y">Y. Kumon</name>
</author>
<author>
<name sortKey="Sakaki, S" uniqKey="Sakaki S">S. Sakaki</name>
</author>
<author>
<name sortKey="Sakanaka, M" uniqKey="Sakanaka M">M. Sakanaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, L J" uniqKey="Martin L">L.J. Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levrero, M" uniqKey="Levrero M">M. Levrero</name>
</author>
<author>
<name sortKey="De Laurenzi, V" uniqKey="De Laurenzi V">V. de Laurenzi</name>
</author>
<author>
<name sortKey="Costanzo, A" uniqKey="Costanzo A">A. Costanzo</name>
</author>
<author>
<name sortKey="Gong, J" uniqKey="Gong J">J. Gong</name>
</author>
<author>
<name sortKey="Wang, J Y" uniqKey="Wang J">J.Y. Wang</name>
</author>
<author>
<name sortKey="Melino, G" uniqKey="Melino G">G. Melino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, H" uniqKey="Wu H">H. Wu</name>
</author>
<author>
<name sortKey="Leng, R P" uniqKey="Leng R">R.P. Leng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saeki, Y" uniqKey="Saeki Y">Y. Saeki</name>
</author>
<author>
<name sortKey="Kudo, T" uniqKey="Kudo T">T. Kudo</name>
</author>
<author>
<name sortKey="Sone, T" uniqKey="Sone T">T. Sone</name>
</author>
<author>
<name sortKey="Kikuchi, Y" uniqKey="Kikuchi Y">Y. Kikuchi</name>
</author>
<author>
<name sortKey="Yokosawa, H" uniqKey="Yokosawa H">H. Yokosawa</name>
</author>
<author>
<name sortKey="Toh E, A" uniqKey="Toh E A">A. Toh-e</name>
</author>
<author>
<name sortKey="Tanaka, K" uniqKey="Tanaka K">K. Tanaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, H" uniqKey="Wu H">H. Wu</name>
</author>
<author>
<name sortKey="Zeinab, R A" uniqKey="Zeinab R">R.A. Zeinab</name>
</author>
<author>
<name sortKey="Flores, E R" uniqKey="Flores E">E.R. Flores</name>
</author>
<author>
<name sortKey="Leng, R P" uniqKey="Leng R">R.P. Leng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Melino, G" uniqKey="Melino G">G. Melino</name>
</author>
<author>
<name sortKey="De Laurenzi, V" uniqKey="De Laurenzi V">V. de Laurenzi</name>
</author>
<author>
<name sortKey="Vousden, K H" uniqKey="Vousden K">K.H. Vousden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, A" uniqKey="Yang A">A. Yang</name>
</author>
<author>
<name sortKey="Walker, N" uniqKey="Walker N">N. Walker</name>
</author>
<author>
<name sortKey="Bronson, R" uniqKey="Bronson R">R. Bronson</name>
</author>
<author>
<name sortKey="Kaghad, M" uniqKey="Kaghad M">M. Kaghad</name>
</author>
<author>
<name sortKey="Oosterwegel, M" uniqKey="Oosterwegel M">M. Oosterwegel</name>
</author>
<author>
<name sortKey="Bonnin, J" uniqKey="Bonnin J">J. Bonnin</name>
</author>
<author>
<name sortKey="Vagner, C" uniqKey="Vagner C">C. Vagner</name>
</author>
<author>
<name sortKey="Bonnet, H" uniqKey="Bonnet H">H. Bonnet</name>
</author>
<author>
<name sortKey="Dikkes, P" uniqKey="Dikkes P">P. Dikkes</name>
</author>
<author>
<name sortKey="Sharpe, A" uniqKey="Sharpe A">A. Sharpe</name>
</author>
<author>
<name sortKey="Mckeon, F" uniqKey="Mckeon F">F. McKeon</name>
</author>
<author>
<name sortKey="Caput, D" uniqKey="Caput D">D. Caput</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flores, E R" uniqKey="Flores E">E.R. Flores</name>
</author>
<author>
<name sortKey="Tsai, K Y" uniqKey="Tsai K">K.Y. Tsai</name>
</author>
<author>
<name sortKey="Crowley, D" uniqKey="Crowley D">D. Crowley</name>
</author>
<author>
<name sortKey="Sengupta, S" uniqKey="Sengupta S">S. Sengupta</name>
</author>
<author>
<name sortKey="Yang, A" uniqKey="Yang A">A. Yang</name>
</author>
<author>
<name sortKey="Mckeon, F" uniqKey="Mckeon F">F. McKeon</name>
</author>
<author>
<name sortKey="Jacks, T" uniqKey="Jacks T">T. Jacks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jost, C A" uniqKey="Jost C">C.A. Jost</name>
</author>
<author>
<name sortKey="Marin, M C" uniqKey="Marin M">M.C. Marin</name>
</author>
<author>
<name sortKey="Kaelin, W G" uniqKey="Kaelin W">W.G. Kaelin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pozniak, C D" uniqKey="Pozniak C">C.D. Pozniak</name>
</author>
<author>
<name sortKey="Radinovic, S" uniqKey="Radinovic S">S. Radinovic</name>
</author>
<author>
<name sortKey="Yang, A" uniqKey="Yang A">A. Yang</name>
</author>
<author>
<name sortKey="Mckeon, F" uniqKey="Mckeon F">F. McKeon</name>
</author>
<author>
<name sortKey="Kaplan, D R" uniqKey="Kaplan D">D.R. Kaplan</name>
</author>
<author>
<name sortKey="Miller, F D" uniqKey="Miller F">F.D. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walsh, G S" uniqKey="Walsh G">G.S. Walsh</name>
</author>
<author>
<name sortKey="Orike, N" uniqKey="Orike N">N. Orike</name>
</author>
<author>
<name sortKey="Kaplan, D R" uniqKey="Kaplan D">D.R. Kaplan</name>
</author>
<author>
<name sortKey="Miller, F D" uniqKey="Miller F">F.D. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Irwin, M S" uniqKey="Irwin M">M.S. Irwin</name>
</author>
<author>
<name sortKey="Miller, F D" uniqKey="Miller F">F.D. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilson, C" uniqKey="Wilson C">C. Wilson</name>
</author>
<author>
<name sortKey="Henry, S" uniqKey="Henry S">S. Henry</name>
</author>
<author>
<name sortKey="Smith, M A" uniqKey="Smith M">M.A. Smith</name>
</author>
<author>
<name sortKey="Bowser, R" uniqKey="Bowser R">R. Bowser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaika, A I" uniqKey="Zaika A">A.I. Zaika</name>
</author>
<author>
<name sortKey="Slade, N" uniqKey="Slade N">N. Slade</name>
</author>
<author>
<name sortKey="Erster, S H" uniqKey="Erster S">S.H. Erster</name>
</author>
<author>
<name sortKey="Sansome, C" uniqKey="Sansome C">C. Sansome</name>
</author>
<author>
<name sortKey="Joseph, T W" uniqKey="Joseph T">T.W. Joseph</name>
</author>
<author>
<name sortKey="Pearl, M" uniqKey="Pearl M">M. Pearl</name>
</author>
<author>
<name sortKey="Chalas, E" uniqKey="Chalas E">E. Chalas</name>
</author>
<author>
<name sortKey="Moll, U M" uniqKey="Moll U">U.M. Moll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakagawa, T" uniqKey="Nakagawa T">T. Nakagawa</name>
</author>
<author>
<name sortKey="Takahashi, M" uniqKey="Takahashi M">M. Takahashi</name>
</author>
<author>
<name sortKey="Ozaki, T" uniqKey="Ozaki T">T. Ozaki</name>
</author>
<author>
<name sortKey="Watanabe, K I" uniqKey="Watanabe K">K.-i. Watanabe</name>
</author>
<author>
<name sortKey="Todo, S" uniqKey="Todo S">S. Todo</name>
</author>
<author>
<name sortKey="Mizuguchi, H" uniqKey="Mizuguchi H">H. Mizuguchi</name>
</author>
<author>
<name sortKey="Hayakawa, T" uniqKey="Hayakawa T">T. Hayakawa</name>
</author>
<author>
<name sortKey="Nakagawara, A" uniqKey="Nakagawara A">A. Nakagawara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grob, T J" uniqKey="Grob T">T.J. Grob</name>
</author>
<author>
<name sortKey="Novak, U" uniqKey="Novak U">U. Novak</name>
</author>
<author>
<name sortKey="Maisse, C" uniqKey="Maisse C">C. Maisse</name>
</author>
<author>
<name sortKey="Barcaroli, D" uniqKey="Barcaroli D">D. Barcaroli</name>
</author>
<author>
<name sortKey="Luthi, A U" uniqKey="Luthi A">A.U. Luthi</name>
</author>
<author>
<name sortKey="Pirnia, F" uniqKey="Pirnia F">F. Pirnia</name>
</author>
<author>
<name sortKey="Hugli, B" uniqKey="Hugli B">B. Hugli</name>
</author>
<author>
<name sortKey="Graber, H U" uniqKey="Graber H">H.U. Graber</name>
</author>
<author>
<name sortKey="De Laurenzi, V" uniqKey="De Laurenzi V">V. de Laurenzi</name>
</author>
<author>
<name sortKey="Fey, M F" uniqKey="Fey M">M.F. Fey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fillippovich, I" uniqKey="Fillippovich I">I. Fillippovich</name>
</author>
<author>
<name sortKey="Sorokina, N" uniqKey="Sorokina N">N. Sorokina</name>
</author>
<author>
<name sortKey="Gatei, M" uniqKey="Gatei M">M. Gatei</name>
</author>
<author>
<name sortKey="Haupt, Y" uniqKey="Haupt Y">Y. Haupt</name>
</author>
<author>
<name sortKey="Hobson, K" uniqKey="Hobson K">K. Hobson</name>
</author>
<author>
<name sortKey="Moallem, E" uniqKey="Moallem E">E. Moallem</name>
</author>
<author>
<name sortKey="Spring, K" uniqKey="Spring K">K. Spring</name>
</author>
<author>
<name sortKey="Mould, M" uniqKey="Mould M">M. Mould</name>
</author>
<author>
<name sortKey="Mcguckin, M A" uniqKey="Mcguckin M">M.A. McGuckin</name>
</author>
<author>
<name sortKey="Lavin, M F" uniqKey="Lavin M">M.F. Lavin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Irwin, M S" uniqKey="Irwin M">M.S. Irwin</name>
</author>
<author>
<name sortKey="Kaelin, W G" uniqKey="Kaelin W">W.G. Kaelin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hosoda, M" uniqKey="Hosoda M">M. Hosoda</name>
</author>
<author>
<name sortKey="Ozaki, T" uniqKey="Ozaki T">T. Ozaki</name>
</author>
<author>
<name sortKey="Miyazaki, K" uniqKey="Miyazaki K">K. Miyazaki</name>
</author>
<author>
<name sortKey="Hayashi, S" uniqKey="Hayashi S">S. Hayashi</name>
</author>
<author>
<name sortKey="Furuya, K" uniqKey="Furuya K">K. Furuya</name>
</author>
<author>
<name sortKey="Watanabe, K" uniqKey="Watanabe K">K. Watanabe</name>
</author>
<author>
<name sortKey="Nakagawa, T" uniqKey="Nakagawa T">T. Nakagawa</name>
</author>
<author>
<name sortKey="Hanamoto, T" uniqKey="Hanamoto T">T. Hanamoto</name>
</author>
<author>
<name sortKey="Todo, S" uniqKey="Todo S">S. Todo</name>
</author>
<author>
<name sortKey="Nakagawara, A" uniqKey="Nakagawara A">A. Nakagawara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ozaki, T" uniqKey="Ozaki T">T. Ozaki</name>
</author>
<author>
<name sortKey="Hosoda, M" uniqKey="Hosoda M">M. Hosoda</name>
</author>
<author>
<name sortKey="Miyazaki, K" uniqKey="Miyazaki K">K. Miyazaki</name>
</author>
<author>
<name sortKey="Hayashi, S" uniqKey="Hayashi S">S. Hayashi</name>
</author>
<author>
<name sortKey="Watanabe, K" uniqKey="Watanabe K">K. Watanabe</name>
</author>
<author>
<name sortKey="Nakagawa, T" uniqKey="Nakagawa T">T. Nakagawa</name>
</author>
<author>
<name sortKey="Nakagawara, A" uniqKey="Nakagawara A">A. Nakagawara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, A F" uniqKey="Lee A">A.F. Lee</name>
</author>
<author>
<name sortKey="Ho, D K" uniqKey="Ho D">D.K. Ho</name>
</author>
<author>
<name sortKey="Zanassi, P" uniqKey="Zanassi P">P. Zanassi</name>
</author>
<author>
<name sortKey="Walsh, G S" uniqKey="Walsh G">G.S. Walsh</name>
</author>
<author>
<name sortKey="Kaplan, D R" uniqKey="Kaplan D">D.R. Kaplan</name>
</author>
<author>
<name sortKey="Miller, F D" uniqKey="Miller F">F.D. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaplan, D R" uniqKey="Kaplan D">D.R. Kaplan</name>
</author>
<author>
<name sortKey="Miller, F D" uniqKey="Miller F">F.D. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jacobs, W B" uniqKey="Jacobs W">W.B. Jacobs</name>
</author>
<author>
<name sortKey="Govoni, G" uniqKey="Govoni G">G. Govoni</name>
</author>
<author>
<name sortKey="Ho, D" uniqKey="Ho D">D. Ho</name>
</author>
<author>
<name sortKey="Atwal, J K" uniqKey="Atwal J">J.K. Atwal</name>
</author>
<author>
<name sortKey="Barnabe Heider, F" uniqKey="Barnabe Heider F">F. Barnabe-Heider</name>
</author>
<author>
<name sortKey="Keyes, W M" uniqKey="Keyes W">W.M. Keyes</name>
</author>
<author>
<name sortKey="Mills, A A" uniqKey="Mills A">A.A. Mills</name>
</author>
<author>
<name sortKey="Miller, F D" uniqKey="Miller F">F.D. Miller</name>
</author>
<author>
<name sortKey="Kaplan, D R" uniqKey="Kaplan D">D.R. Kaplan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicotera, P" uniqKey="Nicotera P">P. Nicotera</name>
</author>
<author>
<name sortKey="Melino, G" uniqKey="Melino G">G. Melino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gressner, O" uniqKey="Gressner O">O. Gressner</name>
</author>
<author>
<name sortKey="Schilling, T" uniqKey="Schilling T">T. Schilling</name>
</author>
<author>
<name sortKey="Lorenz, K" uniqKey="Lorenz K">K. Lorenz</name>
</author>
<author>
<name sortKey="Schleithoff, E S" uniqKey="Schleithoff E">E.S. Schleithoff</name>
</author>
<author>
<name sortKey="Koch, A" uniqKey="Koch A">A. Koch</name>
</author>
<author>
<name sortKey="Schulze Bergkamen, H" uniqKey="Schulze Bergkamen H">H. Schulze-Bergkamen</name>
</author>
<author>
<name sortKey="Lena, A M" uniqKey="Lena A">A.M. Lena</name>
</author>
<author>
<name sortKey="Candi, E" uniqKey="Candi E">E. Candi</name>
</author>
<author>
<name sortKey="Terrinoni, A" uniqKey="Terrinoni A">A. Terrinoni</name>
</author>
<author>
<name sortKey="Catani, M V" uniqKey="Catani M">M.V. Catani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="King, K E" uniqKey="King K">K.E. King</name>
</author>
<author>
<name sortKey="Ponnamperuma, R M" uniqKey="Ponnamperuma R">R.M. Ponnamperuma</name>
</author>
<author>
<name sortKey="Yamashita, T" uniqKey="Yamashita T">T. Yamashita</name>
</author>
<author>
<name sortKey="Tokino, T" uniqKey="Tokino T">T. Tokino</name>
</author>
<author>
<name sortKey="Lee, L A" uniqKey="Lee L">L.A. Lee</name>
</author>
<author>
<name sortKey="Young, M F" uniqKey="Young M">M.F. Young</name>
</author>
<author>
<name sortKey="Weinberg, W C" uniqKey="Weinberg W">W.C. Weinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamaguchi, K" uniqKey="Yamaguchi K">K. Yamaguchi</name>
</author>
<author>
<name sortKey="Wu, L" uniqKey="Wu L">L. Wu</name>
</author>
<author>
<name sortKey="Caballero, O L" uniqKey="Caballero O">O.L. Caballero</name>
</author>
<author>
<name sortKey="Hibi, K" uniqKey="Hibi K">K. Hibi</name>
</author>
<author>
<name sortKey="Trink, B" uniqKey="Trink B">B. Trink</name>
</author>
<author>
<name sortKey="Resto, V" uniqKey="Resto V">V. Resto</name>
</author>
<author>
<name sortKey="Cairns, P" uniqKey="Cairns P">P. Cairns</name>
</author>
<author>
<name sortKey="Okami, K" uniqKey="Okami K">K. Okami</name>
</author>
<author>
<name sortKey="Koch, W M" uniqKey="Koch W">W.M. Koch</name>
</author>
<author>
<name sortKey="Sidransky, D" uniqKey="Sidransky D">D. Sidransky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pelosi, G" uniqKey="Pelosi G">G. Pelosi</name>
</author>
<author>
<name sortKey="Pasini, F" uniqKey="Pasini F">F. Pasini</name>
</author>
<author>
<name sortKey="Stenholm, C S" uniqKey="Stenholm C">C.S. Stenholm</name>
</author>
<author>
<name sortKey="Pastorino, U" uniqKey="Pastorino U">U. Pastorino</name>
</author>
<author>
<name sortKey="Maisonneuve, P" uniqKey="Maisonneuve P">P. Maisonneuve</name>
</author>
<author>
<name sortKey="Sonzogni, A" uniqKey="Sonzogni A">A. Sonzogni</name>
</author>
<author>
<name sortKey="Maffini, F" uniqKey="Maffini F">F. Maffini</name>
</author>
<author>
<name sortKey="Pruneri, G" uniqKey="Pruneri G">G. Pruneri</name>
</author>
<author>
<name sortKey="Fraggetta, F" uniqKey="Fraggetta F">F. Fraggetta</name>
</author>
<author>
<name sortKey="Cavallon, A" uniqKey="Cavallon A">A. Cavallon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crook, T" uniqKey="Crook T">T. Crook</name>
