La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia

Identifieur interne : 000B43 ( Pmc/Corpus ); précédent : 000B42; suivant : 000B44

Cortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia

Auteurs : R. Walter Heinrichs ; Farena Pinnock ; Melissa Parlar ; Colin Hawco ; Lindsay Hanford ; Geoffrey B. Hall

Source :

RBID : PMC:5350425

Abstract

This study assessed whether cortical thickness across the brain and regionally in terms of the default mode, salience, and central executive networks differentiates schizophrenia patients and healthy controls with normal range or below-normal range cognitive performance. Cognitive normality was defined using the MATRICS Consensus Cognitive Battery (MCCB) composite score (T = 50 ± 10) and structural magnetic resonance imaging was used to generate cortical thickness data. Whole brain analysis revealed that cognitively normal range controls (n = 39) had greater cortical thickness than both cognitively normal (n = 17) and below-normal range (n = 49) patients. Cognitively normal controls also demonstrated greater thickness than patients in regions associated with the default mode and salience, but not central executive networks. No differences on any thickness measure were found between cognitively normal range and below-normal range controls (n = 24) or between cognitively normal and below-normal range patients. In addition, structural covariance between network regions was high and similar across subgroups. Positive and negative symptom severity did not correlate with thickness values. Cortical thinning across the brain and regionally in relation to the default and salience networks may index shared aspects of the psychotic psychopathology that defines schizophrenia with no relation to cognitive impairment.


Url:
DOI: 10.1155/2017/9760905
PubMed: 28348889
PubMed Central: 5350425

Links to Exploration step

PMC:5350425

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia</title>
<author>
<name sortKey="Heinrichs, R Walter" sort="Heinrichs, R Walter" uniqKey="Heinrichs R" first="R. Walter" last="Heinrichs">R. Walter Heinrichs</name>
<affiliation>
<nlm:aff id="I1">York University, Toronto, ON, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pinnock, Farena" sort="Pinnock, Farena" uniqKey="Pinnock F" first="Farena" last="Pinnock">Farena Pinnock</name>
<affiliation>
<nlm:aff id="I1">York University, Toronto, ON, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Parlar, Melissa" sort="Parlar, Melissa" uniqKey="Parlar M" first="Melissa" last="Parlar">Melissa Parlar</name>
<affiliation>
<nlm:aff id="I1">York University, Toronto, ON, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hawco, Colin" sort="Hawco, Colin" uniqKey="Hawco C" first="Colin" last="Hawco">Colin Hawco</name>
<affiliation>
<nlm:aff id="I2">Centre for Addiction and Mental Health, Toronto, ON, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hanford, Lindsay" sort="Hanford, Lindsay" uniqKey="Hanford L" first="Lindsay" last="Hanford">Lindsay Hanford</name>
<affiliation>
<nlm:aff id="I3">University of Pittsburgh, Pittsburgh, PA, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hall, Geoffrey B" sort="Hall, Geoffrey B" uniqKey="Hall G" first="Geoffrey B." last="Hall">Geoffrey B. Hall</name>
<affiliation>
<nlm:aff id="I4">McMaster University, Hamilton, ON, Canada</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28348889</idno>
<idno type="pmc">5350425</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5350425</idno>
<idno type="RBID">PMC:5350425</idno>
<idno type="doi">10.1155/2017/9760905</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000B43</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000B43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Cortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia</title>
<author>
<name sortKey="Heinrichs, R Walter" sort="Heinrichs, R Walter" uniqKey="Heinrichs R" first="R. Walter" last="Heinrichs">R. Walter Heinrichs</name>
<affiliation>
<nlm:aff id="I1">York University, Toronto, ON, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pinnock, Farena" sort="Pinnock, Farena" uniqKey="Pinnock F" first="Farena" last="Pinnock">Farena Pinnock</name>
<affiliation>
<nlm:aff id="I1">York University, Toronto, ON, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Parlar, Melissa" sort="Parlar, Melissa" uniqKey="Parlar M" first="Melissa" last="Parlar">Melissa Parlar</name>
<affiliation>
<nlm:aff id="I1">York University, Toronto, ON, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hawco, Colin" sort="Hawco, Colin" uniqKey="Hawco C" first="Colin" last="Hawco">Colin Hawco</name>
<affiliation>
<nlm:aff id="I2">Centre for Addiction and Mental Health, Toronto, ON, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hanford, Lindsay" sort="Hanford, Lindsay" uniqKey="Hanford L" first="Lindsay" last="Hanford">Lindsay Hanford</name>
<affiliation>
<nlm:aff id="I3">University of Pittsburgh, Pittsburgh, PA, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hall, Geoffrey B" sort="Hall, Geoffrey B" uniqKey="Hall G" first="Geoffrey B." last="Hall">Geoffrey B. Hall</name>
<affiliation>
<nlm:aff id="I4">McMaster University, Hamilton, ON, Canada</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Schizophrenia Research and Treatment</title>
<idno type="ISSN">2090-2085</idno>
<idno type="eISSN">2090-2093</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>This study assessed whether cortical thickness across the brain and regionally in terms of the default mode, salience, and central executive networks differentiates schizophrenia patients and healthy controls with normal range or below-normal range cognitive performance. Cognitive normality was defined using the MATRICS Consensus Cognitive Battery (MCCB) composite score (
<italic>T</italic>
= 50 ± 10) and structural magnetic resonance imaging was used to generate cortical thickness data. Whole brain analysis revealed that cognitively normal range controls (
<italic>n</italic>
= 39) had greater cortical thickness than both cognitively normal (
<italic>n</italic>
= 17) and below-normal range (
<italic>n</italic>
= 49) patients. Cognitively normal controls also demonstrated greater thickness than patients in regions associated with the default mode and salience, but not central executive networks. No differences on any thickness measure were found between cognitively normal range and below-normal range controls (
<italic>n</italic>
= 24) or between cognitively normal and below-normal range patients. In addition, structural covariance between network regions was high and similar across subgroups. Positive and negative symptom severity did not correlate with thickness values. Cortical thinning across the brain and regionally in relation to the default and salience networks may index shared aspects of the psychotic psychopathology that defines schizophrenia with no relation to cognitive impairment.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Heinrichs, R W" uniqKey="Heinrichs R">R. W. Heinrichs</name>
</author>
<author>
<name sortKey="Zakzanis, K K" uniqKey="Zakzanis K">K. K. Zakzanis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weickert, T W" uniqKey="Weickert T">T. W. Weickert</name>
</author>
<author>
<name sortKey="Goldberg, T E" uniqKey="Goldberg T">T. E. Goldberg</name>
</author>
<author>
<name sortKey="Gold, J M" uniqKey="Gold J">J. M. Gold</name>
</author>
<author>
<name sortKey="Bigelow, L B" uniqKey="Bigelow L">L. B. Bigelow</name>
</author>
<author>
<name sortKey="Egan, M F" uniqKey="Egan M">M. F. Egan</name>
</author>
<author>
<name sortKey="Weinberger, D R" uniqKey="Weinberger D">D. R. Weinberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heinrichs, R W" uniqKey="Heinrichs R">R. W. Heinrichs</name>
</author>
<author>
<name sortKey="Pinnock, F" uniqKey="Pinnock F">F. Pinnock</name>
</author>
<author>
<name sortKey="Muharib, E" uniqKey="Muharib E">E. Muharib</name>
</author>
<author>
<name sortKey="Hartman, L" uniqKey="Hartman L">L. Hartman</name>
</author>
<author>
<name sortKey="Goldberg, J" uniqKey="Goldberg J">J. Goldberg</name>
</author>
<author>
<name sortKey="Mcdermid Vaz, S" uniqKey="Mcdermid Vaz S">S. McDermid Vaz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilk, C M" uniqKey="Wilk C">C. M. Wilk</name>
</author>
<author>
<name sortKey="Gold, J M" uniqKey="Gold J">J. M. Gold</name>
</author>
<author>
<name sortKey="Mcmahon, R P" uniqKey="Mcmahon R">R. P. McMahon</name>
</author>
<author>
<name sortKey="Humber, K" uniqKey="Humber K">K. Humber</name>
</author>
<author>
<name sortKey="Iannone, V N" uniqKey="Iannone V">V. N. Iannone</name>
</author>
<author>
<name sortKey="Buchanan, R W" uniqKey="Buchanan R">R. W. Buchanan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muharib, E" uniqKey="Muharib E">E. Muharib</name>
</author>
<author>
<name sortKey="Heinrichs, R W" uniqKey="Heinrichs R">R. W. Heinrichs</name>
</author>
<author>
<name sortKey="Miles, A" uniqKey="Miles A">A. Miles</name>
</author>
<author>
<name sortKey="Pinnock, F" uniqKey="Pinnock F">F. Pinnock</name>
</author>
<author>
<name sortKey="Mcdermid Vaz, S" uniqKey="Mcdermid Vaz S">S. McDermid Vaz</name>
</author>
<author>
<name sortKey="Ammari, N" uniqKey="Ammari N">N. Ammari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldman, A L" uniqKey="Goldman A">A. L. Goldman</name>
</author>
<author>
<name sortKey="Pezawas, L" uniqKey="Pezawas L">L. Pezawas</name>
</author>
<author>
<name sortKey="Doz, P" uniqKey="Doz P">P. Doz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuperberg, G R" uniqKey="Kuperberg G">G. R. Kuperberg</name>
</author>
<author>
<name sortKey="Broome, M R" uniqKey="Broome M">M. R. Broome</name>
</author>
<author>
<name sortKey="Mcguire, P K" uniqKey="Mcguire P">P. K. McGuire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rimol, L M" uniqKey="Rimol L">L. M. Rimol</name>
</author>
<author>
<name sortKey="Hartberg, C B" uniqKey="Hartberg C">C. B. Hartberg</name>
</author>
<author>
<name sortKey="Nesv G, R" uniqKey="Nesv G R">R. Nesvåg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wheeler, A L" uniqKey="Wheeler A">A. L. Wheeler</name>
</author>
<author>
<name sortKey="Chakravarty, M M" uniqKey="Chakravarty M">M. M. Chakravarty</name>
</author>
<author>
<name sortKey="Lerch, J P" uniqKey="Lerch J">J. P. Lerch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tandon, N" uniqKey="Tandon N">N. Tandon</name>
</author>
<author>
<name sortKey="Nanda, P" uniqKey="Nanda P">P. Nanda</name>
</author>
<author>
<name sortKey="Padmanabhan, J L" uniqKey="Padmanabhan J">J. L. Padmanabhan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wexler, B E" uniqKey="Wexler B">B. E. Wexler</name>
</author>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H. Zhu</name>
</author>
<author>
<name sortKey="Bell, M D" uniqKey="Bell M">M. D. Bell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Czepielewski, L S" uniqKey="Czepielewski L">L. S. Czepielewski</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Gama, C S" uniqKey="Gama C">C. S. Gama</name>