</author>
<author>
<name sortKey="Nicholls, J M" uniqKey="Nicholls J">J.M. Nicholls</name>
</author>
<author>
<name sortKey="Brooks, L" uniqKey="Brooks L">L. Brooks</name>
</author>
<author>
<name sortKey="O Ions, J" uniqKey="O Ions J">J. O’Nions</name>
</author>
<author>
<name sortKey="Allday, M J" uniqKey="Allday M">M.J. Allday</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chatterjee, A" uniqKey="Chatterjee A">A. Chatterjee</name>
</author>
<author>
<name sortKey="Upadhyay, S" uniqKey="Upadhyay S">S. Upadhyay</name>
</author>
<author>
<name sortKey="Chang, X" uniqKey="Chang X">X. Chang</name>
</author>
<author>
<name sortKey="Nagpal, J K" uniqKey="Nagpal J">J.K. Nagpal</name>
</author>
<author>
<name sortKey="Trink, B" uniqKey="Trink B">B. Trink</name>
</author>
<author>
<name sortKey="Sidransky, D" uniqKey="Sidransky D">D. Sidransky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Westfall, M D" uniqKey="Westfall M">M.D. Westfall</name>
</author>
<author>
<name sortKey="Joyner, A S" uniqKey="Joyner A">A.S. Joyner</name>
</author>
<author>
<name sortKey="Barbieri, C E" uniqKey="Barbieri C">C.E. Barbieri</name>
</author>
<author>
<name sortKey="Livingstone, M" uniqKey="Livingstone M">M. Livingstone</name>
</author>
<author>
<name sortKey="Pietenpol, J A" uniqKey="Pietenpol J">J.A. Pietenpol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Osada, M" uniqKey="Osada M">M. Osada</name>
</author>
<author>
<name sortKey="Inaba, R" uniqKey="Inaba R">R. Inaba</name>
</author>
<author>
<name sortKey="Shinohara, H" uniqKey="Shinohara H">H. Shinohara</name>
</author>
<author>
<name sortKey="Hagiwara, M" uniqKey="Hagiwara M">M. Hagiwara</name>
</author>
<author>
<name sortKey="Nakamura, M" uniqKey="Nakamura M">M. Nakamura</name>
</author>
<author>
<name sortKey="Ikawa, Y" uniqKey="Ikawa Y">Y. Ikawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koshy, B T" uniqKey="Koshy B">B.T. Koshy</name>
</author>
<author>
<name sortKey="Zoghbi, H Y" uniqKey="Zoghbi H">H.Y. Zoghbi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alves Rodrigues, A" uniqKey="Alves Rodrigues A">A. Alves-Rodrigues</name>
</author>
<author>
<name sortKey="Gregori, L" uniqKey="Gregori L">L. Gregori</name>
</author>
<author>
<name sortKey="Figueiredo Pereira, M E" uniqKey="Figueiredo Pereira M">M.E. Figueiredo-Pereira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayashi, Y" uniqKey="Hayashi Y">Y. Hayashi</name>
</author>
<author>
<name sortKey="Kakita, A" uniqKey="Kakita A">A. Kakita</name>
</author>
<author>
<name sortKey="Yamada, M" uniqKey="Yamada M">M. Yamada</name>
</author>
<author>
<name sortKey="Koide, R" uniqKey="Koide R">R. Koide</name>
</author>
<author>
<name sortKey="Igarashi, S" uniqKey="Igarashi S">S. Igarashi</name>
</author>
<author>
<name sortKey="Takano, H" uniqKey="Takano H">H. Takano</name>
</author>
<author>
<name sortKey="Ikeuchi, T" uniqKey="Ikeuchi T">T. Ikeuchi</name>
</author>
<author>
<name sortKey="Wakabayashi, K" uniqKey="Wakabayashi K">K. Wakabayashi</name>
</author>
<author>
<name sortKey="Egawa, S" uniqKey="Egawa S">S. Egawa</name>
</author>
<author>
<name sortKey="Tsuji, S" uniqKey="Tsuji S">S. Tsuji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsumoto, M" uniqKey="Matsumoto M">M. Matsumoto</name>
</author>
<author>
<name sortKey="Yada, M" uniqKey="Yada M">M. Yada</name>
</author>
<author>
<name sortKey="Hatakeyama, S" uniqKey="Hatakeyama S">S. Hatakeyama</name>
</author>
<author>
<name sortKey="Ishimoto, H" uniqKey="Ishimoto H">H. Ishimoto</name>
</author>
<author>
<name sortKey="Tanimura, T" uniqKey="Tanimura T">T. Tanimura</name>
</author>
<author>
<name sortKey="Tsuji, S" uniqKey="Tsuji S">S. Tsuji</name>
</author>
<author>
<name sortKey="Kakizuka, A" uniqKey="Kakizuka A">A. Kakizuka</name>
</author>
<author>
<name sortKey="Kitagawa, M" uniqKey="Kitagawa M">M. Kitagawa</name>
</author>
<author>
<name sortKey="Nakayama, K I" uniqKey="Nakayama K">K.I. Nakayama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lunkes, A" uniqKey="Lunkes A">A. Lunkes</name>
</author>
<author>
<name sortKey="Mandel, J L" uniqKey="Mandel J">J.L. Mandel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaneko Oshikawa, C" uniqKey="Kaneko Oshikawa C">C. Kaneko-Oshikawa</name>
</author>
<author>
<name sortKey="Nakagawa, T" uniqKey="Nakagawa T">T. Nakagawa</name>
</author>
<author>
<name sortKey="Yamada, M" uniqKey="Yamada M">M. Yamada</name>
</author>
<author>
<name sortKey="Yoshikawa, H" uniqKey="Yoshikawa H">H. Yoshikawa</name>
</author>
<author>
<name sortKey="Matsumoto, M" uniqKey="Matsumoto M">M. Matsumoto</name>
</author>
<author>
<name sortKey="Yada, M" uniqKey="Yada M">M. Yada</name>
</author>
<author>
<name sortKey="Hatakeyama, S" uniqKey="Hatakeyama S">S. Hatakeyama</name>
</author>
<author>
<name sortKey="Nakayama, K" uniqKey="Nakayama K">K. Nakayama</name>
</author>
<author>
<name sortKey="Nakayama, K I" uniqKey="Nakayama K">K.I. Nakayama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morreale, G" uniqKey="Morreale G">G. Morreale</name>
</author>
<author>
<name sortKey="Conforti, L" uniqKey="Conforti L">L. Conforti</name>
</author>
<author>
<name sortKey="Coadwell, J" uniqKey="Coadwell J">J. Coadwell</name>
</author>
<author>
<name sortKey="Wilbrey, A L" uniqKey="Wilbrey A">A.L. Wilbrey</name>
</author>
<author>
<name sortKey="Coleman, M P" uniqKey="Coleman M">M.P. Coleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, R M" uniqKey="Dai R">R.M. Dai</name>
</author>
<author>
<name sortKey="Li, C C" uniqKey="Li C">C.C. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conforti, L" uniqKey="Conforti L">L. Conforti</name>
</author>
<author>
<name sortKey="Wilbrey, A" uniqKey="Wilbrey A">A. Wilbrey</name>
</author>
<author>
<name sortKey="Morreale, G" uniqKey="Morreale G">G. Morreale</name>
</author>
<author>
<name sortKey="Janeckova, L" uniqKey="Janeckova L">L. Janeckova</name>
</author>
<author>
<name sortKey="Beirowski, B" uniqKey="Beirowski B">B. Beirowski</name>
</author>
<author>
<name sortKey="Adalbert, R" uniqKey="Adalbert R">R. Adalbert</name>
</author>
<author>
<name sortKey="Mazzola, F" uniqKey="Mazzola F">F. Mazzola</name>
</author>
<author>
<name sortKey="Di Stefano, M" uniqKey="Di Stefano M">M. di Stefano</name>
</author>
<author>
<name sortKey="Hartley, R" uniqKey="Hartley R">R. Hartley</name>
</author>
<author>
<name sortKey="Babetto, E" uniqKey="Babetto E">E. Babetto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferri, A" uniqKey="Ferri A">A. Ferri</name>
</author>
<author>
<name sortKey="Sanes, J R" uniqKey="Sanes J">J.R. Sanes</name>
</author>
<author>
<name sortKey="Coleman, M P" uniqKey="Coleman M">M.P. Coleman</name>
</author>
<author>
<name sortKey="Cunningham, J M" uniqKey="Cunningham J">J.M. Cunningham</name>
</author>
<author>
<name sortKey="Kato, A C" uniqKey="Kato A">A.C. Kato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Samsam, M" uniqKey="Samsam M">M. Samsam</name>
</author>
<author>
<name sortKey="Mi, W" uniqKey="Mi W">W. Mi</name>
</author>
<author>
<name sortKey="Wessig, C" uniqKey="Wessig C">C. Wessig</name>
</author>
<author>
<name sortKey="Zielasek, J" uniqKey="Zielasek J">J. Zielasek</name>
</author>
<author>
<name sortKey="Toyka, K V" uniqKey="Toyka K">K.V. Toyka</name>
</author>
<author>
<name sortKey="Coleman, M P" uniqKey="Coleman M">M.P. Coleman</name>
</author>
<author>
<name sortKey="Martini, R" uniqKey="Martini R">R. Martini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, M" uniqKey="Wang M">M. Wang</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y. Wu</name>
</author>
<author>
<name sortKey="Culver, D G" uniqKey="Culver D">D.G. Culver</name>
</author>
<author>
<name sortKey="Glass, J D" uniqKey="Glass J">J.D. Glass</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coleman, M" uniqKey="Coleman M">M. Coleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mack, T G" uniqKey="Mack T">T.G. Mack</name>
</author>
<author>
<name sortKey="Reiner, M" uniqKey="Reiner M">M. Reiner</name>
</author>
<author>
<name sortKey="Beirowski, B" uniqKey="Beirowski B">B. Beirowski</name>
</author>
<author>
<name sortKey="Mi, W" uniqKey="Mi W">W. Mi</name>
</author>
<author>
<name sortKey="Emanuelli, M" uniqKey="Emanuelli M">M. Emanuelli</name>
</author>
<author>
<name sortKey="Wagner, D" uniqKey="Wagner D">D. Wagner</name>
</author>
<author>
<name sortKey="Thomson, D" uniqKey="Thomson D">D. Thomson</name>
</author>
<author>
<name sortKey="Gillingwater, T" uniqKey="Gillingwater T">T. Gillingwater</name>
</author>
<author>
<name sortKey="Court, F" uniqKey="Court F">F. Court</name>
</author>
<author>
<name sortKey="Conforti, L" uniqKey="Conforti L">L. Conforti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
<author>
<name sortKey="Fujiki, M" uniqKey="Fujiki M">M. Fujiki</name>
</author>
<author>
<name sortKey="Guth, L" uniqKey="Guth L">L. Guth</name>
</author>
<author>
<name sortKey="Steward, O" uniqKey="Steward O">O. Steward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glass, J D" uniqKey="Glass J">J.D. Glass</name>
</author>
<author>
<name sortKey="Brushart, T M" uniqKey="Brushart T">T.M. Brushart</name>
</author>
<author>
<name sortKey="George, E B" uniqKey="George E">E.B. George</name>
</author>
<author>
<name sortKey="Griffin, J W" uniqKey="Griffin J">J.W. Griffin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buckmaster, E A" uniqKey="Buckmaster E">E.A. Buckmaster</name>
</author>
<author>
<name sortKey="Perry, V H" uniqKey="Perry V">V.H. Perry</name>
</author>
<author>
<name sortKey="Brown, M C" uniqKey="Brown M">M.C. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perry, V H" uniqKey="Perry V">V.H. Perry</name>
</author>
<author>
<name sortKey="Brown, M C" uniqKey="Brown M">M.C. Brown</name>
</author>
<author>
<name sortKey="Lunn, E R" uniqKey="Lunn E">E.R. Lunn</name>
</author>
<author>
<name sortKey="Tree, P" uniqKey="Tree P">P. Tree</name>
</author>
<author>
<name sortKey="Gordon, S" uniqKey="Gordon S">S. Gordon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gillingwater, T H" uniqKey="Gillingwater T">T.H. Gillingwater</name>
</author>
<author>
<name sortKey="Ribchester, R R" uniqKey="Ribchester R">R.R. Ribchester</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gillingwater, T H" uniqKey="Gillingwater T">T.H. Gillingwater</name>
</author>
<author>
<name sortKey="Thomson, D" uniqKey="Thomson D">D. Thomson</name>
</author>
<author>
<name sortKey="Mack, T G" uniqKey="Mack T">T.G. Mack</name>
</author>
<author>
<name sortKey="Soffin, E M" uniqKey="Soffin E">E.M. Soffin</name>
</author>
<author>
<name sortKey="Mattison, R J" uniqKey="Mattison R">R.J. Mattison</name>
</author>
<author>
<name sortKey="Coleman, M P" uniqKey="Coleman M">M.P. Coleman</name>
</author>
<author>
<name sortKey="Ribchester, R R" uniqKey="Ribchester R">R.R. Ribchester</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adalbert, R" uniqKey="Adalbert R">R. Adalbert</name>
</author>
<author>
<name sortKey="Gillingwater, T H" uniqKey="Gillingwater T">T.H. Gillingwater</name>
</author>
<author>
<name sortKey="Haley, J E" uniqKey="Haley J">J.E. Haley</name>
</author>
<author>
<name sortKey="Bridge, K" uniqKey="Bridge K">K. Bridge</name>
</author>
<author>
<name sortKey="Beirowski, B" uniqKey="Beirowski B">B. Beirowski</name>
</author>
<author>
<name sortKey="Berek, L" uniqKey="Berek L">L. Berek</name>
</author>
<author>
<name sortKey="Wagner, D" uniqKey="Wagner D">D. Wagner</name>
</author>
<author>
<name sortKey="Grumme, D" uniqKey="Grumme D">D. Grumme</name>
</author>
<author>
<name sortKey="Thomson, D" uniqKey="Thomson D">D. Thomson</name>
</author>
<author>
<name sortKey="Celik, A" uniqKey="Celik A">A. Celik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deckwerth, T L" uniqKey="Deckwerth T">T.L. Deckwerth</name>
</author>
<author>
<name sortKey="Johnson, E M" uniqKey="Johnson E">E.M. Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lunn, E R" uniqKey="Lunn E">E.R. Lunn</name>
</author>
<author>
<name sortKey="Perry, V H" uniqKey="Perry V">V.H. Perry</name>
</author>
<author>
<name sortKey="Brown, M C" uniqKey="Brown M">M.C. Brown</name>
</author>
<author>
<name sortKey="Rosen, H" uniqKey="Rosen H">H. Rosen</name>
</author>
<author>
<name sortKey="Gordon, S" uniqKey="Gordon S">S. Gordon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conforti, L" uniqKey="Conforti L">L. Conforti</name>
</author>
<author>
<name sortKey="Fang, G" uniqKey="Fang G">G. Fang</name>
</author>
<author>
<name sortKey="Beirowski, B" uniqKey="Beirowski B">B. Beirowski</name>
</author>
<author>
<name sortKey="Wang, M S" uniqKey="Wang M">M.S. Wang</name>
</author>
<author>
<name sortKey="Sorci, L" uniqKey="Sorci L">L. Sorci</name>
</author>
<author>
<name sortKey="Asress, S" uniqKey="Asress S">S. Asress</name>
</author>
<author>
<name sortKey="Adalbert, R" uniqKey="Adalbert R">R. Adalbert</name>
</author>
<author>
<name sortKey="Silva, A" uniqKey="Silva A">A. Silva</name>
</author>
<author>
<name sortKey="Bridge, K" uniqKey="Bridge K">K. Bridge</name>
</author>
<author>
<name sortKey="Huang, X P" uniqKey="Huang X">X.P. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emanuelli, M" uniqKey="Emanuelli M">M. Emanuelli</name>
</author>
<author>
<name sortKey="Carnevali, F" uniqKey="Carnevali F">F. Carnevali</name>
</author>
<author>
<name sortKey="Saccucci, F" uniqKey="Saccucci F">F. Saccucci</name>
</author>
<author>
<name sortKey="Pierella, F" uniqKey="Pierella F">F. Pierella</name>
</author>
<author>
<name sortKey="Amici, A" uniqKey="Amici A">A. Amici</name>
</author>
<author>
<name sortKey="Raffaelli, N" uniqKey="Raffaelli N">N. Raffaelli</name>
</author>
<author>
<name sortKey="Magni, G" uniqKey="Magni G">G. Magni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sasaki, Y" uniqKey="Sasaki Y">Y. Sasaki</name>
</author>
<author>
<name sortKey="Vohra, B P" uniqKey="Vohra B">B.P. Vohra</name>
</author>
<author>
<name sortKey="Lund, F E" uniqKey="Lund F">F.E. Lund</name>
</author>
<author>
<name sortKey="Milbrandt, J" uniqKey="Milbrandt J">J. Milbrandt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laser, H" uniqKey="Laser H">H. Laser</name>
</author>
<author>
<name sortKey="Conforti, L" uniqKey="Conforti L">L. Conforti</name>
</author>
<author>
<name sortKey="Morreale, G" uniqKey="Morreale G">G. Morreale</name>
</author>
<author>
<name sortKey="Mack, T G" uniqKey="Mack T">T.G. Mack</name>
</author>
<author>
<name sortKey="Heyer, M" uniqKey="Heyer M">M. Heyer</name>
</author>
<author>
<name sortKey="Haley, J E" uniqKey="Haley J">J.E. Haley</name>
</author>
<author>
<name sortKey="Wishart, T M" uniqKey="Wishart T">T.M. Wishart</name>
</author>
<author>
<name sortKey="Beirowski, B" uniqKey="Beirowski B">B. Beirowski</name>
</author>
<author>
<name sortKey="Walker, S A" uniqKey="Walker S">S.A. Walker</name>
</author>
<author>
<name sortKey="Haase, G" uniqKey="Haase G">G. Haase</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilbrey, A L" uniqKey="Wilbrey A">A.L. Wilbrey</name>
</author>
<author>
<name sortKey="Haley, J E" uniqKey="Haley J">J.E. Haley</name>
</author>
<author>
<name sortKey="Wishart, T M" uniqKey="Wishart T">T.M. Wishart</name>
</author>
<author>
<name sortKey="Conforti, L" uniqKey="Conforti L">L. Conforti</name>
</author>
<author>
<name sortKey="Morreale, G" uniqKey="Morreale G">G. Morreale</name>
</author>
<author>
<name sortKey="Beirowski, B" uniqKey="Beirowski B">B. Beirowski</name>
</author>
<author>
<name sortKey="Babetto, E" uniqKey="Babetto E">E. Babetto</name>
</author>
<author>
<name sortKey="Adalbert, R" uniqKey="Adalbert R">R. Adalbert</name>
</author>
<author>
<name sortKey="Gillingwater, T H" uniqKey="Gillingwater T">T.H. Gillingwater</name>
</author>
<author>
<name sortKey="Smith, T" uniqKey="Smith T">T. Smith</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Mol Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Mol Sci</journal-id>
<journal-id journal-id-type="publisher-id">ijms</journal-id>
<journal-title-group>
<journal-title>International Journal of Molecular Sciences</journal-title>
</journal-title-group>
<issn pub-type="epub">1422-0067</issn>
<publisher>
<publisher-name>Molecular Diversity Preservation International (MDPI)</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23222733</article-id>
<article-id pub-id-type="pmc">3546727</article-id>
<article-id pub-id-type="doi">10.3390/ijms131216865</article-id>
<article-id pub-id-type="publisher-id">ijms-13-16865</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>UBE4B: A Promising Regulatory Molecule in Neuronal Death and Survival</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Zeinab</surname>
<given-names>Rami Abou</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wu</surname>
<given-names>Hong</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sergi</surname>
<given-names>Consolato</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Leng</surname>
<given-names>Roger</given-names>
</name>
<xref ref-type="corresp" rid="c1-ijms-13-16865">*</xref>
</contrib>
<aff id="af1-ijms-13-16865">Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada; E-Mails:
<email>abouzein@ualberta.ca</email>
(R.A.Z.);
<email>hwu4@ualberta.ca</email>
(H.W.);
<email>sergi@ualberta.ca</email>
(C.S.)</aff>
</contrib-group>
<author-notes>
<corresp id="c1-ijms-13-16865">
<label>*</label>
Author to whom correspondence should be addressed; E-Mail:
<email>rleng@ualberta.ca</email>
; Tel.: +1-780-492-4985; Fax: +1-780-492-9974.</corresp>
</author-notes>
<pub-date pub-type="collection">
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>10</day>
<month>12</month>
<year>2012</year>
</pub-date>
<volume>13</volume>
<issue>12</issue>
<fpage>16865</fpage>
<lpage>16879</lpage>
<history>
<date date-type="received">
<day>07</day>
<month>10</month>
<year>2012</year>
</date>
<date date-type="rev-recd">
<day>22</day>
<month>11</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>11</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.</copyright-statement>
<copyright-year>2012</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/3.0">
<license-p>
<pmc-comment>CREATIVE COMMONS</pmc-comment>
This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/3.0/">http://creativecommons.org/licenses/by/3.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Neuronal survival and death of neurons are considered a fundamental mechanism in the regulation of the nervous system during early development of the system and in adulthood. Defects in this mechanism are highly problematic and are associated with many neurodegenerative diseases. Because neuronal programmed death is apoptotic in nature, indicating that apoptosis is a key regulatory process, the p53 family members (p53, p73, p63) act as checkpoints in neurons due to their role in apoptosis. The complexity of this system is due to the existence of different naturally occurring isoforms that have different functions from the wild types (WT), varying from apoptotic to anti-apoptotic effects. In this review, we focus on the role of UBE4B (known as Ube4b or Ufd2a in mouse), an E3/E4 ligase that triggers substrate polyubiquitination, as a master regulatory ligase associated with the p53 family WT proteins and isoforms in regulating neuronal survival. UBE4B is also associated with other pathways independent of the p53 family, such as polyglutamine aggregation and Wallerian degeneration, both of which are critical in neurodegenerative diseases. Many of the hypotheses presented here are gateways to understanding the programmed death/survival of neurons regulated by UBE4B in normal physiology, and a means of introducing potential therapeutic approaches with implications in treating several neurodegenerative diseases.</p>
</abstract>
<kwd-group>
<kwd>UBE4B</kwd>
<kwd>p53</kwd>
<kwd>p73</kwd>
<kwd>p63</kwd>
<kwd>nervous system</kwd>
<kwd>apoptosis</kwd>
<kwd>neurodegenerative diseases</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>1. Introduction</title>
<p>With regard to the nervous system, there is no doubt that the regulatory mechanism underlying the growth and death of neuronal cells during early development and at later adult stages is complex [
<xref ref-type="bibr" rid="b1-ijms-13-16865">1</xref>
]. Many aspects of this mechanism have been revealed in normal physiology, but not in pathological situations. In neuronal development, neuronal death is considered to be part of the development mechanism during early stages, in which many neurons are programmed for death, thus avoiding any inappropriate neuronal connections [
<xref ref-type="bibr" rid="b2-ijms-13-16865">2</xref>
]. It has been highlighted that this neuronal elimination mechanism is essential to removing inappropriate differentiated cells after neural precursors undergo exponential proliferation. However, this neuronal elimination is also necessary after differentiated neurons migrate to their anatomical location, in which they establish their target connections [
<xref ref-type="bibr" rid="b3-ijms-13-16865">3</xref>
,
<xref ref-type="bibr" rid="b4-ijms-13-16865">4</xref>
]. At this stage, neurons that do not receive optimal trophic support will undergo apoptosis [
<xref ref-type="bibr" rid="b5-ijms-13-16865">5</xref>
]. Interestingly, neuronal death at later stages has also been characterized as apoptotic in nature in traumatic nervous system injury [
<xref ref-type="bibr" rid="b6-ijms-13-16865">6</xref>
,
<xref ref-type="bibr" rid="b7-ijms-13-16865">7</xref>
]. It is worth mentioning that after surviving the developmental stage, neurons become more stable and less vulnerable to injury, indicating that tight regulation of the apoptotic pathway protects mature neurons and guarantees their survival in the absence of injury [
<xref ref-type="bibr" rid="b2-ijms-13-16865">2</xref>
]. This process opens a gateway for the role of regulatory molecules, which appear to be absent or non-functional at early developmental stages, yet become key factors for monitoring neural death at later stages. The apoptotic nature of neuronal death remained vague until some reports revealed that the mitochondrial death pathway is involved [
<xref ref-type="bibr" rid="b8-ijms-13-16865">8</xref>
]. Such findings drew major attention to the many molecular mechanisms that are involved in the mitochondrial death pathway such as the p53 system and its role in apoptosis [
<xref ref-type="bibr" rid="b9-ijms-13-16865">9</xref>
]. The p53 system is composed of three major proteins: p53, p63, and p73. p53 was the first to be identified, and its role as a tumor suppressor is critical in the field of cancer [
<xref ref-type="bibr" rid="b10-ijms-13-16865">10</xref>
]. Similarly, p73 and p63, which were discovered later, also have tumor suppressor activities [
<xref ref-type="bibr" rid="b11-ijms-13-16865">11</xref>
]. All tumor suppressors have been described as keepers of the genome because they monitor cell proliferation and induce apoptosis, cell cycle arrest, or DNA damage repair [
<xref ref-type="bibr" rid="b10-ijms-13-16865">10</xref>
]. The role of the p53 system in inducing programmed cell death, or monitoring the apoptotic pathway and the significance of the apoptotic death of neuronal cell have suggested the possible links between the p53 system and the nervous system. In the upcoming sections, we will elucidate the role of each protein of these proteins in the nervous system, and we will present the major findings that highlight the consequence of any defects in the regulation of these proteins on the nervous system [
<xref ref-type="bibr" rid="b12-ijms-13-16865">12</xref>
]. First, we will introduce a regulatory molecule that has taken the topic of a wide range of discussions in the last few years, as it is a major regulatory molecule in the p53 system.</p>
<p>In 2011, Wu
<italic>et al.</italic>
showed that UBE4B acts as an E3/E4 ligase that physically interacts with p53 and MDM2 to promote the polyubiquitination and degradation of p53 in brain tumors, thus decreasing the apoptotic activity of p53 tumor suppressor [
<xref ref-type="bibr" rid="b13-ijms-13-16865">13</xref>
]. Other reports have demonstrated the role of UBE4B in regulating p63 and p73 proteins. Approximately 50%–60% of human tumors show mutations in p53; the remaining tumors exhibit a dysfunctional system despite bearing wild type (WT) [
<xref ref-type="bibr" rid="b10-ijms-13-16865">10</xref>
,
<xref ref-type="bibr" rid="b11-ijms-13-16865">11</xref>
]. The exact mechanism underlying the tight regulation of p53 protein is not fully understood, but it is clear that many processes are involved, including sumoylation [
<xref ref-type="bibr" rid="b14-ijms-13-16865">14</xref>
,
<xref ref-type="bibr" rid="b15-ijms-13-16865">15</xref>
], neddylation [
<xref ref-type="bibr" rid="b16-ijms-13-16865">16</xref>
,
<xref ref-type="bibr" rid="b17-ijms-13-16865">17</xref>
], acetylation and other post-translational modifications [
<xref ref-type="bibr" rid="b18-ijms-13-16865">18</xref>
,
<xref ref-type="bibr" rid="b19-ijms-13-16865">19</xref>
]. However, ubiquitination has been identified as the major regulatory mechanism of p53 protein [
<xref ref-type="bibr" rid="b20-ijms-13-16865">20</xref>
,
<xref ref-type="bibr" rid="b21-ijms-13-16865">21</xref>
]. There are three types of ubiquitination: mono-ubiquitination, multi-ubiquitination, and poly-ubiquitination [
<xref ref-type="bibr" rid="b22-ijms-13-16865">22</xref>
]. In poly-ubiquitination, similar to UBE4B-p53, the proteosomal degradation of the substrate will be induced
<italic>post</italic>
ubiquitination. UBE4B is a mammalian homolog of the protein UFD2 found in
<italic>S. cerversiae</italic>
. UBE4B has a conserved U box which confers its ligase activity [
<xref ref-type="bibr" rid="b13-ijms-13-16865">13</xref>
]. As mentioned above, the type of ubiquitination controls the substrate’s fate. For example mono-ubiquitination similar to that induced by the MDM2 E3 ligase does not induce proteosomal degradation
<italic>post</italic>
ubiquitination [
<xref ref-type="bibr" rid="b23-ijms-13-16865">23</xref>
]. Previous studies have shown that UBE4B is predominantly expressed in mouse neuronal tissues [
<xref ref-type="bibr" rid="b24-ijms-13-16865">24</xref>
], which has attracted increased attention to the UBE4B E3/E4 ligases. In this review, we propose that UBE4B, through its regulatory action on the p53 family proteins, can act as a key factor in the development of the nervous system and can thus be a target molecule in neurodegenerative disease treatments. Also we emphasize on the role of UEB4B in the nervous system via p53-independent pathways, such as axon protection in mice and the clearance of ataxin3, which is responsible for spinocerebellar ataxia type 3.</p>
</sec>
<sec>
<title>2. The Role of UBE4B in the Nervous System via p53 Family Regulation</title>
<sec>
<title>2.1. UBE4B and p53 in the Nervous System</title>
<p>The association between p53 and tumor inhibition has been confirmed in p53
<sup>−/−</sup>
mice, which have a high rate of tumor formation [
<xref ref-type="bibr" rid="b25-ijms-13-16865">25</xref>
]. Although this tumor suppressor activity of p53 is the major focus of a wide range of cancer research, p53 may play a role in the nervous system. According to Armstrong
<italic>et al.</italic>
, 23% of p53
<sup>−/−</sup>
female embryos were characterized with midbrain exencephaly, which results from the abnormal development of the neural tube and the overproduction of neural tissue [
<xref ref-type="bibr" rid="b26-ijms-13-16865">26</xref>
,
<xref ref-type="bibr" rid="b27-ijms-13-16865">27</xref>
]. Therefore, p53 was thought to have two distinct roles: one in tumor suppression and another in nervous system development. Studies analyzing the role of p53 as a transcription factor revealed the apoptotic role of these tumor suppressors by regulating genes involved in the intrinsic mitochondrial death pathway, such as Noxa, Puma, Bax,
<italic>etc.</italic>
[
<xref ref-type="bibr" rid="b9-ijms-13-16865">9</xref>
]. p53 has also been shown to possess a transcription-independent apoptotic function by acting directly on the mitochondrion [
<xref ref-type="bibr" rid="b28-ijms-13-16865">28</xref>
]. Interestingly, an investigation revealed that the exencephalic phenotype of p53
<sup>−/−</sup>
female embryos was similar to the phenotype of animals that had mutations in other members of the intrinsic mitochondrial death pathway, such as caspase 3 and 9, and Apaf-1 [
<xref ref-type="bibr" rid="b29-ijms-13-16865">29</xref>
,
<xref ref-type="bibr" rid="b30-ijms-13-16865">30</xref>
<xref ref-type="bibr" rid="b32-ijms-13-16865">32</xref>
]. In addition, it is important to highlight that p53 overexpression induces the death of sympathetic neurons [
<xref ref-type="bibr" rid="b33-ijms-13-16865">33</xref>
]. However, these p53 knockout sympathetic neurons were able to survive when neural growth factors were removed, confirming the role of pro-apoptotic activity of p53 in the early development of the nervous system [
<xref ref-type="bibr" rid="b34-ijms-13-16865">34</xref>
]. The same outcome was obtained when p53 was present but blocked after binding to E1B55K protein [
<xref ref-type="bibr" rid="b35-ijms-13-16865">35</xref>
]. Many other tumor suppressor proteins play a critical role in the apoptotic pathway, and studies have shown that mutations in specific target genes of p53 result in massive levels of apoptosis in the embryonic nervous system [
<xref ref-type="bibr" rid="b2-ijms-13-16865">2</xref>
].