</author>
<author>
<name sortKey="Barch, D M" uniqKey="Barch D">D. M. Barch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cobia, D J" uniqKey="Cobia D">D. J. Cobia</name>
</author>
<author>
<name sortKey="Csernansky, J G" uniqKey="Csernansky J">J. G. Csernansky</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woodward, N D" uniqKey="Woodward N">N. D. Woodward</name>
</author>
<author>
<name sortKey="Heckers, S" uniqKey="Heckers S">S. Heckers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nuechterlein, K H" uniqKey="Nuechterlein K">K. H. Nuechterlein</name>
</author>
<author>
<name sortKey="Green, M F" uniqKey="Green M">M. F. Green</name>
</author>
<author>
<name sortKey="Kern, R S" uniqKey="Kern R">R. S. Kern</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schretlen, D J" uniqKey="Schretlen D">D. J. Schretlen</name>
</author>
<author>
<name sortKey="Testas, S M" uniqKey="Testas S">S. M. Testas</name>
</author>
<author>
<name sortKey="Winicki, J M" uniqKey="Winicki J">J. M. Winicki</name>
</author>
<author>
<name sortKey="Pearlson, G D" uniqKey="Pearlson G">G. D. Pearlson</name>
</author>
<author>
<name sortKey="Gordon, B" uniqKey="Gordon B">B. Gordon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menon, V" uniqKey="Menon V">V. Menon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez Espejo, D" uniqKey="Fernandez Espejo D">D. Fernández-Espejo</name>
</author>
<author>
<name sortKey="Soddu, A" uniqKey="Soddu A">A. Soddu</name>
</author>
<author>
<name sortKey="Cruse, D" uniqKey="Cruse D">D. Cruse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Culpepper, L" uniqKey="Culpepper L">L. Culpepper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Downar, J" uniqKey="Downar J">J. Downar</name>
</author>
<author>
<name sortKey="Crawley, A P" uniqKey="Crawley A">A. P. Crawley</name>
</author>
<author>
<name sortKey="Mikulis, D J" uniqKey="Mikulis D">D. J. Mikulis</name>
</author>
<author>
<name sortKey="Davis, K D" uniqKey="Davis K">K. D. Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palaniyappan, L" uniqKey="Palaniyappan L">L. Palaniyappan</name>
</author>
<author>
<name sortKey="Mallikarjun, P" uniqKey="Mallikarjun P">P. Mallikarjun</name>
</author>
<author>
<name sortKey="Joseph, V" uniqKey="Joseph V">V. Joseph</name>
</author>
<author>
<name sortKey="White, T P" uniqKey="White T">T. P. White</name>
</author>
<author>
<name sortKey="Liddle, P F" uniqKey="Liddle P">P. F. Liddle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="First, M B" uniqKey="First M">M. B. First</name>
</author>
<author>
<name sortKey="Gibbon, M" uniqKey="Gibbon M">M. Gibbon</name>
</author>
<author>
<name sortKey="Spitzer, R L" uniqKey="Spitzer R">R. L. Spitzer</name>
</author>
<author>
<name sortKey="Williams, J B W" uniqKey="Williams J">J. B. W. Williams</name>
</author>
<author>
<name sortKey="Benjamin, L S" uniqKey="Benjamin L">L. S. Benjamin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kremen, W S" uniqKey="Kremen W">W. S. Kremen</name>
</author>
<author>
<name sortKey="Seidman, L J" uniqKey="Seidman L">L. J. Seidman</name>
</author>
<author>
<name sortKey="Faraone, S V" uniqKey="Faraone S">S. V. Faraone</name>
</author>
<author>
<name sortKey="Toomey, R" uniqKey="Toomey R">R. Toomey</name>
</author>
<author>
<name sortKey="Tsuang, M T" uniqKey="Tsuang M">M. T. Tsuang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kay, S R" uniqKey="Kay S">S. R. Kay</name>
</author>
<author>
<name sortKey="Opler, L A" uniqKey="Opler L">L. A. Opler</name>
</author>
<author>
<name sortKey="Lindenmayer, J P" uniqKey="Lindenmayer J">J. P. Lindenmayer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dale, A M" uniqKey="Dale A">A. M. Dale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fischl, B" uniqKey="Fischl B">B. Fischl</name>
</author>
<author>
<name sortKey="Sereno, M I" uniqKey="Sereno M">M. I. Sereno</name>
</author>
<author>
<name sortKey="Tootell, R B H" uniqKey="Tootell R">R. B. H. Tootell</name>
</author>
<author>
<name sortKey="Dale, A M" uniqKey="Dale A">A. M. Dale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Destrieux, C" uniqKey="Destrieux C">C. Destrieux</name>
</author>
<author>
<name sortKey="Fischl, B" uniqKey="Fischl B">B. Fischl</name>
</author>
<author>
<name sortKey="Dale, A" uniqKey="Dale A">A. Dale</name>
</author>
<author>
<name sortKey="Halgren, E" uniqKey="Halgren E">E. Halgren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fischl, B" uniqKey="Fischl B">B. Fischl</name>
</author>
<author>
<name sortKey="Van Der Kouwe, A" uniqKey="Van Der Kouwe A">A. Van Der Kouwe</name>
</author>
<author>
<name sortKey="Destrieux, C" uniqKey="Destrieux C">C. Destrieux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcmenamin, B W" uniqKey="Mcmenamin B">B. W. McMenamin</name>
</author>
<author>
<name sortKey="Langeslag, S J E" uniqKey="Langeslag S">S. J. E. Langeslag</name>
</author>
<author>
<name sortKey="Sirbu, M" uniqKey="Sirbu M">M. Sirbu</name>
</author>
<author>
<name sortKey="Padmala, S" uniqKey="Padmala S">S. Padmala</name>
</author>
<author>
<name sortKey="Pessoa, L" uniqKey="Pessoa L">L. Pessoa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Najafi, M" uniqKey="Najafi M">M. Najafi</name>
</author>
<author>
<name sortKey="Mcmenamin, B W" uniqKey="Mcmenamin B">B. W. McMenamin</name>
</author>
<author>
<name sortKey="Simon, J Z" uniqKey="Simon J">J. Z. Simon</name>
</author>
<author>
<name sortKey="Pessoa, L" uniqKey="Pessoa L">L. Pessoa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindquist, M A" uniqKey="Lindquist M">M. A. Lindquist</name>
</author>
<author>
<name sortKey="Mejia, A" uniqKey="Mejia A">A. Mejia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennett, C M" uniqKey="Bennett C">C. M. Bennett</name>
</author>
<author>
<name sortKey="Wolford, G L" uniqKey="Wolford G">G. L. Wolford</name>
</author>
<author>
<name sortKey="Miller, M B" uniqKey="Miller M">M. B. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eklund, A" uniqKey="Eklund A">A. Eklund</name>
</author>
<author>
<name sortKey="Nichols, T E" uniqKey="Nichols T">T. E. Nichols</name>
</author>
<author>
<name sortKey="Knutsson, H" uniqKey="Knutsson H">H. Knutsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, M" uniqKey="Meyer M">M. Meyer</name>
</author>
<author>
<name sortKey="Liem, F" uniqKey="Liem F">F. Liem</name>
</author>
<author>
<name sortKey="Hirsiger, S" uniqKey="Hirsiger S">S. Hirsiger</name>
</author>
<author>
<name sortKey="J Ncke, L" uniqKey="J Ncke L">L. Jäncke</name>
</author>
<author>
<name sortKey="H Nggi, J" uniqKey="H Nggi J">J. Hänggi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Panizzon, M S" uniqKey="Panizzon M">M. S. Panizzon</name>
</author>
<author>
<name sortKey="Fennema Notestine, C" uniqKey="Fennema Notestine C">C. Fennema-Notestine</name>
</author>
<author>
<name sortKey="Eyler, L T" uniqKey="Eyler L">L. T. Eyler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tempelaar, W M" uniqKey="Tempelaar W">W. M. Tempelaar</name>
</author>
<author>
<name sortKey="Termorshuizen, F" uniqKey="Termorshuizen F">F. Termorshuizen</name>
</author>
<author>
<name sortKey="Maccabe, J H" uniqKey="Maccabe J">J. H. MacCabe</name>
</author>
<author>
<name sortKey="Boks, M P" uniqKey="Boks M">M. P. Boks</name>
</author>
<author>
<name sortKey="Kahn, R S" uniqKey="Kahn R">R. S. Kahn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soundy, A" uniqKey="Soundy A">A. Soundy</name>
</author>
<author>
<name sortKey="Stubbs, B" uniqKey="Stubbs B">B. Stubbs</name>
</author>
<author>
<name sortKey="Roskell, C" uniqKey="Roskell C">C. Roskell</name>
</author>
<author>
<name sortKey="Williams, S E" uniqKey="Williams S">S. E. Williams</name>
</author>
<author>
<name sortKey="Fox, A" uniqKey="Fox A">A. Fox</name>
</author>
<author>
<name sortKey="Vancampfort, D" uniqKey="Vancampfort D">D. Vancampfort</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glahn, D C" uniqKey="Glahn D">D. C. Glahn</name>
</author>
<author>
<name sortKey="Laird, A R" uniqKey="Laird A">A. R. Laird</name>
</author>
<author>
<name sortKey="Ellison Wright, I" uniqKey="Ellison Wright I">I. Ellison-Wright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sheffield, J M" uniqKey="Sheffield J">J. M. Sheffield</name>
</author>
<author>
<name sortKey="Barch, D M" uniqKey="Barch D">D. M. Barch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Gracia Dominguez, M" uniqKey="De Gracia Dominguez M">M. de Gracia Dominguez</name>
</author>
<author>
<name sortKey="Viechtbauer, W" uniqKey="Viechtbauer W">W. Viechtbauer</name>
</author>
<author>
<name sortKey="Simons, C J P" uniqKey="Simons C">C. J. P. Simons</name>
</author>
<author>
<name sortKey="Van Os, J" uniqKey="Van Os J">J. van Os</name>
</author>
<author>
<name sortKey="Krabbendam, L" uniqKey="Krabbendam L">L. Krabbendam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evans, A C" uniqKey="Evans A">A. C. Evans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shin, N Y" uniqKey="Shin N">N. Y. Shin</name>
</author>
<author>
<name sortKey="Shin, Y S" uniqKey="Shin Y">Y. S. Shin</name>
</author>
<author>
<name sortKey="Lee, P H" uniqKey="Lee P">P. H. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sekar, A" uniqKey="Sekar A">A. Sekar</name>
</author>
<author>
<name sortKey="Bialas, A R" uniqKey="Bialas A">A. R. Bialas</name>
</author>
<author>
<name sortKey="De Rivera, H" uniqKey="De Rivera H">H. De Rivera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cannon, T D" uniqKey="Cannon T">T. D. Cannon</name>
</author>
<author>
<name sortKey="Chung, Y" uniqKey="Chung Y">Y. Chung</name>
</author>
<author>
<name sortKey="He, G" uniqKey="He G">G. He</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Schizophr Res Treatment</journal-id>
<journal-id journal-id-type="iso-abbrev">Schizophr Res Treatment</journal-id>
<journal-id journal-id-type="publisher-id">SCHIZORT</journal-id>
<journal-title-group>
<journal-title>Schizophrenia Research and Treatment</journal-title>
</journal-title-group>
<issn pub-type="ppub">2090-2085</issn>
<issn pub-type="epub">2090-2093</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28348889</article-id>
<article-id pub-id-type="pmc">5350425</article-id>
<article-id pub-id-type="doi">10.1155/2017/9760905</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Cortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0003-4884-4854</contrib-id>
<name>
<surname>Heinrichs</surname>
<given-names>R. Walter</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pinnock</surname>
<given-names>Farena</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Parlar</surname>
<given-names>Melissa</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hawco</surname>
<given-names>Colin</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hanford</surname>
<given-names>Lindsay</given-names>
</name>
<xref ref-type="aff" rid="I3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hall</surname>
<given-names>Geoffrey B.</given-names>