<italic>In vivo</italic>
analyses showed that sympathetic neurons during the first two postnatal weeks showed a decrease but not an abolishment of the rate of apoptosis in p53
<sup>−/−</sup>
mice [
<xref ref-type="bibr" rid="b35-ijms-13-16865">35</xref>
,
<xref ref-type="bibr" rid="b36-ijms-13-16865">36</xref>
]. Moreover, the role of p53 is not limited to embryonic stages. Less is known about this aspect; however, p53 overexpression has been reported in many neurodegenerative conditions, including seizure-induced excitotoxic damage, middle cerebral artery occlusion, traumatic brain injury, and peripheral nerve injury as it is the case in spinal cord anterior horn cells injury [
<xref ref-type="bibr" rid="b37-ijms-13-16865">37</xref>
,
<xref ref-type="bibr" rid="b38-ijms-13-16865">38</xref>
]. Lastly, p53 neuronal death role was also associated with a wide range of neurodegenerative diseases that are characterized by progressive neuronal death including: Parkinson’s disease, Huntington’s disease, Alzheimer’s disease,
<italic>etc.</italic>
[
<xref ref-type="bibr" rid="b1-ijms-13-16865">1</xref>
].</p>
<p>All of these findings have drawn attention to the regulatory molecules that inhibit or trigger the expression of p53, particularly in neurodegenerative diseases in which p53 has been reported to be upregulated [
<xref ref-type="bibr" rid="b39-ijms-13-16865">39</xref>
]. In the normal body system, p53 protein is continuously repressed until needed. In DNA damage, p53 repression ceases, allowing p53 to function effectively [
<xref ref-type="bibr" rid="b40-ijms-13-16865">40</xref>
]. This finding indicates that defects in the nervous system may occur with any disruption in the tight regulation of p53, resulting in uncontrolled p53 apoptotic activity. UBE4B (known as Ube4b or Ufd2a in mouse) was recently identified as an E4 ligase that is essential for MDM2 to mediate the polyubiquitination and degradation of p53 [
<xref ref-type="bibr" rid="b13-ijms-13-16865">13</xref>
]. Moreover, Ube4b
<sup>−/−</sup>
mice are embryonically lethal, diminishing the possibility that other ligases compensate for the role of Ube4b in p53 regulation [
<xref ref-type="bibr" rid="b41-ijms-13-16865">41</xref>
], which is also supported by rare mutations of other E3 ligases, and excluding their role in p53 regulation at these stages [
<xref ref-type="bibr" rid="b25-ijms-13-16865">25</xref>
]. E3 ligases include MDM2, which was shown to be essential for UBE4B-p53 regulation. Most important, because p53 overexpression is commonly detected in neurodegenerative diseases, defects in UBE4B regulatory mechanism are expected. Accordingly, future extensive investigations should focus on UBE4B expression and activity at the early embryonic stages to reveal how p53 proteins regulate neuronal death and development. Defects in this regulatory mechanism are not limited to the molecular level of UBE4B-p53 interaction; indeed,
<italic>post</italic>
ubiquitination errors might also exist. For instance, lysine residues involved in UBE4B-p53 ubiquitination are important because lysine chains have a major effect on the
<italic>post</italic>
ubiquitination fate of the substrate [
<xref ref-type="bibr" rid="b42-ijms-13-16865">42</xref>
]. One example is E3 ligase Pirh2, which ubiquitinates different lysine residues in p53 and p73. Therefore, its degrading effect differs depending on the lysine residue used. Despite degrading p53, Pirh2 does not have the ability to degrade p73, due to utilizing Lys63 [
<xref ref-type="bibr" rid="b43-ijms-13-16865">43</xref>
]. Thus, more investigations should be performed regarding the lysine residues utilized by UBE4B in p53 ubiquitination.</p>
</sec>
<sec>
<title>2.2. UBE4B and p73 in the Nervous System</title>
<p>As mentioned earlier, many clues on the role of other transcription factors are associated with the role of p53 in sympathetic neuron developmental death. p73 has been suggested to play a role in the nervous system. Many studies have shown the function of p73 as a tumor suppressor; in particular, p73 transactivates a large number of p53 target genes such as
<italic>p21</italic>
and
<italic>Bax</italic>
[
<xref ref-type="bibr" rid="b44-ijms-13-16865">44</xref>
]. Interestingly, it has been demonstrated that p53 tumor suppressor activity depends on the presence of p73, whereas the opposite is not required [
<xref ref-type="bibr" rid="b23-ijms-13-16865">23</xref>
,
<xref ref-type="bibr" rid="b45-ijms-13-16865">45</xref>
,
<xref ref-type="bibr" rid="b46-ijms-13-16865">46</xref>
]; p73 is sufficient to induce apoptosis in the absence of p53 [
<xref ref-type="bibr" rid="b47-ijms-13-16865">47</xref>
]. However, it is important to note that unlike p53
<sup>−/−</sup>
mice, p73
<sup>−/−</sup>
mice do not develop spontaneous tumors [
<xref ref-type="bibr" rid="b45-ijms-13-16865">45</xref>
], but p73
<sup>−/−</sup>
mice show significant neuronal abnormalities, such as the loss of peripheral sympathetic neuron, hippocampal dysgenesis, and the majority dies before they are four weeks old [
<xref ref-type="bibr" rid="b25-ijms-13-16865">25</xref>
,
<xref ref-type="bibr" rid="b45-ijms-13-16865">45</xref>
]. In addition, p73
<sup>−/−</sup>
SCG (superior cervical ganglion) models show a significant decrease in the number of sympathetic neuron number in late embryogenesis, suggesting an anti-apoptotic role for p73; these findings were confirmed in cultured and
<italic>in vivo</italic>
analyses [
<xref ref-type="bibr" rid="b48-ijms-13-16865">48</xref>
]. The role of p73 is not limited to embryonic neuronal development, as adult p73
<sup>+/−</sup>
sensory neurons were more vulnerable to death compared to wild-type neurons following axonal injury [
<xref ref-type="bibr" rid="b49-ijms-13-16865">49</xref>
]. Furthermore, p73
<sup>−/−</sup>
mice that survive after birth develop thin cortical hemispheres and enlarged ventricles [
<xref ref-type="bibr" rid="b50-ijms-13-16865">50</xref>
]. In 2004, Wilson
<italic>et al.</italic>
, reported an alteration in the subcellular distribution of p73, which accumulated in the nucleus and localized to neurites and neurofibrillary tangles in Alzheimer patients [
<xref ref-type="bibr" rid="b51-ijms-13-16865">51</xref>
]. However, little is known about the role of p73 in neurodegenerative diseases and the existence of p73 isoforms further complicates the situation.</p>
<p>Unlike p53, p73 proteins exist in different naturally occurring isoforms in the human body. TAp73 isoforms appear to mimic the role of p53 in activating similar downstream genes that are involved in cell cycle arrest and apoptosis [
<xref ref-type="bibr" rid="b50-ijms-13-16865">50</xref>
]. However, this is not the case for ΔNp73, which lacks the NH
<sub>2</sub>
-terminal transactivation domain. Not only do ΔNp73 proteins not play any role in apoptosis, it was proven that they possess a dominant negative “anti-apoptotic” behavior in contrast to the tumor suppressor function of p53 and full length p73 [
<xref ref-type="bibr" rid="b50-ijms-13-16865">50</xref>
,
<xref ref-type="bibr" rid="b52-ijms-13-16865">52</xref>
]. Reports revealed a negative feedback loop between p73 and ΔNp73 in regulating cell death and survival [
<xref ref-type="bibr" rid="b53-ijms-13-16865">53</xref>
,
<xref ref-type="bibr" rid="b54-ijms-13-16865">54</xref>
]. Further analyses at the molecular level showed that the predominant form of p73 in developing brain and sympathetic ganglia is ΔNp73 [
<xref ref-type="bibr" rid="b48-ijms-13-16865">48</xref>
]. This finding led to the conclusion that ΔNp73 is essential for developing both the central and peripheral nervous system because it rescues neurons from p53 apoptotic activity, and it is characterized as a pro-survival protein [
<xref ref-type="bibr" rid="b55-ijms-13-16865">55</xref>
]. Additionally, the overproduction of ΔNp73 in tumor cells blocked chemotherapy induced apoptosis [
<xref ref-type="bibr" rid="b56-ijms-13-16865">56</xref>
]. Many hypotheses have been proposed regarding the mechanism by which ΔNp73 oppose p53 and p73 apoptotic activity and the signals for such pathways. Pozinak
<italic>et al.</italic>
reported the binding of ΔNp73 to p53 to block its apoptotic activity [
<xref ref-type="bibr" rid="b48-ijms-13-16865">48</xref>
], and Irwin
<italic>et al.</italic>
proposed that this truncated isoform has the ability to bind the TAp73 isoform, which acts similarly to p53, thus abrogating its apoptotic role [
<xref ref-type="bibr" rid="b50-ijms-13-16865">50</xref>
]. Nevertheless, ΔNp73 regulation has remained unclear. In 2005, a study performed by Hosoda
<italic>et al.</italic>
revealed that UBE4B binds to p73α but not p73β; UBE4B also induced p73α proteosomal degradation without promoting ubiquitination [
<xref ref-type="bibr" rid="b57-ijms-13-16865">57</xref>
]. However, these results do not negate the interaction of UBE4B with other p73 isoforms, such as ΔNp73. Furthermore, the SAM domain, which has been reported to be essential for UBE4B binding to p73α, is preserved in ΔNp73α [
<xref ref-type="bibr" rid="b58-ijms-13-16865">58</xref>
]. The lack of p73α ubiquitination when interacting with UBE4B raises some questions regarding the degradation process; although it has been reported that the E3/E4 ligases regulate the expression of their substrate target molecules independent of ubiquitination [
<xref ref-type="bibr" rid="b57-ijms-13-16865">57</xref>
]. Accordingly, we cannot disregard the fact that UBE4B can act as an E3/E4 ligase to regulate proteins with apoptotic functions in a ubiquitin-dependent or -independent manner; this hypothesis requires further investigation. Clearly, ΔNp73 was given more attention after it was shown that the neuronal apoptosis observed in p73
<sup>−/−</sup>
mice is only partially rescued by the absence of p53 [
<xref ref-type="bibr" rid="b59-ijms-13-16865">59</xref>
], indicating that tight regulation of p73 is not dependent on p53 expression or inhibition. Other major ligases, such as Pirh2, were also reported to bind to and ubiquitinate p73, but cannot induce degradation [
<xref ref-type="bibr" rid="b43-ijms-13-16865">43</xref>
]. For MDM2, the interaction with p73 is at the
<italic>N</italic>
-terminal transactivation domain, which is absent in the ΔNp73 isoform [
<xref ref-type="bibr" rid="b23-ijms-13-16865">23</xref>
]. Therefore, UBE4B might be a regulatory factor that manipulates the ratio of apoptotic p73 to the anti-apoptotic isoform, but the process at the p73 level is more complicated compared to p53. The role of other cofactors is highly likely, particularly because UBE4B can only degrade alpha isoform but not the beta isoform, which is triggered without any ubiquitination. Even if the fate of the substrate is degradation, the lack of ubiquitination raises some questions regarding the role of UBE4B as an E4 ligase towards p73 and its isoforms.</p>
</sec>
<sec>
<title>2.3. UBE4B and p63 in the Nervous System</title>
<p>The role of p63 in the nervous system was first proposed by Flores
<italic>et al.</italic>
who showed that p63 can promote apoptosis in cell lines and act as a pro-apoptotic protein in central nervous system development when DNA damage is induced by gamma radiation [
<xref ref-type="bibr" rid="b46-ijms-13-16865">46</xref>
]. The major finding describing the role of p63 in the nervous system was reported by Kaplan
<italic>et al.</italic>
, in which the TAp63 isoform was revealed to be the predominant form in the nervous system, particularly in the developing cortex, and the high levels of this isoform were associated with the level of apoptosis in sympathetic neurons [
<xref ref-type="bibr" rid="b60-ijms-13-16865">60</xref>
]. In addition, TAp63γ overexpression caused neuronal apoptosis even when NGF was present. Further findings supported the pro-apoptotic role of p63; p63
<sup>−/−</sup>
cultured neurons showed significant resistance to apoptosis following NGF withdrawal [
<xref ref-type="bibr" rid="b61-ijms-13-16865">61</xref>
].
<italic>In vivo</italic>
analysis also revealed that embryonic p63
<sup>−/−</sup>
mice developed defects in naturally occurring neuron death, and all died at birth [
<xref ref-type="bibr" rid="b62-ijms-13-16865">62</xref>
]. As mentioned above, p63 and p53 targets similar apoptotic genes to induce apoptosis, and both of proteins increase Bax gene expression, which is essential for the neuronal apoptotic activity of these proteins. As discussed above, Bax triggers the mitochondrial apoptotic pathway [
<xref ref-type="bibr" rid="b61-ijms-13-16865">61</xref>
]. However, in the same study, the TAp63 apoptotic activity was found to be independent of p53. This result was later confirmed by Gressner
<italic>et al.</italic>
, who revealed that TAp63 can mediate apoptosis via other death receptor complexes such as CD95, TNF, and FLIP [
<xref ref-type="bibr" rid="b63-ijms-13-16865">63</xref>
] which is in contrast to the p53 requirement of the presence of p63 to successfully perform its apoptotic activity. Cells deficient in both p63 and p73 exhibit a significant resistance to neuronal apoptosis despite the presence of functional p53. Thus, p53 is proposed to operate upstream of p63 and p73 and cannot trigger cell death by itself as proposed by Nictorea
<italic>et al.</italic>
[
<xref ref-type="bibr" rid="b62-ijms-13-16865">62</xref>
]. Similar to p73, the ΔNp63 isoform, which contains the NH2-terminal transactivation domain, has also been reported to act as an anti-apoptotic protein by promoting cell growth and proliferation [
<xref ref-type="bibr" rid="b64-ijms-13-16865">64</xref>
]. Although little is known about the role of ΔNp63 compared to ΔNp73, it has been shown that ΔNp63 is overexpressed in squamous cell carcinomas [
<xref ref-type="bibr" rid="b65-ijms-13-16865">65</xref>
<xref ref-type="bibr" rid="b67-ijms-13-16865">67</xref>
], and it is believed to enhance cell growth by blocking p53 mediated transactivation [
<xref ref-type="bibr" rid="b64-ijms-13-16865">64</xref>
]. These findings were confirmed when the expression of p53 target genes, such as
<italic>p21</italic>
,
<italic>Noxa</italic>
, and
<italic>Puma</italic>
, was stabilized when ΔNp63 is deleted [
<xref ref-type="bibr" rid="b68-ijms-13-16865">68</xref>
]. ΔNp63α was reported to be inhibited after UV and paclitaxel treatment [
<xref ref-type="bibr" rid="b69-ijms-13-16865">69</xref>
], and thus, ΔNp63 is speculated to act as a key factor blocking TAp63, particularly because it has been revealed to be more stable than TAp63 [
<xref ref-type="bibr" rid="b70-ijms-13-16865">70</xref>
]; further investigation is required to examine this possiblity. The similarities between p63 and p73 in terms of their isoform functions, in which the TA isoform possess apoptotic function and the ΔN isoform counteracts this function, was thought to aid a better understanding of the entire regulatory mechanism.</p>
<p>Unfortunately, with regard to UBE4B, the mechanism is more complex. First, the only isoform of p63 found to be regulated by UBE4B was ΔNp63α, whereas TA isoform showed no link to UBE4B [
<xref ref-type="bibr" rid="b68-ijms-13-16865">68</xref>
]. UBE4B binds to and stabilizes ΔNp63α, and stabilization was first noted by inhibiting ubiquitination; therefore, the degradation of ΔNp63α is a cisplatin-induced mechanism. When ectopically expressed, UBE4B efficiently extends the half-life of ΔNp63α [
<xref ref-type="bibr" rid="b68-ijms-13-16865">68</xref>
]. However, the molecular mechanism underlying this regulatory pathway remains unknown. As a first step, we propose an investigation of the UBE4B-ΔNp73 relationship. Second, the fact that UBE4B has no relation to any of the the β isoform of either p63 or p73 might also explain the specificity of this ligase. In conclusion, the ratio of expression of the p53 family proteins, including those possessing apoptotic activity or anti-apoptotic activity, is the key factor in maintaining a stable developmental mechanism for the nervous system. Therefore, regulatory molecules that affect protein expression and activity, such as UBE4B, will be a turning point in the field of neuronal physiology and neurodegenerative disease.</p>
</sec>
</sec>
<sec>
<title>3. The Role of UBE4B in the Nervous System Is Independent of p53 Family Regulation</title>
<p>Another characteristic of neurodegenerative diseases is the presence of insoluble aggregates in the neurons due to polyglutamination [
<xref ref-type="bibr" rid="b71-ijms-13-16865">71</xref>
], which is common in Huntington disease, spinobulbar muscular atrophy, dentatorubral-pallidoluysian atrophy, spinocerebellar ataxia, Alzheimer disease, and Parkinson disease [
<xref ref-type="bibr" rid="b72-ijms-13-16865">72</xref>
,
<xref ref-type="bibr" rid="b73-ijms-13-16865">73</xref>
]. The intracellular aggregates become conjugated with ubiquitin, altering the conformational structure of target proteins [
<xref ref-type="bibr" rid="b74-ijms-13-16865">74</xref>
]. Because these intracellular aggregates are associated with ubiquitin, all E3/E4 ligases regulating the ubiquitination mechanism become target molecules in this process [
<xref ref-type="bibr" rid="b74-ijms-13-16865">74</xref>
]. However, because these aggregates are detected in neurons [
<xref ref-type="bibr" rid="b75-ijms-13-16865">75</xref>
] and Ube4b is the only ligase expressed predominantly in the neural tissue of adult mice [
<xref ref-type="bibr" rid="b24-ijms-13-16865">24</xref>
], many scientists have speculated on the role of Ube4b in this process. These speculations were also supported by other observations, such as the lethality of Ube4b double deletion in mice; Ube4b
<sup>+/−</sup>
mice also displayed axonal dystrophy in the nucleus gracilis and the degeneration of Purkinje cells in endoplasmic reticulum stress [
<xref ref-type="bibr" rid="b76-ijms-13-16865">76</xref>
]. In parallel, when Ube4b was knocked down, the level of polyubiquitination was remarkedly decreased. Matsumoto
<italic>et al.</italic>
were the first to show the role of Ube4b in polyubiquitinating and degrading ataxin3, whose abnormal expansion of the polyglutamine tract causes spinocerebellar ataxia type 3 [
<xref ref-type="bibr" rid="b74-ijms-13-16865">74</xref>
]. Ube4b showed no difference in the level of ubiquitination in normal or pathological ataxin3, which has an expanded polyglutamine tract; however, this process was shown to be mediated by VCP proteins [
<xref ref-type="bibr" rid="b74-ijms-13-16865">74</xref>
,
<xref ref-type="bibr" rid="b77-ijms-13-16865">77</xref>
]. It was proposed that VCP, ATPase valosin-containing protein [
<xref ref-type="bibr" rid="b78-ijms-13-16865">78</xref>
], mediates the dissociation of Ube4b from ataxin3, inducing its degradation. This dissociation mechanism is blocked for pathological ataxin3, despite polyubiquitination of ataxin3 by Ube4b. Interestingly, VCP, which has previously been shown to exhibit no ligase activity, was proven to be associated with Ube4b and not with any other E3 ligases [
<xref ref-type="bibr" rid="b74-ijms-13-16865">74</xref>
]. Based on that finding, Ube4b is considered to be a rate-limiting factor in mediating the ubiquitination and polygutamine aggregation in neurodegenerative diseases.</p>
<p>Axon degeneration is a consistently common phenotype for many neurodegenerative disorders [
<xref ref-type="bibr" rid="b79-ijms-13-16865">79</xref>
]. Nerve injury, such as lesions, vincristine neuropathy, and myelin-related axonopathies, is always accompanied by direct axon degeneration within two days of the stimulus [
<xref ref-type="bibr" rid="b80-ijms-13-16865">80</xref>
<xref ref-type="bibr" rid="b82-ijms-13-16865">82</xref>
]. The Wallerian degeneration process, a non-apoptotic death program, has been shown to chiefly regulate axon degeneration in response to injury [
<xref ref-type="bibr" rid="b83-ijms-13-16865">83</xref>
]. Wallerian degeneration has been proposed to play a prominent causative role in a wide range of human neuropathologies in trauma, spinal cord injury or even at early stages [
<xref ref-type="bibr" rid="b84-ijms-13-16865">84</xref>
,
<xref ref-type="bibr" rid="b85-ijms-13-16865">85</xref>
]. Although little is known about Wallerian degeneration and the signals that initiates this pathway, a spontaneous dominant mutation delays Wallerian degeneration ten-fold and is known as slow Wallerian mutation (Wld
<sup>s</sup>
) [
<xref ref-type="bibr" rid="b80-ijms-13-16865">80</xref>
,
<xref ref-type="bibr" rid="b84-ijms-13-16865">84</xref>
]. As a result, scientists have concluded that Wallerian degeneration is not a passive process but an active regulated process [
<xref ref-type="bibr" rid="b86-ijms-13-16865">86</xref>
<xref ref-type="bibr" rid="b88-ijms-13-16865">88</xref>
]. Furthermore, animal models highly support this hypothesis, and a delay in axonal and even synaptic degeneration was reported in Wld
<sup>s</sup>
mice [
<xref ref-type="bibr" rid="b89-ijms-13-16865">89</xref>
,
<xref ref-type="bibr" rid="b90-ijms-13-16865">90</xref>
]. As in mice, Wld
<sup>s</sup>
rats display axon survival up to two weeks after transection and remain functional for at least one week [
<xref ref-type="bibr" rid="b91-ijms-13-16865">91</xref>
]. The progression of many diseases, such as axonal injury, Parkinson’s disease, and cerebral ischemia, was also altered in Wld
<sup>s</sup>
[
<xref ref-type="bibr" rid="b80-ijms-13-16865">80</xref>
,
<xref ref-type="bibr" rid="b84-ijms-13-16865">84</xref>
,
<xref ref-type="bibr" rid="b92-ijms-13-16865">92</xref>
]. Further analysis revealed a significant role of Wld
<sup>s</sup>
, which dominantly delays Wallerian degeneration 10-fold [
<xref ref-type="bibr" rid="b93-ijms-13-16865">93</xref>
], findings have been confirmed
<italic>in vitro</italic>
and
<italic>in vivo</italic>
[
<xref ref-type="bibr" rid="b83-ijms-13-16865">83</xref>
]. Interestingly, the Wld
<sup>s</sup>
gene encodes chimeric protein composed of 70 amino acids of Ube4b linked to full length nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1) [
<xref ref-type="bibr" rid="b94-ijms-13-16865">94</xref>
]; both moieties have been shown to be essential for the proper function of the Wld
<sup>s</sup>
protein in delaying degradation [
<xref ref-type="bibr" rid="b79-ijms-13-16865">79</xref>
,
<xref ref-type="bibr" rid="b94-ijms-13-16865">94</xref>
]. Importantly, this chimeric protein is missing in wild-type mice [
<xref ref-type="bibr" rid="b95-ijms-13-16865">95</xref>
]. Although the Ube4b region essential to Wld
<sup>s</sup>
does not contain the U box, it has been demonstrated that Ube4b moiety influences the intracellular distribution of the covalently attached Nmnat1 and, consequently, the distribution of nuclear NAD
<sup>+</sup>
synthesis machinery [
<xref ref-type="bibr" rid="b96-ijms-13-16865">96</xref>
]. The same portion of Ube4b has been demonstrated to bind to the VCP protein; 16 of the 70 amino acids form the VCP binding motif. This binding between Ube4b N portion and VCP influences the redistribution of molecules in nuclei
<italic>in vivo</italic>
and
<italic>in vitro</italic>
when Wld
<sup>s</sup>
is present [
<xref ref-type="bibr" rid="b97-ijms-13-16865">97</xref>
,
<xref ref-type="bibr" rid="b98-ijms-13-16865">98</xref>
]. Many functions of VCP have been identified, little is known about the role of VCP with regards to the Wld
<sup>s</sup>
protein and the delay in neural degeneration. However, the role of VCP in Ube4b-ataxin3 dissociation and the binding of Wld
<sup>s</sup>
proteins through the Ube4b N portion focus more attention on the role of VCP in neuronal regulation. This role is exclusively associated with Ube4b because VCP has no association with any other ligases. Further investigation is necessary to elucidate the exact role of VCP. The lack of a chimeric protein raises some possibilities that the Ube4b portion might be mutated or altered, thus abolishing the formation of the chimeric protein, and further investigations are needed to clarify this as well.</p>
</sec>
<sec>
<title>4. Conclusions</title>
<p>In conclusion, UBE4B is involved in multiple pathways that are all associated with neuronal survival and degradation. Whether through the p53 family or other processes, UBE4B is definitively implicated in neuronal survival. A model for the role of UBE4B is summarized in the
<xref ref-type="fig" rid="f1-ijms-13-16865">Figure 1</xref>
. Investigating the exact role of UBE4B and all cofactors associated with its function could contribute to understanding the normal physiology of the nervous system and also be a gateway to many therapeutic and pharmaceutical approaches that aim to treat neurodegenerative diseases by protecting neurons from death as a response to mutation or injury.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This work is supported by the Canadian Institutes of Health Research and Alberta Innovates Health Solutions (R.L.). R.A.Z. is supported by Alberta Cancer Foundation Graduate Studentship and Women and Children’s Health Research Institute Graduate Studentship (WCHRI)/Hair Massacure 2011 Award (University of Alberta).</p>
</ack>
<ref-list>
<title>References</title>
<ref id="b1-ijms-13-16865">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yankner</surname>
<given-names>B.A.</given-names>
</name>
</person-group>
<article-title>Apoptosis in the nervous system</article-title>
<source>Nature</source>
<year>2000</year>
<volume>407</volume>
<fpage>802</fpage>
<lpage>809</lpage>
<pub-id pub-id-type="pmid">11048732</pub-id>
</element-citation>
</ref>
<ref id="b2-ijms-13-16865">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jacobs</surname>
<given-names>W.B.</given-names>
</name>
<name>
<surname>Kaplan</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>F.D.</given-names>
</name>
</person-group>
<article-title>The p53 family in nervous system development and disease</article-title>
<source>J. Neurochem</source>
<year>2006</year>
<volume>97</volume>
<fpage>1571</fpage>
<lpage>1584</lpage>
<pub-id pub-id-type="pmid">16805769</pub-id>
</element-citation>
</ref>
<ref id="b3-ijms-13-16865">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blaschke</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Staley</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Chun</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex</article-title>
<source>Development</source>
<year>1996</year>
<volume>122</volume>
<fpage>1165</fpage>
<lpage>1174</lpage>
<pub-id pub-id-type="pmid">8620843</pub-id>
</element-citation>
</ref>
<ref id="b4-ijms-13-16865">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gilmore</surname>
<given-names>E.C.</given-names>
</name>
<name>
<surname>Nowakowski</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Caviness</surname>
<given-names>V.S.</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Herrup</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Cell birth, cell death, cell diversity and DNA breaks: How do they all fit together?</article-title>
<source>Trends Neurosci.</source>
<year>2000</year>
<volume>23</volume>
<fpage>100</fpage>
<lpage>105</lpage>
<pub-id pub-id-type="pmid">10675909</pub-id>
</element-citation>
</ref>
<ref id="b5-ijms-13-16865">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jacobs</surname>
<given-names>W.B.</given-names>
</name>
<name>
<surname>Walsh</surname>
<given-names>G.S.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>F.D.</given-names>
</name>
</person-group>
<article-title>Neuronal survival and p73/p63/p53: A family affair</article-title>
<source>Neuroscientist</source>
<year>2004</year>
<volume>10</volume>
<fpage>443</fpage>
<lpage>455</lpage>
<pub-id pub-id-type="pmid">15359011</pub-id>
</element-citation>
</ref>
<ref id="b6-ijms-13-16865">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wood</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Youle</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>The role of free radicals and p53 in neuron apoptosis
<italic>in vivo</italic>
</article-title>
<source>J. Neurosci</source>
<year>1995</year>
<volume>15</volume>
<fpage>5851</fpage>
<lpage>5857</lpage>
<pub-id pub-id-type="pmid">7643225</pub-id>
</element-citation>
</ref>
<ref id="b7-ijms-13-16865">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graham</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Programmed cell death in cerebral ischemia</article-title>
<source>J. Cereb. Blood Flow Metab</source>
<year>2001</year>
<volume>21</volume>
<fpage>99</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="pmid">11176275</pub-id>
</element-citation>
</ref>
<ref id="b8-ijms-13-16865">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Green</surname>
<given-names>D.R.</given-names>
</name>
</person-group>
<article-title>Apoptotic pathways: The roads to ruin</article-title>
<source>Cell</source>
<year>1998</year>
<volume>94</volume>
<fpage>695</fpage>
<lpage>698</lpage>
<pub-id pub-id-type="pmid">9753316</pub-id>
</element-citation>
</ref>
<ref id="b9-ijms-13-16865">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnstone</surname>
<given-names>R.W.</given-names>
</name>
<name>
<surname>Ruefli</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Lowe</surname>
<given-names>S.W.</given-names>
</name>
</person-group>
<article-title>Apoptosis: A link between cancer genetics and chemotherapy</article-title>
<source>Cell</source>
<year>2002</year>
<volume>108</volume>
<fpage>153</fpage>
<lpage>164</lpage>
<pub-id pub-id-type="pmid">11832206</pub-id>
</element-citation>
</ref>
<ref id="b10-ijms-13-16865">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soussi</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>The p53 pathway and human cancer</article-title>
<source>Br. J. Surg</source>
<year>2005</year>
<volume>92</volume>
<fpage>1331</fpage>
<lpage>1332</lpage>
<pub-id pub-id-type="pmid">16240283</pub-id>
</element-citation>
</ref>
<ref id="b11-ijms-13-16865">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vogelstein</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lane</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>A.J.</given-names>
</name>
</person-group>
<article-title>Surfing the p53 network</article-title>
<source>Nature</source>
<year>2000</year>
<volume>408</volume>
<fpage>307</fpage>
<lpage>310</lpage>
<pub-id pub-id-type="pmid">11099028</pub-id>
</element-citation>
</ref>
<ref id="b12-ijms-13-16865">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carter</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Vousden</surname>
<given-names>K.H.</given-names>
</name>
</person-group>
<article-title>p53-Ubl fusions as models of ubiquitination, sumoylation and neddylation of p53</article-title>
<source>Cell Cycle</source>
<year>2008</year>
<volume>7</volume>
<fpage>2519</fpage>
<lpage>2528</lpage>
<pub-id pub-id-type="pmid">18719371</pub-id>
</element-citation>
</ref>
<ref id="b13-ijms-13-16865">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Pomeroy</surname>
<given-names>S.L.</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Teider</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Mariani</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.I.</given-names>
</name>
<name>
<surname>Hatakeyama</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tron</surname>
<given-names>V.A.</given-names>
</name>
<name>
<surname>Saltibus</surname>
<given-names>L.F.</given-names>
</name>
<name>
<surname>Spyracopoulos</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>UBE4B promotes Hdm2-mediated degradation of the tumor suppressor p53</article-title>
<source>Nat. Med</source>
<year>2011</year>
<volume>17</volume>
<fpage>347</fpage>
<lpage>355</lpage>