</name>
<xref ref-type="aff" rid="I4">
<sup>4</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">
<sup>1</sup>
York University, Toronto, ON, Canada</aff>
<aff id="I2">
<sup>2</sup>
Centre for Addiction and Mental Health, Toronto, ON, Canada</aff>
<aff id="I3">
<sup>3</sup>
University of Pittsburgh, Pittsburgh, PA, USA</aff>
<aff id="I4">
<sup>4</sup>
McMaster University, Hamilton, ON, Canada</aff>
<author-notes>
<corresp id="cor1">*R. Walter Heinrichs:
<email>walterh@yorku.ca</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: L. Citrome</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2017</year>
</pub-date>
<pub-date pub-type="epub">
<day>28</day>
<month>2</month>
<year>2017</year>
</pub-date>
<volume>2017</volume>
<elocation-id>9760905</elocation-id>
<history>
<date date-type="received">
<day>5</day>
<month>9</month>
<year>2016</year>
</date>
<date date-type="rev-recd">
<day>15</day>
<month>1</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>2</day>
<month>2</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2017 R. Walter Heinrichs et al.</copyright-statement>
<copyright-year>2017</copyright-year>
<license xlink:href="https://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>This study assessed whether cortical thickness across the brain and regionally in terms of the default mode, salience, and central executive networks differentiates schizophrenia patients and healthy controls with normal range or below-normal range cognitive performance. Cognitive normality was defined using the MATRICS Consensus Cognitive Battery (MCCB) composite score (
<italic>T</italic>
= 50 ± 10) and structural magnetic resonance imaging was used to generate cortical thickness data. Whole brain analysis revealed that cognitively normal range controls (
<italic>n</italic>
= 39) had greater cortical thickness than both cognitively normal (
<italic>n</italic>
= 17) and below-normal range (
<italic>n</italic>
= 49) patients. Cognitively normal controls also demonstrated greater thickness than patients in regions associated with the default mode and salience, but not central executive networks. No differences on any thickness measure were found between cognitively normal range and below-normal range controls (
<italic>n</italic>
= 24) or between cognitively normal and below-normal range patients. In addition, structural covariance between network regions was high and similar across subgroups. Positive and negative symptom severity did not correlate with thickness values. Cortical thinning across the brain and regionally in relation to the default and salience networks may index shared aspects of the psychotic psychopathology that defines schizophrenia with no relation to cognitive impairment.</p>
</abstract>
<funding-group>
<award-group>
<funding-source xlink:href="http://dx.doi.org/10.13039/501100000024">Canadian Institutes of Health Research</funding-source>
<award-id>FRN102753</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>Cognitive impairment is highly prevalent in schizophrenia, with dysfunction across multiple abilities observed in 75–80% of patients [
<xref rid="B1" ref-type="bibr">1</xref>
]. Nonetheless, a minority overlaps with the performance of healthy control participants, giving rise to the possibility of an illness variant free, or relatively free, of cognitive deficits. It is likely that cognitive performance forms a continuum in the patient population, ranging from impaired to normative values, rather than a discrete or binary disease marker. However, this does not obviate the potential benefit of studying patients with psychosis who are relatively free of cognitive impairment. These exceptional patients may represent important variations in underlying pathophysiology and disease compensation. At the same time, the validity of “true” cognitive normality in schizophrenia has been disputed based on conjectures that normal range performance in patients represents a decline from premorbid ability levels [
<xref rid="B2" ref-type="bibr">2</xref>
]. In addition, putatively normal range patients may demonstrate task deficits and discrepant performance profiles when compared directly with healthy control groups [
<xref rid="B3" ref-type="bibr">3</xref>
,
<xref rid="B4" ref-type="bibr">4</xref>
]. This is not always the case [
<xref rid="B5" ref-type="bibr">5</xref>
] and absolute performance normality in any clinical population that endures a substantial stress and illness burden may be an unsupportable expectation.</p>
<p>Cognitive impairment and severe psychopathology both implicate underlying disturbances in neural systems. Substantial effort has been devoted to finding the biological underpinnings of schizophrenia through application of neuroimaging techniques. Structural neuroimaging studies have reported widespread reductions in grey matter volume and cortical thickness in the illness [
<xref rid="B6" ref-type="bibr">6</xref>
<xref rid="B9" ref-type="bibr">9</xref>
]. Cortical thinning is heritable and associated with specific genes and pathways that may confer risk for psychosis [
<xref rid="B10" ref-type="bibr">10</xref>
]. However, it is unclear whether these structural reductions index psychotic psychopathology, cognitive impairment, or both. Behavioral data support the possibility that psychosis and cognition are distinct and dissociable, but neuroimaging data are more equivocal. Structural imaging findings have been related to both symptoms and cognitive performance and grey matter reductions in specific regions have shown substantial variability [
<xref rid="B9" ref-type="bibr">9</xref>
]. Neurobiological evidence bearing on the validity of a cognitively normal or near-normal disease variant is scant and inconsistent. Grey matter volumes are lower in both cognitively normal and below-normal range patients relative to controls, implying that cortical changes are a central illness feature tied to the defining psychopathology of schizophrenia [
<xref rid="B11" ref-type="bibr">11</xref>
]. In contrast, recent data indicate that cortical thinning occurs primarily in cognitively impaired patients and minimally in patients with normal or near-normal cognitive performance [
<xref rid="B12" ref-type="bibr">12</xref>
,
<xref rid="B13" ref-type="bibr">13</xref>
]. Against this, another report showed no differences in grey matter in patients relative to controls, but both cognitively normal and below-normal range patients demonstrated reduced white matter volumes [
<xref rid="B14" ref-type="bibr">14</xref>
].</p>
<p>In light of these considerations, we asked whether cortical thinning (1) is primarily a shared feature of patients with schizophrenia and therefore primarily an index of psychotic psychopathology or (2) reflects the presence of cognitive impairment in the large subgroup of patients with deficient performance and/or (3) reflects an interaction among disease processes. To answer these questions, we evaluated cortical thickness in schizophrenia patients as well as in healthy control participants meeting and failing to meet a criterion for cognitive normality based on a widely used neuropsychological test battery [
<xref rid="B15" ref-type="bibr">15</xref>
]. It is noteworthy that the low-performing region of the general population distribution is seldom accessed to establish control comparisons in schizophrenia research [
<xref rid="B16" ref-type="bibr">16</xref>
]. Accordingly, little is known about structural brain differences between patients and cognitively low-performing but psychiatrically unremarkable participants. This kind of comparison may reveal neural characteristics intrinsic to schizophrenia and eliminate those that occur as a function of general ability level across populations.</p>
<p>In addition to comparing cortical thickness values across the whole brain, we focused on regions associated with the default mode network (DMN), central executive network (CEN), and salience network (SN). Each of these networks and their interrelations have been implicated in severe forms of psychopathology including schizophrenia [
<xref rid="B17" ref-type="bibr">17</xref>
]. The DMN comprises primarily ventromedial prefrontal and posterior cingulate cortex and mediates self-referential thinking, including aspects of autobiographical memory and social cognition [
<xref rid="B18" ref-type="bibr">18</xref>
]. The CEN comprises regions of dorsolateral prefrontal and posterior parietal cortex and is involved with regulating attention during cognitive task performance [
<xref rid="B19" ref-type="bibr">19</xref>
]. The SN includes ventrolateral prefrontal and anterior insula and dorsal anterior cingulate cortical regions and contributes to the detection of stimulus significance and may also play a coordinating role in terms of the other two networks [
<xref rid="B20" ref-type="bibr">20</xref>
]. An overactive DMN coupled with aberrant salience mapping and reduced CEN activity during information processing has been posited as an underlying defect in disorders that involve severe psychopathology and cognitive impairment [
<xref rid="B17" ref-type="bibr">17</xref>
]. Reduced surface area has been reported for cortical regions associated with these networks in schizophrenia patients, but it is not known whether this is true across the cognitive impairment/normality distinction [
<xref rid="B21" ref-type="bibr">21</xref>
]. Accordingly, our data address the additional question of the extent to which cortical thickness values for key brain systems are shared or different across schizophrenia patients and healthy controls with normal range and below-normal range cognitive performance.</p>
</sec>
<sec id="sec2">
<title>2. Materials and Methods</title>
<sec id="sec2.1">
<title>2.1. Participants</title>
<p>Patients (
<italic>n</italic>
= 90) were recruited from several outpatient programs in Hamilton, Ontario, Canada: the Cleghorn Early Intervention Clinic (St. Joseph's Healthcare Hamilton), the Hamilton Program for Schizophrenia, the Schizophrenia Outpatient Clinic (St. Joseph's Healthcare Hamilton), Schizophrenia Services of Ontario, Hamilton Chapter, Path Employment Services, and the Wellington Psychiatric Outreach Program. Criteria for study entry included (1) a diagnosis of schizophrenia or schizoaffective disorder confirmed by the Structured Clinical Interview for DSM-IV Axis I Disorders [
<xref rid="B22" ref-type="bibr">22</xref>
], with no concurrent diagnosis of substance use disorder; (2) a history free of developmental or learning disability; (3) a history free of neurological or endocrine disorder; and (4) age 18–65. Healthy control participants (
<italic>n</italic>
= 63) were recruited through local newspaper and online classified advertisements for paid research participation. To maximize the probability of recruiting control participants with below average range cognitive functioning, advertisements were targeted to community, employment, and social service agencies oriented to unskilled and less educated populations. Interested individuals were screened for psychiatric history and substance use disorders. All participants provided written informed consent and the research was approved by institutional ethics review boards.</p>