<pub-id pub-id-type="pmid">21317885</pub-id>
</element-citation>
</ref>
<ref id="b14-ijms-13-16865">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gostissa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hengstermann</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fogal</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Sandy</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Schwarz</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Scheffner</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>del Sal</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1</article-title>
<source>EMBO J</source>
<year>1999</year>
<volume>18</volume>
<fpage>6462</fpage>
<lpage>6471</lpage>
<pub-id pub-id-type="pmid">10562558</pub-id>
</element-citation>
</ref>
<ref id="b15-ijms-13-16865">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodriguez</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Desterro</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Lain</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Midgley</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Lane</surname>
<given-names>D.P.</given-names>
</name>
<name>
<surname>Hay</surname>
<given-names>R.T.</given-names>
</name>
</person-group>
<article-title>SUMO-1 modification activates the transcriptional response of p53</article-title>
<source>EMBO J</source>
<year>1999</year>
<volume>18</volume>
<fpage>6455</fpage>
<lpage>6461</lpage>
<pub-id pub-id-type="pmid">10562557</pub-id>
</element-citation>
</ref>
<ref id="b16-ijms-13-16865">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>L.N.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Xirodimas</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Naismith</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Hay</surname>
<given-names>R.T.</given-names>
</name>
</person-group>
<article-title>Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1</article-title>
<source>EMBO J</source>
<year>2005</year>
<volume>24</volume>
<fpage>1341</fpage>
<lpage>1351</lpage>
<pub-id pub-id-type="pmid">15775960</pub-id>
</element-citation>
</ref>
<ref id="b17-ijms-13-16865">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whitby</surname>
<given-names>F.G.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pickart</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>C.P.</given-names>
</name>
</person-group>
<article-title>Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes</article-title>
<source>J. Biol. Chem</source>
<year>1998</year>
<volume>273</volume>
<fpage>34983</fpage>
<lpage>34991</lpage>
<pub-id pub-id-type="pmid">9857030</pub-id>
</element-citation>
</ref>
<ref id="b18-ijms-13-16865">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Uranishi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity</article-title>
<source>Mol. Cell. Biol</source>
<year>2005</year>
<volume>25</volume>
<fpage>5389</fpage>
<lpage>5395</lpage>
<pub-id pub-id-type="pmid">15964796</pub-id>
</element-citation>
</ref>
<ref id="b19-ijms-13-16865">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ozeki</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sawai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shibata</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kohno</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Okamoto</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yokota</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tashiro</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Tanuma</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sakai</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kawase</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cancer susceptibility polymorphism of p53 at codon 72 affects phosphorylation and degradation of p53 protein</article-title>
<source>J. Biol. Chem</source>
<year>2011</year>
<volume>286</volume>
<fpage>18251</fpage>
<lpage>18260</lpage>
<pub-id pub-id-type="pmid">21454683</pub-id>
</element-citation>
</ref>
<ref id="b20-ijms-13-16865">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Weissman</surname>
<given-names>A.M.</given-names>
</name>
</person-group>
<article-title>Regulating the p53 system through ubiquitination</article-title>
<source>Oncogene</source>
<year>2004</year>
<volume>23</volume>
<fpage>2096</fpage>
<lpage>2106</lpage>
<pub-id pub-id-type="pmid">15021897</pub-id>
</element-citation>
</ref>
<ref id="b21-ijms-13-16865">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Watson</surname>
<given-names>I.R.</given-names>
</name>
<name>
<surname>Irwin</surname>
<given-names>M.S.</given-names>
</name>
</person-group>
<article-title>Ubiquitin and ubiquitin-like modifications of the p53 family</article-title>
<source>Neoplasia</source>
<year>2006</year>
<volume>8</volume>
<fpage>655</fpage>
<lpage>666</lpage>
<pub-id pub-id-type="pmid">16925948</pub-id>
</element-citation>
</ref>
<ref id="b22-ijms-13-16865">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tan</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>E.S.</given-names>
</name>
<name>
<surname>Kirkpatrick</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Pletnikova</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Ko</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Tay</surname>
<given-names>S.P.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>M.W.</given-names>
</name>
<name>
<surname>Troncoso</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gygi</surname>
<given-names>S.P.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>M.K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases</article-title>
<source>Hum. Mol. Genet</source>
<year>2008</year>
<volume>17</volume>
<fpage>431</fpage>
<lpage>439</lpage>
<pub-id pub-id-type="pmid">17981811</pub-id>
</element-citation>
</ref>
<ref id="b23-ijms-13-16865">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Jost</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Maya</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Kaelin</surname>
<given-names>W.G.</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Oren</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>MDM2 suppresses p73 function without promoting p73 degradation</article-title>
<source>Mol. Cell. Biol.</source>
<year>1999</year>
<volume>19</volume>
<fpage>3257</fpage>
<lpage>3266</lpage>
<pub-id pub-id-type="pmid">10207051</pub-id>
</element-citation>
</ref>
<ref id="b24-ijms-13-16865">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaneko</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hatakeyama</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Matsumoto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.I.</given-names>
</name>
</person-group>
<article-title>Characterization of the mouse gene for the U-box-type ubiquitin ligase UFD2a</article-title>
<source>Biochem. Biophys. Res. Commun</source>
<year>2003</year>
<volume>300</volume>
<fpage>297</fpage>
<lpage>304</lpage>
<pub-id pub-id-type="pmid">12504083</pub-id>
</element-citation>
</ref>
<ref id="b25-ijms-13-16865">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Donehower</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Harvey</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Slagle</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>McArthur</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Montgomery</surname>
<given-names>C.A.</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Butel</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Bradley</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours</article-title>
<source>Nature</source>
<year>1992</year>
<volume>356</volume>
<fpage>215</fpage>
<lpage>221</lpage>
<pub-id pub-id-type="pmid">1552940</pub-id>
</element-citation>
</ref>
<ref id="b26-ijms-13-16865">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Armstrong</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Kaufman</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>A.R.</given-names>
</name>
</person-group>
<article-title>High-frequency developmental abnormalities in p53-deficient mice</article-title>
<source>Curr. Biol</source>
<year>1995</year>
<volume>5</volume>
<fpage>931</fpage>
<lpage>936</lpage>
<pub-id pub-id-type="pmid">7583151</pub-id>
</element-citation>
</ref>
<ref id="b27-ijms-13-16865">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sah</surname>
<given-names>V.P.</given-names>
</name>
<name>
<surname>Attardi</surname>
<given-names>L.D.</given-names>
</name>
<name>
<surname>Mulligan</surname>
<given-names>G.J.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>B.O.</given-names>
</name>
<name>
<surname>Bronson</surname>
<given-names>R.T.</given-names>
</name>
<name>
<surname>Jacks</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>A subset of p53-deficient embryos exhibit exencephaly</article-title>
<source>Nat. Genet</source>
<year>1995</year>
<volume>10</volume>
<fpage>175</fpage>
<lpage>180</lpage>
<pub-id pub-id-type="pmid">7663512</pub-id>
</element-citation>
</ref>
<ref id="b28-ijms-13-16865">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mihara</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Erster</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zaika</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Petrenko</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Chittenden</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Pancoska</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Moll</surname>
<given-names>U.M.</given-names>
</name>
</person-group>
<article-title>p53 has a direct apoptogenic role at the mitochondria</article-title>
<source>Mol. Cell</source>
<year>2003</year>
<volume>11</volume>
<fpage>577</fpage>
<lpage>590</lpage>
<pub-id pub-id-type="pmid">12667443</pub-id>
</element-citation>
</ref>
<ref id="b29-ijms-13-16865">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cecconi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Alvarez-Bolado</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>B.I.</given-names>
</name>
<name>
<surname>Roth</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Gruss</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development</article-title>
<source>Cell</source>
<year>1998</year>
<volume>94</volume>
<fpage>727</fpage>
<lpage>737</lpage>
<pub-id pub-id-type="pmid">9753320</pub-id>
</element-citation>
</ref>
<ref id="b30-ijms-13-16865">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuida</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Haydar</surname>
<given-names>T.F.</given-names>
</name>
<name>
<surname>Kuan</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Taya</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Karasuyama</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Rakic</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Flavell</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9</article-title>
<source>Cell</source>
<year>1998</year>
<volume>94</volume>
<fpage>325</fpage>
<lpage>337</lpage>
<pub-id pub-id-type="pmid">9708735</pub-id>
</element-citation>
</ref>
<ref id="b31-ijms-13-16865">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoshida</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>Y.Y.</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Elia</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Hakem</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hakem</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Penninger</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Mak</surname>
<given-names>T.W.</given-names>
</name>
</person-group>
<article-title>Apaf1 is required for mitochondrial pathways of apoptosis and brain development</article-title>
<source>Cell</source>
<year>1998</year>
<volume>94</volume>
<fpage>739</fpage>
<lpage>750</lpage>
<pub-id pub-id-type="pmid">9753321</pub-id>
</element-citation>
</ref>
<ref id="b32-ijms-13-16865">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuida</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>T.S.</given-names>
</name>
<name>
<surname>Na</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kuan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Karasuyama</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Rakic</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Flavell</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice</article-title>
<source>Nature</source>
<year>1996</year>
<volume>384</volume>
<fpage>368</fpage>
<lpage>372</lpage>
<pub-id pub-id-type="pmid">8934524</pub-id>
</element-citation>
</ref>
<ref id="b33-ijms-13-16865">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Slack</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Belliveau</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Rosenberg</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Atwal</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lochmuller</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Aloyz</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Haghighi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lach</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Seth</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adenovirus-mediated gene transfer of the tumor suppressor, p53, induces apoptosis in postmitotic neurons</article-title>
<source>J. Cell Biol</source>
<year>1996</year>
<volume>135</volume>
<fpage>1085</fpage>
<lpage>1096</lpage>
<pub-id pub-id-type="pmid">8922388</pub-id>
</element-citation>
</ref>
<ref id="b34-ijms-13-16865">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>F.D.</given-names>
</name>
<name>
<surname>Kaplan</surname>
<given-names>D.R.</given-names>
</name>
</person-group>
<article-title>On Trk for retrograde signaling</article-title>
<source>Neuron</source>
<year>2001</year>
<volume>32</volume>
<fpage>767</fpage>
<lpage>770</lpage>
<pub-id pub-id-type="pmid">11738023</pub-id>
</element-citation>
</ref>
<ref id="b35-ijms-13-16865">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aloyz</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Bamji</surname>
<given-names>S.X.</given-names>
</name>
<name>
<surname>Pozniak</surname>
<given-names>C.D.</given-names>
</name>
<name>
<surname>Toma</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Atwal</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kaplan</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>F.D.</given-names>
</name>
</person-group>
<article-title>p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophin receptors</article-title>
<source>J. Cell Biol</source>
<year>1998</year>
<volume>143</volume>
<fpage>1691</fpage>
<lpage>1703</lpage>
<pub-id pub-id-type="pmid">9852160</pub-id>
</element-citation>
</ref>
<ref id="b36-ijms-13-16865">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>McKinnon</surname>
<given-names>P.J.</given-names>
</name>
</person-group>
<article-title>Detection of apoptosis in the central nervous system</article-title>
<source>Methods Mol. Biol</source>
<year>2009</year>
<volume>559</volume>
<fpage>273</fpage>
<lpage>282</lpage>
<pub-id pub-id-type="pmid">19609763</pub-id>
</element-citation>
</ref>
<ref id="b37-ijms-13-16865">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chopp</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.G.</given-names>
</name>
<name>
<surname>Freytag</surname>
<given-names>S.O.</given-names>
</name>
</person-group>
<article-title>p53 expression in brain after middle cerebral artery occlusion in the rat</article-title>
<source>Biochem. Biophys. Res. Commun</source>
<year>1992</year>
<volume>182</volume>
<fpage>1201</fpage>
<lpage>1207</lpage>
<pub-id pub-id-type="pmid">1540165</pub-id>
</element-citation>
</ref>
<ref id="b38-ijms-13-16865">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Watanabe</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ohta</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kumon</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sakaki</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sakanaka</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Increase in p53 protein expression following cortical infarction in the spontaneously hypertensive rat</article-title>
<source>Brain Res</source>
<year>1999</year>
<volume>837</volume>
<fpage>38</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="pmid">10433986</pub-id>
</element-citation>
</ref>
<ref id="b39-ijms-13-16865">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>L.J.</given-names>
</name>
</person-group>
<article-title>p53 is abnormally elevated and active in the CNS of patients with amyotrophic lateral sclerosis</article-title>
<source>Neurobiol. Dis</source>
<year>2000</year>
<volume>7</volume>
<fpage>613</fpage>
<lpage>622</lpage>
<pub-id pub-id-type="pmid">11114260</pub-id>
</element-citation>
</ref>
<ref id="b40-ijms-13-16865">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levrero</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>de Laurenzi</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Costanzo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.Y.</given-names>
</name>
<name>
<surname>Melino</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>The p53/p63/p73 family of transcription factors: Overlapping and distinct functions</article-title>
<source>J. Cell Sci</source>
<year>2000</year>
<volume>113</volume>
<fpage>1661</fpage>
<lpage>1670</lpage>
<pub-id pub-id-type="pmid">10769197</pub-id>
</element-citation>
</ref>
<ref id="b41-ijms-13-16865">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Leng</surname>
<given-names>R.P.</given-names>
</name>
</person-group>
<article-title>UBE4B, a ubiquitin chain assembly factor, is required for MDM2-mediated p53 polyubiquitination and degradation</article-title>
<source>Cell Cycle</source>
<year>2011</year>
<volume>10</volume>
<fpage>1912</fpage>
<lpage>1915</lpage>
<pub-id pub-id-type="pmid">21558803</pub-id>
</element-citation>
</ref>
<ref id="b42-ijms-13-16865">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saeki</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kudo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Sone</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kikuchi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yokosawa</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Toh-e</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome</article-title>
<source>EMBO J</source>
<year>2009</year>
<volume>28</volume>
<fpage>359</fpage>
<lpage>371</lpage>
<pub-id pub-id-type="pmid">19153599</pub-id>
</element-citation>
</ref>
<ref id="b43-ijms-13-16865">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zeinab</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Flores</surname>
<given-names>E.R.</given-names>
</name>
<name>
<surname>Leng</surname>
<given-names>R.P.</given-names>
</name>
</person-group>
<article-title>Pirh2, a ubiquitin E3 ligase, inhibits p73 transcriptional activity by promoting its ubiquitination</article-title>
<source>Mol. Cancer Res</source>
<year>2011</year>
<volume>9</volume>
<fpage>1780</fpage>
<lpage>1790</lpage>
<pub-id pub-id-type="pmid">21994467</pub-id>
</element-citation>
</ref>
<ref id="b44-ijms-13-16865">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Melino</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>de Laurenzi</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Vousden</surname>
<given-names>K.H.</given-names>
</name>
</person-group>
<article-title>p73: Friend or foe in tumorigenesis</article-title>
<source>Nat. Rev. Cancer</source>
<year>2002</year>
<volume>2</volume>
<fpage>605</fpage>
<lpage>615</lpage>
<pub-id pub-id-type="pmid">12154353</pub-id>
</element-citation>
</ref>