</sec>
<sec id="sec2.2">
<title>2.2. Cognitive Measures and Group Assignment</title>
<p>Standard cognitive tests forming the criterion for performance normality comprised the MATRICS (Measurement and Treatment Research to Improve Cognition in Schizophrenia) Consensus Cognitive Battery (MCCB) [
<xref rid="B15" ref-type="bibr">15</xref>
]. The MCCB includes individual measures of working memory, attention, verbal memory, processing speed, reasoning and problem-solving, visual learning, and social cognition and yields a composite index of overall performance. In addition, the Reading subtest of the Wide Range Achievement Test (WRAT-4) was administered as a proxy measure of premorbid ability [
<xref rid="B23" ref-type="bibr">23</xref>
]. Clinical status of patient participants was assessed with the Positive and Negative Syndrome Scale (PANSS) [
<xref rid="B24" ref-type="bibr">24</xref>
].</p>
<p>Group assignment was based on MCCB composite scores summarizing performance across 7 ability domains, with a
<italic>T</italic>
score of 50 ± 10 representing normative mean performance in the community standardization sample and in line with previous studies using this instrument [
<xref rid="B5" ref-type="bibr">5</xref>
]. Accordingly, the criterion for assignment to cognitively normal range groups was an overall composite
<italic>T</italic>
score from 40 to 60. Participants with a composite
<italic>T</italic>
score < 40 were assigned to below-normal range groups. Application of this performance criterion to the pool of 90 patients yielded
<italic>n</italic>
= 17 cognitively normal and
<italic>n</italic>
= 73 below-normal range patients. However, 24 in the below-normal range group transitioned to inpatient status during the 3-year course of the study and/or were unable or unwilling to complete the MRI imaging protocol, yielding a final
<italic>n</italic>
= 49 below-normal range patients. The patients who dropped out did not differ significantly from the final group of below-normal range patients in terms of age, symptom severity, or medication. However, the proportion of males in the excluded group (87%) differed significantly (
<italic>χ</italic>
<sub>1</sub>
<sup>2</sup>
= 4.62;
<italic>p</italic>
= 0.03) from the proportion of males in the study group (63%). The same normality criterion was applied to the pool of healthy controls to yield
<italic>n</italic>
= 39 cognitively normal and
<italic>n</italic>
= 24 below-normal range controls.</p>
</sec>
<sec id="sec2.3">
<title>2.3. MRI Imaging</title>
<sec id="sec2.3.1">
<title>2.3.1. Scan Acquisition</title>
<p>Participants underwent scanning with a 3.0-Tesla whole body short bore General Electric System MRI scanner with an 8-channel parallel receiver head coil at the Imaging Research Centre, St. Joseph's Healthcare Hamilton. A T1-weighted axial anatomical scan was acquired using a three-dimensional fast spoiled gradient recalled echo sequence with inversion recovery preparation. The anatomical image had 152 slices (2 mm thick with 1 mm overlap) with the following imaging parameters: time to repetition (TR)/echo time (TE) = 7.5/2.1 ms, TI = 450 ms, field of view (FOV) = 24 cm, matrix = 512 × 512, flip angle = 12°, receiver bandwidth (rBW) = +/−62.5 kHz, and number of excitations (NEX) = 1.</p>
</sec>
<sec id="sec2.3.2">
<title>2.3.2. Cortical Thickness Analysis</title>
<p>The T1-weighted images collected for each participant were preprocessed in order to segment the brain and to align cortical structures across the subjects using FreeSurfer automated image analysis (version 5.1.0;
<ext-link ext-link-type="uri" xlink:href="http://surfer.nmr.mgh.harvard.edu/">http://surfer.nmr.mgh.harvard.edu/</ext-link>
; see [
<xref rid="B25" ref-type="bibr">25</xref>
,
<xref rid="B26" ref-type="bibr">26</xref>
] for further details on this technique). Each image was inspected to correct for motion and also underwent spatial and intensity normalization and skull stripping. Cortical thickness was defined as the distance between pial surface to the grey/white matter border across 160,000 vertices in both cerebral hemispheres. Subsequently, each image was visually inspected by trained inspectors blind to group assignment to correct inaccuracies. Once images passed inspection, high dimensional registration was used to map them onto a spherical atlas for increased intersubject alignment accuracy. Surface maps were smoothed with a 15 mm full-width-half-maximum Gaussian kernel.</p>
<p>Cortical parcellations were obtained for regions of interest (ROIs) using the methods described by Destrieux et al. [
<xref rid="B27" ref-type="bibr">27</xref>
,
<xref rid="B28" ref-type="bibr">28</xref>
] in FreeSurfer. The Destrieux atlas involves both gyral and sulcal structures for bilateral hemispheric parcellation. A priori ROIs were chosen for analysis based on three networks (DMN, SN, and CEN; [
<xref rid="B29" ref-type="bibr">29</xref>
]). A visual representation of ROIs associated with each network is available in
<xref ref-type="fig" rid="fig1">Figure 1</xref>
. Traditionally, research has treated these networks as disjoint clusters and imposed assumptions regarding orthogonality. However, recent theory and data show that structural and functional overlap among network regions is more accurate and provides a promising framework for investigation [
<xref rid="B30" ref-type="bibr">30</xref>
]. Accordingly, we included ROIs that were common to more than one network (see
<xref ref-type="fig" rid="fig1">Figure 1</xref>
). In addition, because cortical thickness changes in schizophrenia are widespread or multifocal rather than highly localized, thickness data for ROIs assigned to each network were summed and averaged to yield DMN, SN, and CEN values. This avoided the multiple-comparison problems inherent in whole brain neuroimaging studies [
<xref rid="B31" ref-type="bibr">31</xref>
<xref rid="B33" ref-type="bibr">33</xref>
]. Additionally, this ROI-based approach was considered more appropriate than vertex-wise analyses given the heterogeneity and likelihood of widespread but relatively small changes in thickness values typically observed in schizophrenia patients [
<xref rid="B34" ref-type="bibr">34</xref>
,
<xref rid="B35" ref-type="bibr">35</xref>
].</p>
<p>Box's test for covariance matrix inequality and Levene's tests for variance inequality were performed prior to any parametric statistical testing. A multivariate analysis of covariance (MANCOVA) was carried out on the cortical thickness data, with age as a covariate and cognitive status/diagnosis as the fixed factor.</p>
</sec>
</sec>
</sec>
<sec id="sec3">
<title>3. Results</title>
<p>Descriptive statistics for the study groups are presented in
<xref ref-type="table" rid="tab1">Table 1</xref>
. Below-normal range patients were older and less educated than cognitively normal range patients (
<italic>t</italic>
(64) = 3.50,
<italic>p</italic>
< 0.01;
<italic>t</italic>
(64) = 3.81,
<italic>p</italic>
< 0.01) and controls (
<italic>t</italic>
(86) = 2.72,
<italic>p</italic>
< 0.01;
<italic>t</italic>
(86) = 2.72,
<italic>p</italic>
< 0.01). In addition, cognitively normal range controls were more educated than below-normal range controls (
<italic>t</italic>
(61) = 5.77,
<italic>p</italic>
< 0.001), but less educated than normal range patients (
<italic>t</italic>
(54) = −2.13,
<italic>p</italic>
< 0.001). There were no differences in the proportion of males in each group. In terms of MCCB composite scores, as expected, the cognitively normal range patient and control groups did not differ and the below-normal range patient and control groups did not differ. However, cognitively normal range patients differed from below-normal range patients (
<italic>t</italic>
(64) = 9.61,
<italic>p</italic>
< 0.001) and controls (
<italic>t</italic>
(39) = 7.50,
<italic>p</italic>
< 0.001) and cognitively normal range controls differed from below-normal range patients (
<italic>t</italic>
(86) = 14.97,
<italic>p</italic>
< 0.001) and controls (
<italic>t</italic>
(61) = 11.20,
<italic>p</italic>
< 0.001). The same pattern was observed in terms of Reading ability (WRAT-4), a proxy or estimate of premorbid ability. The key comparison of cognitively normal range patients with controls revealed no significant difference (
<italic>t</italic>
(54) = −0.273,
<italic>p</italic>
= 0.79). Additional details on the cognitive characteristics of the cognitively normal range patients have been published separately [
<xref rid="B3" ref-type="bibr">3</xref>
]. Patient subgroups did not differ in the severity of positive and negative symptoms or in the frequency of second-generation antipsychotic medication.</p>
<p>The MANCOVA on cortical thickness revealed a significant main effect of group (
<italic>F</italic>
<sub>12,320</sub>
= 2.85,
<italic>p</italic>
= 0.001, partial
<italic>η</italic>
2 = 0.085) and a covariate effect for age (
<italic>F</italic>
<sub>4,121</sub>
= 12.18,
<italic>p</italic>
< 0.001, partial
<italic>η</italic>
2 = 0.29). Univariate
<italic>F</italic>
ratios were significant for whole brain as well as for SN- and DMN-associated regional cortical thickness. Cognitively normal range controls demonstrated significantly higher thickness values than both patient subgroups after Bonferroni adjustment (see
<xref ref-type="table" rid="tab2">Table 2</xref>
). Partial correlations controlling for age were calculated to index relationships between network thickness values separately for each participant group. This revealed consistently high and significant (
<italic>p</italic>
< 0.001) correlations for all groups (CNR patients: mean
<italic>r</italic>
= 0.87, range:
<italic>r</italic>
= 0.82–
<italic>r</italic>
= 0.96; CNR controls: mean
<italic>r</italic>
= 0.83, range:
<italic>r</italic>
= 0.68–
<italic>r</italic>
= 0.96; BNR patients: mean
<italic>r</italic>
= 0.78, range:
<italic>r</italic>
= 0.69–
<italic>r</italic>
= 0.84; BNR controls: mean
<italic>r</italic>
= 0.86, range:
<italic>r</italic>
= 0.82–
<italic>r</italic>
= 0.93). Given group differences in educational achievement, this variable was also considered as a potential covariate. However, all bivariate correlations between education and cortical thickness were nonsignificant for both patients and control participants. Moreover, inclusion of education as a covariate in the MANCOVA did not alter the pattern of results described above. There were no significant bivariate correlations between PANSS ratings and regional/network-related or whole brain cortical thickness values.</p>
</sec>
<sec id="sec4">
<title>4. Discussion</title>