<ref id="b45-ijms-13-16865">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bronson</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kaghad</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Oosterwegel</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bonnin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Vagner</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bonnet</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Dikkes</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sharpe</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>McKeon</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Caput</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours</article-title>
<source>Nature</source>
<year>2000</year>
<volume>404</volume>
<fpage>99</fpage>
<lpage>103</lpage>
<pub-id pub-id-type="pmid">10716451</pub-id>
</element-citation>
</ref>
<ref id="b46-ijms-13-16865">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Flores</surname>
<given-names>E.R.</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>K.Y.</given-names>
</name>
<name>
<surname>Crowley</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Sengupta</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>McKeon</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Jacks</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>p63 and p73 are required for p53-dependent apoptosis in response to DNA damage</article-title>
<source>Nature</source>
<year>2002</year>
<volume>416</volume>
<fpage>560</fpage>
<lpage>564</lpage>
<pub-id pub-id-type="pmid">11932750</pub-id>
</element-citation>
</ref>
<ref id="b47-ijms-13-16865">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jost</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Marin</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Kaelin</surname>
<given-names>W.G.</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>p73 is a simian (correction of human) p53-related protein that can induce apoptosis</article-title>
<source>Nature</source>
<year>1997</year>
<volume>389</volume>
<fpage>191</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="pmid">9296498</pub-id>
</element-citation>
</ref>
<ref id="b48-ijms-13-16865">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pozniak</surname>
<given-names>C.D.</given-names>
</name>
<name>
<surname>Radinovic</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>McKeon</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Kaplan</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>F.D.</given-names>
</name>
</person-group>
<article-title>An anti-apoptotic role for the p53 family member, p73, during developmental neuron death</article-title>
<source>Science</source>
<year>2000</year>
<volume>289</volume>
<fpage>304</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="pmid">10894779</pub-id>
</element-citation>
</ref>
<ref id="b49-ijms-13-16865">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Walsh</surname>
<given-names>G.S.</given-names>
</name>
<name>
<surname>Orike</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kaplan</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>F.D.</given-names>
</name>
</person-group>
<article-title>The invulnerability of adult neurons: A critical role for p73</article-title>
<source>J. Neurosci</source>
<year>2004</year>
<volume>24</volume>
<fpage>9638</fpage>
<lpage>9647</lpage>
<pub-id pub-id-type="pmid">15509751</pub-id>
</element-citation>
</ref>
<ref id="b50-ijms-13-16865">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Irwin</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>F.D.</given-names>
</name>
</person-group>
<article-title>p73: Regulator in cancer and neural development</article-title>
<source>Cell Death Differ</source>
<year>2004</year>
<volume>11</volume>
<fpage>S17</fpage>
<lpage>S22</lpage>
<pub-id pub-id-type="pmid">15153941</pub-id>
</element-citation>
</ref>
<ref id="b51-ijms-13-16865">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilson</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Henry</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Bowser</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The p53 homologue p73 accumulates in the nucleus and localizes to neurites and neurofibrillary tangles in Alzheimer disease brain</article-title>
<source>Neuropathol. Appl. Neurobiol</source>
<year>2004</year>
<volume>30</volume>
<fpage>19</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="pmid">14720173</pub-id>
</element-citation>
</ref>
<ref id="b52-ijms-13-16865">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zaika</surname>
<given-names>A.I.</given-names>
</name>
<name>
<surname>Slade</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Erster</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Sansome</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Joseph</surname>
<given-names>T.W.</given-names>
</name>
<name>
<surname>Pearl</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chalas</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Moll</surname>
<given-names>U.M.</given-names>
</name>
</person-group>
<article-title>DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors</article-title>
<source>J. Exp. Med</source>
<year>2002</year>
<volume>196</volume>
<fpage>765</fpage>
<lpage>780</lpage>
<pub-id pub-id-type="pmid">12235210</pub-id>
</element-citation>
</ref>
<ref id="b53-ijms-13-16865">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakagawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ozaki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>K.-i.</given-names>
</name>
<name>
<surname>Todo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mizuguchi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hayakawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nakagawara</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Autoinhibitory regulation of p73 by ΔNp73 to modulate cell survival and death through a p73-specific target element within the Delta Np73 promoter</article-title>
<source>Mol. Cell. Biol.</source>
<year>2002</year>
<volume>22</volume>
<fpage>2575</fpage>
<lpage>2585</lpage>
<pub-id pub-id-type="pmid">11909952</pub-id>
</element-citation>
</ref>
<ref id="b54-ijms-13-16865">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grob</surname>
<given-names>T.J.</given-names>
</name>
<name>
<surname>Novak</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Maisse</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Barcaroli</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Luthi</surname>
<given-names>A.U.</given-names>
</name>
<name>
<surname>Pirnia</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Hugli</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Graber</surname>
<given-names>H.U.</given-names>
</name>
<name>
<surname>de Laurenzi</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Fey</surname>
<given-names>M.F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53</article-title>
<source>Cell Death Differ</source>
<year>2001</year>
<volume>8</volume>
<fpage>1213</fpage>
<lpage>1223</lpage>
<pub-id pub-id-type="pmid">11753569</pub-id>
</element-citation>
</ref>
<ref id="b55-ijms-13-16865">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fillippovich</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Sorokina</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Gatei</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Haupt</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hobson</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Moallem</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Spring</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Mould</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>McGuckin</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Lavin</surname>
<given-names>M.F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transactivation-deficient p73α (p73Δexon2) inhibits apoptosis and competes with p53</article-title>
<source>Oncogene</source>
<year>2001</year>
<volume>20</volume>
<fpage>514</fpage>
<lpage>522</lpage>
<pub-id pub-id-type="pmid">11313982</pub-id>
</element-citation>
</ref>
<ref id="b56-ijms-13-16865">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Irwin</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Kaelin</surname>
<given-names>W.G.</given-names>
</name>
</person-group>
<article-title>p53 family update: p73 and p63 develop their own identities</article-title>
<source>Cell Growth Differ</source>
<year>2001</year>
<volume>12</volume>
<fpage>337</fpage>
<lpage>349</lpage>
<pub-id pub-id-type="pmid">11457731</pub-id>
</element-citation>
</ref>
<ref id="b57-ijms-13-16865">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hosoda</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ozaki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Miyazaki</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hayashi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Furuya</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakagawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hanamoto</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Todo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nakagawara</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>UFD2a mediates the proteasomal turnover of p73 without promoting p73 ubiquitination</article-title>
<source>Oncogene</source>
<year>2005</year>
<volume>24</volume>
<fpage>7156</fpage>
<lpage>7169</lpage>
<pub-id pub-id-type="pmid">16170377</pub-id>
</element-citation>
</ref>
<ref id="b58-ijms-13-16865">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ozaki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hosoda</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Miyazaki</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hayashi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakagawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nakagawara</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Functional implication of p73 protein stability in neuronal cell survival and death</article-title>
<source>Cancer Lett</source>
<year>2005</year>
<volume>228</volume>
<fpage>29</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="pmid">15907364</pub-id>
</element-citation>
</ref>
<ref id="b59-ijms-13-16865">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>A.F.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>D.K.</given-names>
</name>
<name>
<surname>Zanassi</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Walsh</surname>
<given-names>G.S.</given-names>
</name>
<name>
<surname>Kaplan</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>F.D.</given-names>
</name>
</person-group>
<article-title>Evidence that ΔNp73 promotes neuronal survival by p53-dependent and p53-independent mechanisms</article-title>
<source>J. Neurosci</source>
<year>2004</year>
<volume>24</volume>
<fpage>9174</fpage>
<lpage>9184</lpage>
<pub-id pub-id-type="pmid">15483136</pub-id>
</element-citation>
</ref>
<ref id="b60-ijms-13-16865">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaplan</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>F.D.</given-names>
</name>
</person-group>
<article-title>Neurotrophin signal transduction in the nervous system</article-title>
<source>Curr. Opin. Neurobiol</source>
<year>2000</year>
<volume>10</volume>
<fpage>381</fpage>
<lpage>391</lpage>
<pub-id pub-id-type="pmid">10851172</pub-id>
</element-citation>
</ref>
<ref id="b61-ijms-13-16865">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jacobs</surname>
<given-names>W.B.</given-names>
</name>
<name>
<surname>Govoni</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Atwal</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Barnabe-Heider</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Keyes</surname>
<given-names>W.M.</given-names>
</name>
<name>
<surname>Mills</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>F.D.</given-names>
</name>
<name>
<surname>Kaplan</surname>
<given-names>D.R.</given-names>
</name>
</person-group>
<article-title>p63 is an essential proapoptotic protein during neural development</article-title>
<source>Neuron</source>
<year>2005</year>
<volume>48</volume>
<fpage>743</fpage>
<lpage>756</lpage>
<pub-id pub-id-type="pmid">16337913</pub-id>
</element-citation>
</ref>
<ref id="b62-ijms-13-16865">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nicotera</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Melino</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Neurodevelopment on route p63</article-title>
<source>Neuron</source>
<year>2005</year>
<volume>48</volume>
<fpage>707</fpage>
<lpage>709</lpage>
<pub-id pub-id-type="pmid">16337905</pub-id>
</element-citation>
</ref>
<ref id="b63-ijms-13-16865">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gressner</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Schilling</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Lorenz</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Schleithoff</surname>
<given-names>E.S.</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schulze-Bergkamen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lena</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Candi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Terrinoni</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Catani</surname>
<given-names>M.V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TAp63α induces apoptosis by activating signaling via death receptors and mitochondria</article-title>
<source>EMBO J</source>
<year>2005</year>
<volume>24</volume>
<fpage>2458</fpage>
<lpage>2471</lpage>
<pub-id pub-id-type="pmid">15944736</pub-id>
</element-citation>
</ref>
<ref id="b64-ijms-13-16865">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>King</surname>
<given-names>K.E.</given-names>
</name>
<name>
<surname>Ponnamperuma</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tokino</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>M.F.</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>W.C.</given-names>
</name>
</person-group>
<article-title>ΔNp63α functions as both a positive and a negative transcriptional regulator and blocks
<italic>in vitro</italic>
differentiation of murine keratinocytes</article-title>
<source>Oncogene</source>
<year>2003</year>
<volume>22</volume>
<fpage>3635</fpage>
<lpage>3644</lpage>
<pub-id pub-id-type="pmid">12789272</pub-id>
</element-citation>
</ref>
<ref id="b65-ijms-13-16865">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamaguchi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Caballero</surname>
<given-names>O.L.</given-names>
</name>
<name>
<surname>Hibi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Trink</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Resto</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Cairns</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Okami</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>W.M.</given-names>
</name>
<name>
<surname>Sidransky</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Frequent gain of the p40/p51/p63 gene locus in primary head and neck squamous cell carcinoma</article-title>
<source>Int. J. Cancer</source>
<year>2000</year>
<volume>86</volume>
<fpage>684</fpage>
<lpage>689</lpage>
<pub-id pub-id-type="pmid">10797291</pub-id>
</element-citation>
</ref>
<ref id="b66-ijms-13-16865">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pelosi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pasini</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Stenholm</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Pastorino</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Maisonneuve</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sonzogni</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Maffini</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Pruneri</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Fraggetta</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Cavallon</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>p63 immunoreactivity in lung cancer: Yet another player in the development of squamous cell carcinomas?</article-title>
<source>J. Pathol</source>
<year>2002</year>
<volume>198</volume>
<fpage>100</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="pmid">12210069</pub-id>
</element-citation>
</ref>
<ref id="b67-ijms-13-16865">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crook</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nicholls</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Brooks</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>O’Nions</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Allday</surname>
<given-names>M.J.</given-names>
</name>
</person-group>
<article-title>High level expression of δN-p63: A mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)?</article-title>
<source>Oncogene</source>
<year>2000</year>
<volume>19</volume>
<fpage>3439</fpage>
<lpage>3444</lpage>
<pub-id pub-id-type="pmid">10918601</pub-id>
</element-citation>
</ref>
<ref id="b68-ijms-13-16865">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chatterjee</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Upadhyay</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Nagpal</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Trink</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sidransky</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>U-box-type ubiquitin E4 ligase, UFD2a attenuates cisplatin mediated degradation of ΔNp63α</article-title>
<source>Cell Cycle</source>
<year>2008</year>
<volume>7</volume>
<fpage>1231</fpage>
<lpage>1237</lpage>
<pub-id pub-id-type="pmid">18418053</pub-id>
</element-citation>
</ref>
<ref id="b69-ijms-13-16865">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Westfall</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Joyner</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Barbieri</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Livingstone</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pietenpol</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>Ultraviolet radiation induces phosphorylation and ubiquitin-mediated degradation of δNp63α</article-title>
<source>Cell Cycle</source>
<year>2005</year>
<volume>4</volume>
<fpage>710</fpage>
<lpage>716</lpage>
<pub-id pub-id-type="pmid">15846104</pub-id>
</element-citation>
</ref>
<ref id="b70-ijms-13-16865">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Osada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Inaba</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Shinohara</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hagiwara</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ikawa</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Regulatory domain of protein stability of human P51/TAP63, a P53 homologue</article-title>
<source>Biochem. Biophys Res. Commun</source>
<year>2001</year>
<volume>283</volume>
<fpage>1135</fpage>
<lpage>1141</lpage>
<pub-id pub-id-type="pmid">11355891</pub-id>
</element-citation>
</ref>
<ref id="b71-ijms-13-16865">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koshy</surname>
<given-names>B.T.</given-names>
</name>
<name>
<surname>Zoghbi</surname>
<given-names>H.Y.</given-names>
</name>
</person-group>
<article-title>The CAG/polyglutamine tract diseases: Gene products and molecular pathogenesis</article-title>
<source>Brain Pathol</source>
<year>1997</year>
<volume>7</volume>
<fpage>927</fpage>
<lpage>942</lpage>
<pub-id pub-id-type="pmid">9217976</pub-id>
</element-citation>
</ref>
<ref id="b72-ijms-13-16865">