<p>Our data suggest that cortical thinning across the whole brain, as well as in default mode and salience network-associated regions, is a characteristic of the pathophysiology of schizophrenia and not related to the impaired cognition that also occurs frequently, but not invariably, in the disorder. A small but significant portion of the schizophrenia population meets psychometric criteria for normal range cognitive performance without evidence of decline from preillness levels. This subgroup is thereby distinguished from the large majority of more typical, cognitively impaired, and, frequently, deteriorated patients. Moreover, the cognitive distinction implies corresponding neural differences in cerebral structure and function. However, both patient subgroups demonstrated thinning relative to healthy control participants implying that this aspect of brain structure reflects the primary psychosis-related pathology of schizophrenia. In addition, controls with normal range or below-normal range ability were mutually indistinguishable in terms of cortical thickness. This underscores the relative independence of cortical thickness and cognitive performance. At the same time, overall structural covariance between network-associated regions was consistently high and occurred across cognitive and psychiatric status.</p>
<p>Cognitively normal range patients and controls also differed, perhaps surprisingly, in educational achievement, with patients obtaining on average an extra year relative to control participants. It is known that achievement is significantly lower in cognitively unselected schizophrenia patients than in the general population and relative to other psychiatric populations [
<xref rid="B36" ref-type="bibr">36</xref>
]. However, patients with normal range cognition are relatively rare and represent a special subgroup of individuals. In these cases, education may provide a protective influence in terms of the more typical deficits experienced by schizophrenia patients. Alternatively, cognitively high-functioning patients may be spurred to persist with education as a normalizing coping response as psychotic illness begins and intensifies. Accordingly, it is difficult to specify whether educational achievement is a producer or a product of cognitive proficiency in this population [
<xref rid="B37" ref-type="bibr">37</xref>
].</p>
<p>Our findings are consistent with previous reports that structural aspects of the cerebral cortex differentiate schizophrenia patients from healthy controls regardless of cognitive ability levels [
<xref rid="B11" ref-type="bibr">11</xref>
]. The data thereby contradict evidence that diffuse cortical thinning occurs preferentially or more severely in cognitively impaired patients [
<xref rid="B13" ref-type="bibr">13</xref>
]. Part of the reason for this inconsistency may lie in the nature of the normality criteria used by different researchers and the application of these criteria to patient and control participants. Thus, Cobia and colleagues [
<xref rid="B13" ref-type="bibr">13</xref>
] used cluster analysis to identify a subgroup of patients with “near-normal” performance defined by norm-referenced data values. However, these patients were impaired relative to comparison participants on several tasks. In contrast, Wexler and colleagues [
<xref rid="B11" ref-type="bibr">11</xref>
] used direct comparison with controls as the criterion whereby patients had to perform within 0.5 standard deviations of control values to be defined as “near normal.” More recently, Woodward and Heckers [
<xref rid="B14" ref-type="bibr">14</xref>
] reported no differences in grey matter volumes between cognitively normal range schizophrenia patients, controls, and impaired patients using a psychometric normality algorithm that incorporated estimated premorbid as well as current ability. It seems likely that heterogeneity in normality criteria and definitions contributes to the variability of findings. The use of widely accepted and comprehensive but time-efficient measures like the MCCB may yield more consistent data.</p>
<p>It is noteworthy that grey matter reductions have been demonstrated in prefrontal and medial temporal systems in schizophrenia [
<xref rid="B38" ref-type="bibr">38</xref>
]. However, to our knowledge, the present results are the first to show thinning in cortical areas associated specifically with the default mode and salience networks. Aberrant connectivity and activation patterns among these key large-scale brain networks have been postulated as a model for cognitive impairment in psychotic psychopathology [
<xref rid="B17" ref-type="bibr">17</xref>
]. Nevertheless, the evidence, obtained largely from functional magnetic resonance imaging studies, is mixed and the specific cause of cognitive impairment in schizophrenia remains unclear [
<xref rid="B39" ref-type="bibr">39</xref>
]. It is also possible that psychosis and impaired cognitive operations are mediated by dual and separable but nonetheless highly comorbid pathologies. The generally weak or absent association between psychotic symptoms and cognitive performance [
<xref rid="B40" ref-type="bibr">40</xref>
] as well as the existence of a cognitively “normal,” or at least high-functioning, schizophrenia subpopulation suggests that dual process models are plausible [
<xref rid="B3" ref-type="bibr">3</xref>
].</p>
<p>It is also noteworthy that cortical thickness values associated with the central executive network did not differentiate patients and controls across or between levels of cognitive performance. This network tends to show increased activation during structured cognitive testing and associated cortical regions have long been implicated in the neural basis of schizophrenia [
<xref rid="B17" ref-type="bibr">17</xref>
]. Cortical thickness values may reflect several characteristics of intracortical morphology [
<xref rid="B41" ref-type="bibr">41</xref>
] and correlations between regions as demonstrated in our findings imply structural connectivity. However, these and similar data do not necessarily index physiological connectivity or activation patterns among networks in clinical populations [
<xref rid="B42" ref-type="bibr">42</xref>
]. Therefore, our results cannot be regarded as a definitive test of the importance of the central executive network in schizophrenia or in relation to cognitive impairment. In addition, regional overlap in our summed network thickness values means that these values were not independent. Prefrontal regions implicated in working memory and insular cortex involved in emotional-contextual processing were common to the central executive and salience networks [
<xref rid="B17" ref-type="bibr">17</xref>
]. The default mode and salience networks shared anterior cingulate subregions that contribute to executive function [
<xref rid="B18" ref-type="bibr">18</xref>
]. However, regional thicknesses were weighted equally and may not reflect their differential contribution to each network. These limitations make conclusions about the relative magnitude of cortical thinning in different networks in schizophrenia tentative and in need of further investigation.</p>
<p>In addition, the relatively small sample size of cognitively normal range patients may have reduced statistical power to detect significant differences relative to cognitively below-normal range patients in particular. However, the extremely small mean differences between patient groups (Cohen's
<italic> d</italic>
's < 0.18) suggest that sample size alone was not the primary cause of nonsignificance in these comparisons. Therefore, cognitively high-functioning schizophrenia patients may indeed be indistinguishable from more typically impaired patients in terms of cortical thickness. Nonetheless, additional and alternate indices of neural structure and function should be considered in efforts to map this potentially informative behavioral distinction onto underlying brain.</p>
</sec>
<sec id="sec5">
<title>5. Conclusions</title>
<p>Recent research suggests that cortical abnormalities including thinning, possibly reflecting reduced synaptic structure and excessive pruning during adolescence, are mediated by genes that increase the risk for developing schizophrenia [
<xref rid="B43" ref-type="bibr">43</xref>
]. This may help explain the progressive thinning reported in youth with elevated risk for psychosis [
<xref rid="B44" ref-type="bibr">44</xref>
]. It also implicates thinning as a neural feature of the illness shared across patients with differing clinical and cognitive profiles. Our data are consistent with this view and suggest that diffuse as well as more focal thinning in regions associated with the default mode and salience networks is specific to the psychotic disease process, whether or not it is accompanied by impairment in routine cognitive operations.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This work was supported by the Canadian Institutes of Health Research (FRN102753). The authors thank Jamie Curno, Essi Numminen, Narmeen Ammari, Josh Lipszyc, Joseph Viviano, Stephanie McDermid Vaz, Joel Goldberg, and Ashley Miles for their assistance in gathering and analyzing the data. They are also grateful to participating clinical staff at the Hamilton Program for Schizophrenia, the Schizophrenia Outpatient Program, St. Joseph's Healthcare Hamilton, the Cleghorn Early Intervention Clinic, Schizophrenia Services Ontario (Hamilton), Path Employment Services, and the Wellington Psychiatric Outreach Program for their cooperation.</p>
</ack>
<sec>
<title>Disclosure</title>
<p>The funder had no role in study design, data analysis or manuscript preparation.</p>
</sec>
<sec sec-type="COI-statement">
<title>Competing Interests</title>
<p>The authors have no competing interests to disclose.</p>
</sec>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heinrichs</surname>
<given-names>R. W.</given-names>
</name>
<name>
<surname>Zakzanis</surname>
<given-names>K. K.</given-names>
</name>
</person-group>
<article-title>Neurocognitive deficit in schizophrenia: a quantitative review of the evidence</article-title>
<source>
<italic>Neuropsychology</italic>
</source>
<year>1998</year>
<volume>12</volume>
<issue>3</issue>
<fpage>426</fpage>
<lpage>445</lpage>
<pub-id pub-id-type="doi">10.1037/0894-4105.12.3.426</pub-id>
<pub-id pub-id-type="other">2-s2.0-0031903740</pub-id>
<pub-id pub-id-type="pmid">9673998</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weickert</surname>
<given-names>T. W.</given-names>
</name>
<name>
<surname>Goldberg</surname>
<given-names>T. E.</given-names>
</name>
<name>
<surname>Gold</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Bigelow</surname>
<given-names>L. B.</given-names>
</name>
<name>
<surname>Egan</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Weinberger</surname>
<given-names>D. R.</given-names>
</name>
</person-group>
<article-title>Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect</article-title>
<source>
<italic>Archives of General Psychiatry</italic>
</source>
<year>2000</year>
<volume>57</volume>
<issue>9</issue>
<fpage>907</fpage>
<lpage>913</lpage>
<pub-id pub-id-type="doi">10.1001/archpsyc.57.9.907</pub-id>