<label>72</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alves-Rodrigues</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gregori</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Figueiredo-Pereira</surname>
<given-names>M.E.</given-names>
</name>
</person-group>
<article-title>Ubiquitin, cellular inclusions and their role in neurodegeneration</article-title>
<source>Trends Neurosci</source>
<year>1998</year>
<volume>21</volume>
<fpage>516</fpage>
<lpage>520</lpage>
<pub-id pub-id-type="pmid">9881849</pub-id>
</element-citation>
</ref>
<ref id="b73-ijms-13-16865">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hayashi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kakita</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Koide</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Igarashi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Takano</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ikeuchi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wakabayashi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Egawa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tsuji</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hereditary dentatorubral-pallidoluysian atrophy: Detection of widespread ubiquitinated neuronal and glial intranuclear inclusions in the brain</article-title>
<source>Acta Neuropathol</source>
<year>1998</year>
<volume>96</volume>
<fpage>547</fpage>
<lpage>552</lpage>
<pub-id pub-id-type="pmid">9845282</pub-id>
</element-citation>
</ref>
<ref id="b74-ijms-13-16865">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsumoto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hatakeyama</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ishimoto</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Tanimura</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tsuji</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kakizuka</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kitagawa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.I.</given-names>
</name>
</person-group>
<article-title>Molecular clearance of ataxin-3 is regulated by a mammalian E4</article-title>
<source>EMBO J</source>
<year>2004</year>
<volume>23</volume>
<fpage>659</fpage>
<lpage>669</lpage>
<pub-id pub-id-type="pmid">14749733</pub-id>
</element-citation>
</ref>
<ref id="b75-ijms-13-16865">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lunkes</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mandel</surname>
<given-names>J.L.</given-names>
</name>
</person-group>
<article-title>Polyglutamines, nuclear inclusions and neurodegeneration</article-title>
<source>Nat. Med</source>
<year>1997</year>
<volume>3</volume>
<fpage>1201</fpage>
<lpage>1202</lpage>
<pub-id pub-id-type="pmid">9359692</pub-id>
</element-citation>
</ref>
<ref id="b76-ijms-13-16865">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaneko-Oshikawa</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Nakagawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yoshikawa</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Matsumoto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hatakeyama</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.I.</given-names>
</name>
</person-group>
<article-title>Mammalian E4 is required for cardiac development and maintenance of the nervous system</article-title>
<source>Mol. Cell. Biol</source>
<year>2005</year>
<volume>25</volume>
<fpage>10953</fpage>
<lpage>10964</lpage>
<pub-id pub-id-type="pmid">16314518</pub-id>
</element-citation>
</ref>
<ref id="b77-ijms-13-16865">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morreale</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Conforti</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Coadwell</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wilbrey</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>M.P.</given-names>
</name>
</person-group>
<article-title>Evolutionary divergence of valosin-containing protein/cell division cycle protein 48 binding interactions among endoplasmic reticulum-associated degradation proteins</article-title>
<source>FEBS J</source>
<year>2009</year>
<volume>276</volume>
<fpage>1208</fpage>
<lpage>1220</lpage>
<pub-id pub-id-type="pmid">19175675</pub-id>
</element-citation>
</ref>
<ref id="b78-ijms-13-16865">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C.C.</given-names>
</name>
</person-group>
<article-title>Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation</article-title>
<source>Nat. Cell Biol</source>
<year>2001</year>
<volume>3</volume>
<fpage>740</fpage>
<lpage>744</lpage>
<pub-id pub-id-type="pmid">11483959</pub-id>
</element-citation>
</ref>
<ref id="b79-ijms-13-16865">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conforti</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wilbrey</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Morreale</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Janeckova</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Beirowski</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Adalbert</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mazzola</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>di Stefano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hartley</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Babetto</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Wld S protein requires Nmnat activity and a short
<italic>N</italic>
-terminal sequence to protect axons in mice</article-title>
<source>J. Cell Biol</source>
<year>2009</year>
<volume>184</volume>
<fpage>491</fpage>
<lpage>500</lpage>
<pub-id pub-id-type="pmid">19237596</pub-id>
</element-citation>
</ref>
<ref id="b80-ijms-13-16865">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferri</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sanes</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Cunningham</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>A.C.</given-names>
</name>
</person-group>
<article-title>Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease</article-title>
<source>Curr. Biol</source>
<year>2003</year>
<volume>13</volume>
<fpage>669</fpage>
<lpage>673</lpage>
<pub-id pub-id-type="pmid">12699624</pub-id>
</element-citation>
</ref>
<ref id="b81-ijms-13-16865">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Samsam</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mi</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wessig</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zielasek</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Toyka</surname>
<given-names>K.V.</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Martini</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The Wlds mutation delays robust loss of motor and sensory axons in a genetic model for myelin-related axonopathy</article-title>
<source>J. Neurosci</source>
<year>2003</year>
<volume>23</volume>
<fpage>2833</fpage>
<lpage>2839</lpage>
<pub-id pub-id-type="pmid">12684470</pub-id>
</element-citation>
</ref>
<ref id="b82-ijms-13-16865">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Culver</surname>
<given-names>D.G.</given-names>
</name>
<name>
<surname>Glass</surname>
<given-names>J.D.</given-names>
</name>
</person-group>
<article-title>The gene for slow Wallerian degeneration (Wld(s)) is also protective against vincristine neuropathy</article-title>
<source>Neurobiol. Dis</source>
<year>2001</year>
<volume>8</volume>
<fpage>155</fpage>
<lpage>161</lpage>
<pub-id pub-id-type="pmid">11162249</pub-id>
</element-citation>
</ref>
<ref id="b83-ijms-13-16865">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coleman</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Axon degeneration mechanisms: Commonality amid diversity</article-title>
<source>Nat. Rev. Neurosci</source>
<year>2005</year>
<volume>6</volume>
<fpage>889</fpage>
<lpage>898</lpage>
<pub-id pub-id-type="pmid">16224497</pub-id>
</element-citation>
</ref>
<ref id="b84-ijms-13-16865">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mack</surname>
<given-names>T.G.</given-names>
</name>
<name>
<surname>Reiner</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Beirowski</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Mi</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Emanuelli</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Thomson</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Gillingwater</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Court</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Conforti</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene</article-title>
<source>Nat. Neurosci</source>
<year>2001</year>
<volume>4</volume>
<fpage>1199</fpage>
<lpage>1206</lpage>
<pub-id pub-id-type="pmid">11770485</pub-id>
</element-citation>
</ref>
<ref id="b85-ijms-13-16865">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Fujiki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Guth</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Steward</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>Genetic influences on cellular reactions to spinal cord injury: A wound-healing response present in normal mice is impaired in mice carrying a mutation (WldS) that causes delayed Wallerian degeneration</article-title>
<source>J. Comp. Neurol</source>
<year>1996</year>
<volume>371</volume>
<fpage>485</fpage>
<lpage>495</lpage>
<pub-id pub-id-type="pmid">8842901</pub-id>
</element-citation>
</ref>
<ref id="b86-ijms-13-16865">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glass</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Brushart</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>George</surname>
<given-names>E.B.</given-names>
</name>
<name>
<surname>Griffin</surname>
<given-names>J.W.</given-names>
</name>
</person-group>
<article-title>Prolonged survival of transected nerve fibres in C57BL/Ola mice is an intrinsic characteristic of the axon</article-title>
<source>J. Neurocytol</source>
<year>1993</year>
<volume>22</volume>
<fpage>311</fpage>
<lpage>321</lpage>
<pub-id pub-id-type="pmid">8315413</pub-id>
</element-citation>
</ref>
<ref id="b87-ijms-13-16865">
<label>87</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buckmaster</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Perry</surname>
<given-names>V.H.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>M.C.</given-names>
</name>
</person-group>
<article-title>The rate of Wallerian degeneration in cultured neurons from wild type and C57BL/WldS mice depends on time in culture and may be extended in the presence of elevated K
<sup>+</sup>
levels</article-title>
<source>Eur. J. Neurosci</source>
<year>1995</year>
<volume>7</volume>
<fpage>1596</fpage>
<lpage>1602</lpage>
<pub-id pub-id-type="pmid">7551186</pub-id>
</element-citation>
</ref>
<ref id="b88-ijms-13-16865">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perry</surname>
<given-names>V.H.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Lunn</surname>
<given-names>E.R.</given-names>
</name>
<name>
<surname>Tree</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Evidence that very slow wallerian degeneration in C57BL/Ola mice is an intrinsic property of the peripheral nerve</article-title>
<source>Eur. J. Neurosci</source>
<year>1990</year>
<volume>2</volume>
<fpage>802</fpage>
<lpage>808</lpage>
<pub-id pub-id-type="pmid">12106282</pub-id>
</element-citation>
</ref>
<ref id="b89-ijms-13-16865">
<label>89</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gillingwater</surname>
<given-names>T.H.</given-names>
</name>
<name>
<surname>Ribchester</surname>
<given-names>R.R.</given-names>
</name>
</person-group>
<article-title>Compartmental neurodegeneration and synaptic plasticity in the Wld(s) mutant mouse</article-title>
<source>J. Physiol</source>
<year>2001</year>
<volume>534</volume>
<fpage>627</fpage>
<lpage>639</lpage>
<pub-id pub-id-type="pmid">11483696</pub-id>
</element-citation>
</ref>
<ref id="b90-ijms-13-16865">
<label>90</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gillingwater</surname>
<given-names>T.H.</given-names>
</name>
<name>
<surname>Thomson</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Mack</surname>
<given-names>T.G.</given-names>
</name>
<name>
<surname>Soffin</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Mattison</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Ribchester</surname>
<given-names>R.R.</given-names>
</name>
</person-group>
<article-title>Age-dependent synapse withdrawal at axotomised neuromuscular junctions in Wld(s) mutant and Ube4b/Nmnat transgenic mice</article-title>
<source>J. Physiol</source>
<year>2002</year>
<volume>543</volume>
<fpage>739</fpage>
<lpage>755</lpage>
<pub-id pub-id-type="pmid">12231635</pub-id>
</element-citation>
</ref>
<ref id="b91-ijms-13-16865">
<label>91</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adalbert</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gillingwater</surname>
<given-names>T.H.</given-names>
</name>
<name>
<surname>Haley</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Bridge</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Beirowski</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Berek</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Grumme</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Thomson</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Celik</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A rat model of slow Wallerian degeneration (WldS) with improved preservation of neuromuscular synapses</article-title>
<source>Eur. J. Neurosci</source>
<year>2005</year>
<volume>21</volume>
<fpage>271</fpage>
<lpage>277</lpage>
<pub-id pub-id-type="pmid">15654865</pub-id>
</element-citation>
</ref>
<ref id="b92-ijms-13-16865">
<label>92</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deckwerth</surname>
<given-names>T.L.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>E.M.</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>Neurites can remain viable after destruction of the neuronal soma by programmed cell death (apoptosis)</article-title>
<source>Dev. Biol.</source>
<year>1994</year>
<volume>165</volume>
<fpage>63</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="pmid">8088451</pub-id>
</element-citation>
</ref>
<ref id="b93-ijms-13-16865">
<label>93</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lunn</surname>
<given-names>E.R.</given-names>
</name>
<name>
<surname>Perry</surname>
<given-names>V.H.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Rosen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Absence of Wallerian Degeneration does not Hinder Regeneration in Peripheral Nerve</article-title>
<source>Eur. J. Neurosci</source>
<year>1989</year>
<volume>1</volume>
<fpage>27</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="pmid">12106171</pub-id>
</element-citation>
</ref>
<ref id="b94-ijms-13-16865">
<label>94</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conforti</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Beirowski</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Sorci</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Asress</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Adalbert</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bridge</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>X.P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NAD(+) and axon degeneration revisited: Nmnat1 cannot substitute for Wld(S) to delay Wallerian degeneration</article-title>
<source>Cell Death Differ</source>
<year>2007</year>
<volume>14</volume>
<fpage>116</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="pmid">16645633</pub-id>
</element-citation>
</ref>
<ref id="b95-ijms-13-16865">
<label>95</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Emanuelli</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Carnevali</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Saccucci</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Pierella</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Amici</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Raffaelli</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Magni</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and enzymatic properties of human NMN adenylyltransferase</article-title>
<source>J. Biol. Chem</source>
<year>2001</year>
<volume>276</volume>
<fpage>406</fpage>
<lpage>412</lpage>
<pub-id pub-id-type="pmid">11027696</pub-id>
</element-citation>
</ref>
<ref id="b96-ijms-13-16865">
<label>96</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sasaki</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Vohra</surname>
<given-names>B.P.</given-names>
</name>
<name>
<surname>Lund</surname>
<given-names>F.E.</given-names>
</name>
<name>
<surname>Milbrandt</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide</article-title>
<source>J. Neurosci</source>
<year>2009</year>
<volume>29</volume>
<fpage>5525</fpage>
<lpage>5535</lpage>
<pub-id pub-id-type="pmid">19403820</pub-id>
</element-citation>
</ref>
<ref id="b97-ijms-13-16865">
<label>97</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laser</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Conforti</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Morreale</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mack</surname>
<given-names>T.G.</given-names>
</name>
<name>
<surname>Heyer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Haley</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Wishart</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Beirowski</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Haase</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The slow Wallerian degeneration protein, WldS, binds directly to VCP/p97 and partially redistributes it within the nucleus</article-title>
<source>Mol. Biol. Cell</source>
<year>2006</year>
<volume>17</volume>
<fpage>1075</fpage>
<lpage>1084</lpage>
<pub-id pub-id-type="pmid">16371511</pub-id>
</element-citation>
</ref>
<ref id="b98-ijms-13-16865">
<label>98</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilbrey</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Haley</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Wishart</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Conforti</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Morreale</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Beirowski</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Babetto</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Adalbert</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gillingwater</surname>
<given-names>T.H.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VCP binding influences intracellular distribution of the slow Wallerian degeneration protein, Wld(S)</article-title>
<source>Mol. Cell. Neurosci</source>
<year>2008</year>
<volume>38</volume>
<fpage>325</fpage>
<lpage>340</lpage>
<pub-id pub-id-type="pmid">18468455</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="f1-ijms-13-16865" position="float">
<label>Figure 1</label>
<caption>
<p>Schematic model for UBE4B showing the inhibition (⊣), stabilization (→), or possible relation (?) with p53 family proteins, Wallerian pathway, and polyglutamination in neurodegenerative diseases.</p>
</caption>
<graphic xlink:href="ijms-13-16865f1"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C45 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000C45 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3546727
   |texte=   UBE4B: A Promising Regulatory Molecule in Neuronal Death and Survival
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:23222733" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022