<pub-id pub-id-type="other">2-s2.0-0033850462</pub-id>
<pub-id pub-id-type="pmid">10986554</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heinrichs</surname>
<given-names>R. W.</given-names>
</name>
<name>
<surname>Pinnock</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Muharib</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hartman</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Goldberg</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>McDermid Vaz</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Neurocognitive normality in schizophrenia revisited</article-title>
<source>
<italic>Schizophrenia Research: Cognition</italic>
</source>
<year>2015</year>
<volume>2</volume>
<issue>4</issue>
<fpage>227</fpage>
<lpage>232</lpage>
<pub-id pub-id-type="doi">10.1016/j.scog.2015.09.001</pub-id>
<pub-id pub-id-type="other">2-s2.0-84953361200</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilk</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Gold</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>McMahon</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Humber</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Iannone</surname>
<given-names>V. N.</given-names>
</name>
<name>
<surname>Buchanan</surname>
<given-names>R. W.</given-names>
</name>
</person-group>
<article-title>No, it is not possible to be schizophrenic yet neuropsychologically normal</article-title>
<source>
<italic>Neuropsychology</italic>
</source>
<year>2005</year>
<volume>19</volume>
<issue>6</issue>
<fpage>778</fpage>
<lpage>786</lpage>
<pub-id pub-id-type="doi">10.1037/0894-4105.19.6.778</pub-id>
<pub-id pub-id-type="other">2-s2.0-29144467916</pub-id>
<pub-id pub-id-type="pmid">16351353</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muharib</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Heinrichs</surname>
<given-names>R. W.</given-names>
</name>
<name>
<surname>Miles</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pinnock</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>McDermid Vaz</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ammari</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Community outcome in cognitively normal schizophrenia patients</article-title>
<source>
<italic>Journal of the International Neuropsychological Society</italic>
</source>
<year>2014</year>
<volume>20</volume>
<issue>8</issue>
<fpage>805</fpage>
<lpage>811</lpage>
<pub-id pub-id-type="doi">10.1017/S1355617714000629</pub-id>
<pub-id pub-id-type="other">2-s2.0-84911378132</pub-id>
<pub-id pub-id-type="pmid">25083826</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldman</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Pezawas</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Doz</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Widespread reductions of cortical thickness in schizophrenia and spectrum disorders and evidence of heritability</article-title>
<source>
<italic>Archives of General Psychiatry</italic>
</source>
<year>2009</year>
<volume>66</volume>
<issue>5</issue>
<fpage>467</fpage>
<lpage>477</lpage>
<pub-id pub-id-type="doi">10.1001/archgenpsychiatry.2009.24</pub-id>
<pub-id pub-id-type="other">2-s2.0-65549089478</pub-id>
<pub-id pub-id-type="pmid">19414706</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuperberg</surname>
<given-names>G. R.</given-names>
</name>
<name>
<surname>Broome</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>McGuire</surname>
<given-names>P. K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regionally localized thinning of the cerebral cortex in schizophrenia</article-title>
<source>
<italic>Archives of General Psychiatry</italic>
</source>
<year>2003</year>
<volume>60</volume>
<issue>9</issue>
<fpage>878</fpage>
<lpage>888</lpage>
<pub-id pub-id-type="doi">10.1001/archpsyc.60.9.878</pub-id>
<pub-id pub-id-type="other">2-s2.0-0141568783</pub-id>
<pub-id pub-id-type="pmid">12963669</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rimol</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Hartberg</surname>
<given-names>C. B.</given-names>
</name>
<name>
<surname>Nesvåg</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder</article-title>
<source>
<italic>Biological Psychiatry</italic>
</source>
<year>2010</year>
<volume>68</volume>
<issue>1</issue>
<fpage>41</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopsych.2010.03.036</pub-id>
<pub-id pub-id-type="other">2-s2.0-77953588074</pub-id>
<pub-id pub-id-type="pmid">20609836</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wheeler</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Chakravarty</surname>
<given-names>M. M.</given-names>
</name>
<name>
<surname>Lerch</surname>
<given-names>J. P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Disrupted prefrontal interhemispheric structural coupling in Schizophrenia related to working memory performance</article-title>
<source>
<italic>Schizophrenia Bulletin</italic>
</source>
<year>2014</year>
<volume>40</volume>
<issue>4</issue>
<fpage>914</fpage>
<lpage>924</lpage>
<pub-id pub-id-type="doi">10.1093/schbul/sbt100</pub-id>
<pub-id pub-id-type="other">2-s2.0-84902581639</pub-id>
<pub-id pub-id-type="pmid">23873858</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tandon</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Nanda</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Padmanabhan</surname>
<given-names>J. L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Novel gene-brain structure relationships in psychotic disorder revealed using parallel independent component analyses</article-title>
<source>
<italic>Schizophrenia Research</italic>
</source>
<year>2016</year>
<pub-id pub-id-type="doi">10.1016/j.schres.2016.10.026</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wexler</surname>
<given-names>B. E.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Bell</surname>
<given-names>M. D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neuropsychological near normality and brain structure abnormality in schizophrenia</article-title>
<source>
<italic>The American Journal of Psychiatry</italic>
</source>
<year>2009</year>
<volume>166</volume>
<issue>2</issue>
<fpage>189</fpage>
<lpage>195</lpage>
<pub-id pub-id-type="doi">10.1176/appi.ajp.2008.08020258</pub-id>
<pub-id pub-id-type="other">2-s2.0-60349118528</pub-id>
<pub-id pub-id-type="pmid">18765481</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Czepielewski</surname>
<given-names>L. S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gama</surname>
<given-names>C. S.</given-names>
</name>
<name>
<surname>Barch</surname>
<given-names>D. M.</given-names>
</name>
</person-group>
<article-title>The relationship of intellectual functioning and cognitive performance to brain structure in schizophrenia</article-title>
<source>
<italic>Schizophrenia Bulletin</italic>
</source>
<year>2017</year>
<volume>43</volume>
<issue>2</issue>
<fpage>355</fpage>
<lpage>364</lpage>
<pub-id pub-id-type="doi">10.1093/schbul/sbw090</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cobia</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Csernansky</surname>
<given-names>J. G.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Cortical thickness in neuropsychologically near-normal schizophrenia</article-title>
<source>
<italic>Schizophrenia Research</italic>
</source>
<year>2011</year>
<volume>133</volume>
<issue>1–3</issue>
<fpage>68</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="doi">10.1016/j.schres.2011.08.017</pub-id>
<pub-id pub-id-type="other">2-s2.0-81955164245</pub-id>
<pub-id pub-id-type="pmid">21981933</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woodward</surname>
<given-names>N. D.</given-names>
</name>
<name>
<surname>Heckers</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Brain structure in neuropsychologically defined subgroups of schizophrenia and psychotic bipolar disorder</article-title>
<source>
<italic>Schizophrenia Bulletin</italic>
</source>
<year>2015</year>
<volume>41</volume>
<issue>6</issue>
<fpage>1349</fpage>
<lpage>1359</lpage>
<pub-id pub-id-type="doi">10.1093/schbul/sbv048</pub-id>
<pub-id pub-id-type="other">2-s2.0-84946135748</pub-id>
<pub-id pub-id-type="pmid">25904725</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nuechterlein</surname>
<given-names>K. H.</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Kern</surname>
<given-names>R. S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The MATRICS consensus cognitive battery, part 1: test selection, reliability, and validity</article-title>
<source>
<italic>The American Journal of Psychiatry</italic>
</source>
<year>2008</year>
<volume>165</volume>
<issue>2</issue>
<fpage>203</fpage>
<lpage>213</lpage>
<pub-id pub-id-type="doi">10.1176/appi.ajp.2007.07010042</pub-id>
<pub-id pub-id-type="other">2-s2.0-40949097635</pub-id>
<pub-id pub-id-type="pmid">18172019</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schretlen</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Testas</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Winicki</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Pearlson</surname>
<given-names>G. D.</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Frequency and bases of abnormal performance by healthy adults on neuropsychological testing</article-title>
<source>
<italic>Journal of the International Neuropsychological Society</italic>
</source>
<year>2008</year>
<volume>14</volume>
<issue>3</issue>
<fpage>436</fpage>
<lpage>445</lpage>
<pub-id pub-id-type="doi">10.1017/S1355617708080387</pub-id>
<pub-id pub-id-type="other">2-s2.0-42449085772</pub-id>
<pub-id pub-id-type="pmid">18419842</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menon</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Large-scale brain networks and psychopathology: a unifying triple network model</article-title>
<source>
<italic>Trends in Cognitive Sciences</italic>
</source>
<year>2011</year>
<volume>15</volume>
<issue>10</issue>
<fpage>483</fpage>
<lpage>506</lpage>
<pub-id pub-id-type="doi">10.1016/j.tics.2011.08.003</pub-id>
<pub-id pub-id-type="other">2-s2.0-80053131124</pub-id>
<pub-id pub-id-type="pmid">21908230</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernández-Espejo</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Soddu</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cruse</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A role for the default mode network in the bases of disorders of consciousness</article-title>
<source>
<italic>Annals of Neurology</italic>
</source>
<year>2012</year>
<volume>72</volume>
<issue>3</issue>
<fpage>335</fpage>
<lpage>343</lpage>
<pub-id pub-id-type="doi">10.1002/ana.23635</pub-id>
<pub-id pub-id-type="pmid">23034909</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Culpepper</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Neuroanatomy and physiology of cognition</article-title>
<source>
<italic>The Journal of Clinical Psychiatry</italic>
</source>
<year>2015</year>
<volume>76</volume>
<issue>7, article no. e900</issue>
<pub-id pub-id-type="doi">10.4088/jcp.13086tx3c</pub-id>
<pub-id pub-id-type="other">2-s2.0-84944683760</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Downar</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Crawley</surname>
<given-names>A. P.</given-names>
</name>
<name>
<surname>Mikulis</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>K. D.</given-names>
</name>
</person-group>
<article-title>A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities</article-title>
<source>
<italic>Journal of Neurophysiology</italic>
</source>
<year>2002</year>
<volume>87</volume>
<issue>1</issue>
<fpage>615</fpage>
<lpage>620</lpage>
<pub-id pub-id-type="other">2-s2.0-0036097969</pub-id>
<pub-id pub-id-type="pmid">11784775</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palaniyappan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Mallikarjun</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Joseph</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>White</surname>
<given-names>T. P.</given-names>
</name>
<name>
<surname>Liddle</surname>
<given-names>P. F.</given-names>
</name>
</person-group>
<article-title>Regional contraction of brain surface area involves three large-scale networks in schizophrenia</article-title>
<source>
<italic>Schizophrenia Research</italic>
</source>
<year>2011</year>
<volume>129</volume>
<issue>2-3</issue>
<fpage>163</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="doi">10.1016/j.schres.2011.03.020</pub-id>
<pub-id pub-id-type="other">2-s2.0-79957977498</pub-id>
<pub-id pub-id-type="pmid">21497489</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>First</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Gibbon</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Spitzer</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>J. B. W.</given-names>
</name>
<name>
<surname>Benjamin</surname>
<given-names>L. S.</given-names>
</name>
</person-group>
<source>
<italic>Structured Clinical Interview for DSM-IV Axis I Disorders: Non-Patient Edition (SCID-I/NP)</italic>
</source>
<year>1996</year>
<publisher-loc>New York, NY, USA</publisher-loc>
<publisher-name>Biometrics Research; New York State Psychiatric Institute</publisher-name>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kremen</surname>
<given-names>W. S.</given-names>
</name>
<name>
<surname>Seidman</surname>
<given-names>L. J.</given-names>
</name>
<name>
<surname>Faraone</surname>
<given-names>S. V.</given-names>
</name>
<name>
<surname>Toomey</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Tsuang</surname>
<given-names>M. T.</given-names>
</name>
</person-group>
<article-title>The paradox of normal neuropsychological function in schizophrenia</article-title>
<source>
<italic>Journal of Abnormal Psychology</italic>
</source>
<year>2000</year>
<volume>109</volume>
<issue>4</issue>
<fpage>743</fpage>
<lpage>752</lpage>
<pub-id pub-id-type="doi">10.1037//0021-843X.109.4.743</pub-id>
<pub-id pub-id-type="other">2-s2.0-0034494488</pub-id>
<pub-id pub-id-type="pmid">11196000</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kay</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Opler</surname>
<given-names>L. A.</given-names>
</name>
<name>
<surname>Lindenmayer</surname>
<given-names>J. P.</given-names>
</name>
</person-group>
<article-title>The Positive and Negative Syndrome Scale (PANSS): rationale and standardisation</article-title>
<source>
<italic>The British Journal of Psychiatry. Supplement</italic>
</source>
<year>1989</year>
<issue>7</issue>
<fpage>59</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="other">2-s2.0-0024760391</pub-id>
<pub-id pub-id-type="pmid">2619982</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dale</surname>
<given-names>A. M.</given-names>
</name>
</person-group>
<article-title>Optimal experimental design for event-related fMRI</article-title>
<source>
<italic>Human Brain Mapping</italic>
</source>
<year>1999</year>
<volume>8</volume>
<issue>2-3</issue>
<fpage>109</fpage>
<lpage>114</lpage>
<pub-id pub-id-type="doi">10.1002/(sici)1097-0193(1999)8:2/3<109::aid-hbm7>3.0.co;2-w</pub-id>
<pub-id pub-id-type="other">2-s2.0-0032884783</pub-id>
<pub-id pub-id-type="pmid">10524601</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fischl</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sereno</surname>
<given-names>M. I.</given-names>
</name>
<name>
<surname>Tootell</surname>
<given-names>R. B. H.</given-names>
</name>
<name>
<surname>Dale</surname>
<given-names>A. M.</given-names>
</name>
</person-group>
<article-title>High-resolution intersubject averaging and a coordinate system for the cortical surface</article-title>
<source>
<italic>Human Brain Mapping</italic>
</source>
<year>1999</year>
<volume>8</volume>
<issue>4</issue>
<fpage>272</fpage>
<lpage>284</lpage>
<pub-id pub-id-type="doi">10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4</pub-id>
<pub-id pub-id-type="other">2-s2.0-0032741345</pub-id>
<pub-id pub-id-type="pmid">10619420</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Destrieux</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fischl</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Dale</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Halgren</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature</article-title>
<source>
<italic>NeuroImage</italic>
</source>
<year>2010</year>
<volume>53</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2010.06.010</pub-id>
<pub-id pub-id-type="other">2-s2.0-77955307468</pub-id>
<pub-id pub-id-type="pmid">20547229</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fischl</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Van Der Kouwe</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Destrieux</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Automatically parcellating the human cerebral cortex</article-title>
<source>
<italic>Cerebral Cortex</italic>
</source>
<year>2004</year>
<volume>14</volume>
<issue>1</issue>
<fpage>11</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhg087</pub-id>
<pub-id pub-id-type="other">2-s2.0-9144254529</pub-id>
<pub-id pub-id-type="pmid">14654453</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McMenamin</surname>
<given-names>B. W.</given-names>
</name>
<name>
<surname>Langeslag</surname>
<given-names>S. J. E.</given-names>
</name>
<name>
<surname>Sirbu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Padmala</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pessoa</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Network organization unfolds over time during periods of anxious anticipation</article-title>
<source>
<italic>Journal of Neuroscience</italic>
</source>
<year>2014</year>
<volume>34</volume>
<issue>34</issue>
<fpage>11261</fpage>
<lpage>11273</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.1579-14.2014</pub-id>
<pub-id pub-id-type="other">2-s2.0-84906283051</pub-id>
<pub-id pub-id-type="pmid">25143607</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Najafi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>McMenamin</surname>
<given-names>B. W.</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>J. Z.</given-names>
</name>
<name>
<surname>Pessoa</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions</article-title>
<source>
<italic>NeuroImage</italic>
</source>
<year>2016</year>
<volume>135</volume>
<fpage>92</fpage>
<lpage>106</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2016.04.054</pub-id>
<pub-id pub-id-type="other">2-s2.0-84964914880</pub-id>
<pub-id pub-id-type="pmid">27129758</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lindquist</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Mejia</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Zen and the art of multiple comparisons</article-title>
<source>
<italic>Psychosomatic Medicine</italic>
</source>
<year>2015</year>
<volume>77</volume>
<issue>2</issue>
<fpage>114</fpage>
<lpage>125</lpage>
<pub-id pub-id-type="doi">10.1097/PSY.0000000000000148</pub-id>
<pub-id pub-id-type="other">2-s2.0-84923409376</pub-id>
<pub-id pub-id-type="pmid">25647751</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bennett</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Wolford</surname>
<given-names>G. L.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>M. B.</given-names>
</name>
</person-group>
<article-title>The principled control of false positives in neuroimaging</article-title>
<source>
<italic>Social Cognitive and Affective Neuroscience</italic>
</source>
<year>2009</year>
<volume>4</volume>
<issue>4</issue>
<fpage>417</fpage>
<lpage>422</lpage>
<pub-id pub-id-type="doi">10.1093/scan/nsp053</pub-id>
<pub-id pub-id-type="other">2-s2.0-77649194437</pub-id>
<pub-id pub-id-type="pmid">20042432</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eklund</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nichols</surname>
<given-names>T. E.</given-names>
</name>
<name>
<surname>Knutsson</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates</article-title>
<source>
<italic>Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2016</year>
<volume>113</volume>
<issue>28</issue>
<fpage>7900</fpage>
<lpage>7905</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1602413113</pub-id>
<pub-id pub-id-type="other">2-s2.0-84978165575</pub-id>
<pub-id pub-id-type="pmid">27357684</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liem</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Hirsiger</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jäncke</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hänggi</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Cortical surface area and cortical thickness demonstrate differential structural asymmetry in auditory-related areas of the human cortex</article-title>
<source>
<italic>Cerebral Cortex</italic>
</source>
<year>2014</year>
<volume>24</volume>
<issue>10</issue>
<fpage>2541</fpage>
<lpage>2552</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bht094</pub-id>
<pub-id pub-id-type="other">2-s2.0-84920754520</pub-id>
<pub-id pub-id-type="pmid">23645712</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Panizzon</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Fennema-Notestine</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Eyler</surname>
<given-names>L. T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Distinct genetic influences on cortical surface area and cortical thickness</article-title>
<source>
<italic>Cerebral Cortex</italic>
</source>
<year>2009</year>
<volume>19</volume>
<issue>11</issue>
<fpage>2728</fpage>
<lpage>2735</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhp026</pub-id>
<pub-id pub-id-type="other">2-s2.0-70349339460</pub-id>
<pub-id pub-id-type="pmid">19299253</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tempelaar</surname>
<given-names>W. M.</given-names>
</name>
<name>
<surname>Termorshuizen</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>MacCabe</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Boks</surname>
<given-names>M. P.</given-names>
</name>
<name>
<surname>Kahn</surname>
<given-names>R. S.</given-names>
</name>
</person-group>
<article-title>Educational achievement in psychiatric patients and their siblings: a register-based study in 30 000 individuals in The Netherlands</article-title>
<source>
<italic>Psychological Medicine</italic>
</source>
<year>2016</year>
<fpage>1</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1017/s0033291716002877</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soundy</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Stubbs</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Roskell</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>S. E.</given-names>
</name>
<name>
<surname>Fox</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vancampfort</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Identifying the facilitators and processes which influence recovery in individuals with schizophrenia: a systematic review and thematic synthesis</article-title>
<source>
<italic>Journal of Mental Health</italic>
</source>
<year>2015</year>
<volume>24</volume>
<issue>2</issue>
<fpage>103</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="doi">10.3109/09638237.2014.998811</pub-id>
<pub-id pub-id-type="other">2-s2.0-84928594968</pub-id>
<pub-id pub-id-type="pmid">25643043</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glahn</surname>
<given-names>D. C.</given-names>
</name>
<name>
<surname>Laird</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Ellison-Wright</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis</article-title>
<source>
<italic>Biological Psychiatry</italic>
</source>
<year>2008</year>
<volume>64</volume>
<issue>9</issue>
<fpage>774</fpage>
<lpage>781</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopsych.2008.03.031</pub-id>
<pub-id pub-id-type="other">2-s2.0-53249095969</pub-id>
<pub-id pub-id-type="pmid">18486104</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sheffield</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Barch</surname>
<given-names>D. M.</given-names>
</name>
</person-group>
<article-title>Cognition and resting-state functional connectivity in schizophrenia</article-title>
<source>
<italic>Neuroscience and Biobehavioral Reviews</italic>
</source>
<year>2016</year>
<volume>61</volume>
<fpage>108</fpage>
<lpage>120</lpage>
<pub-id pub-id-type="doi">10.1016/j.neubiorev.2015.12.007</pub-id>
<pub-id pub-id-type="other">2-s2.0-84951299658</pub-id>
<pub-id pub-id-type="pmid">26698018</pub-id>
</element-citation>
</ref>
<ref id="B40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Gracia Dominguez</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Viechtbauer</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Simons</surname>
<given-names>C. J. P.</given-names>
</name>
<name>
<surname>van Os</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Krabbendam</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Are psychotic psychopathology and neurocognition orthogonal? a systematic review of their associations</article-title>
<source>
<italic>Psychological Bulletin</italic>
</source>
<year>2009</year>
<volume>135</volume>
<issue>1</issue>
<fpage>157</fpage>
<lpage>171</lpage>
<pub-id pub-id-type="doi">10.1037/a0014415</pub-id>
<pub-id pub-id-type="other">2-s2.0-58249083788</pub-id>
<pub-id pub-id-type="pmid">19210058</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Evans</surname>
<given-names>A. C.</given-names>
</name>
</person-group>
<article-title>Networks of anatomical covariance</article-title>
<source>
<italic>NeuroImage</italic>
</source>
<year>2013</year>
<volume>80</volume>
<fpage>489</fpage>
<lpage>504</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2013.05.054</pub-id>
<pub-id pub-id-type="other">2-s2.0-84880333011</pub-id>
<pub-id pub-id-type="pmid">23711536</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shin</surname>
<given-names>N. Y.</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>Y. S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>P. H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Different functional and microstructural changes depending on duration of mild cognitive impairment in parkinson disease</article-title>
<source>
<italic>American Journal of Neuroradiology</italic>
</source>
<year>2016</year>
<volume>37</volume>
<issue>5</issue>
<fpage>897</fpage>
<lpage>903</lpage>
<pub-id pub-id-type="pmid">26705323</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sekar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bialas</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>De Rivera</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Schizophrenia risk from complex variation of complement component 4</article-title>
<source>
<italic>Nature</italic>
</source>
<year>2016</year>
<volume>530</volume>
<issue>7589</issue>
<fpage>177</fpage>
<lpage>183</lpage>
<pub-id pub-id-type="doi">10.1038/nature16549</pub-id>
<pub-id pub-id-type="other">2-s2.0-84958074030</pub-id>
<pub-id pub-id-type="pmid">26814963</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cannon</surname>
<given-names>T. D.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk</article-title>
<source>
<italic>Biological Psychiatry</italic>
</source>
<year>2015</year>
<volume>77</volume>
<issue>2</issue>
<fpage>147</fpage>
<lpage>157</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopsych.2014.05.023</pub-id>
<pub-id pub-id-type="other">2-s2.0-84918818374</pub-id>
<pub-id pub-id-type="pmid">25034946</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Cortical regions [
<xref rid="B27" ref-type="bibr">27</xref>
] associated with each brain network. Regional overlap between the default mode network (DMN) and salience network (SN) included the left inferior temporal gyrus and middle-anterior cingulate gyrus and sulcus bilaterally. Overlap between the SN network and central executive network (CEN) included the opercular part of the inferior frontal gyrus bilaterally as well as the middle frontal gyrus and left anterior segment of the circular sulcus of the insula. There was no overlap between the DMN and the CEN.</p>
</caption>
<graphic xlink:href="SCHIZORT2017-9760905.001"></graphic>
</fig>
<table-wrap id="tab1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Descriptive and criterion data for cognitively normal range (CNR) and below-normal range (BNR) patients and controls.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Variable</th>
<th align="center" rowspan="1" colspan="1">CNR patients (
<italic>n</italic>
= 17)</th>
<th align="center" rowspan="1" colspan="1">CNR controls (
<italic>n</italic>
= 39)</th>
<th align="center" rowspan="1" colspan="1">BNR patients (
<italic>n</italic>
= 49)</th>
<th align="center" rowspan="1" colspan="1">BNR controls (
<italic>n</italic>
= 24)</th>
<th align="center" rowspan="1" colspan="1">Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Age, years (M, SD)</td>
<td align="center" rowspan="1" colspan="1">34.47 (7.71)</td>
<td align="center" rowspan="1" colspan="1">37.46 (12.10)</td>
<td align="center" rowspan="1" colspan="1">43.90 (10.13)</td>
<td align="center" rowspan="1" colspan="1">41.17 (10.15)</td>
<td align="center" rowspan="1" colspan="1">
<italic>F</italic>
<sub>3,125</sub>
= 4.65
<sup>
<italic>∗∗</italic>
</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Education, years (M, SD)</td>
<td align="center" rowspan="1" colspan="1">14.53 (1.42)</td>
<td align="center" rowspan="1" colspan="1">13.51 (1.73)</td>
<td align="center" rowspan="1" colspan="1">12.35 (2.20)</td>
<td align="center" rowspan="1" colspan="1">10.79 (1.96)</td>
<td align="center" rowspan="1" colspan="1">
<italic>F</italic>
<sub>3,125</sub>
= 15.72
<sup>
<italic>∗∗∗</italic>
</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Gender (males %)</td>
<td align="center" rowspan="1" colspan="1">59</td>
<td align="center" rowspan="1" colspan="1">62</td>
<td align="center" rowspan="1" colspan="1">63</td>
<td align="center" rowspan="1" colspan="1">62</td>
<td align="center" rowspan="1" colspan="1">
<italic>χ</italic>
<sub>3</sub>
<sup>2</sup>
= 0.11</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">MCCB composite
<italic>T</italic>
(M, SD)</td>
<td align="center" rowspan="1" colspan="1">46.94 (5.00)</td>
<td align="center" rowspan="1" colspan="1">50.51 (6.66)</td>
<td align="center" rowspan="1" colspan="1">23.31 (9.67)</td>
<td align="center" rowspan="1" colspan="1">26.54 (10.36)</td>
<td align="center" rowspan="1" colspan="1">
<italic>F</italic>
<sub>3,125</sub>
= 93.18
<sup>
<italic>∗∗∗</italic>
</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">WRAT-4 Reading
<italic>SS</italic>
(M, SD)</td>
<td align="center" rowspan="1" colspan="1">100.53 (7.32)</td>
<td align="center" rowspan="1" colspan="1">101.18 (8.53)</td>
<td align="center" rowspan="1" colspan="1">87.87 (11.45)</td>
<td align="center" rowspan="1" colspan="1">84.83 (10.28)</td>
<td align="center" rowspan="1" colspan="1">
<italic>F</italic>
<sub>3,123</sub>
= 21.73
<sup>
<italic>∗∗∗</italic>
</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PANSS positive
<italic>T</italic>
(M, SD)</td>
<td align="center" rowspan="1" colspan="1">38.82 (6.19)</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">42.43 (7.90)</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">
<italic>t</italic>
<sub>64</sub>
= 1.70</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PANSS negative
<italic>T</italic>
(M, SD)</td>
<td align="center" rowspan="1" colspan="1">37.29 (7.73)</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">39.24 (6.54)</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">
<italic>t</italic>
<sub>64</sub>
= 1.01</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Medication (2nd generation)</td>
<td align="center" rowspan="1" colspan="1">76%</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">65%</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">
<italic>χ</italic>
<sub>1</sub>
<sup>2</sup>
= 3.43</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>
<italic>Note</italic>
. MCCB: MATRICS Consensus Cognitive Battery; PANSS: Positive and Negative Syndrome Scale; WRAT-4: Wide Range Achievement Test.</p>
</fn>
<fn>
<p>
<sup>
<italic>∗∗</italic>
</sup>
<italic>p</italic>
< 0.01.</p>
</fn>
<fn>
<p>
<sup>
<italic>∗∗∗</italic>
</sup>
<italic>p</italic>
< 0.001.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tab2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>Cortical thickness (mm) in cognitively normal range (CNR) and below-normal range (BNR) patients and controls adjusted for age.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Region/network</th>
<th align="center" rowspan="1" colspan="1">(1) CNR
<break></break>
patients
<break></break>
  (
<italic>n</italic>
= 17)  
<break></break>
M, SD</th>
<th align="center" rowspan="1" colspan="1">(2) CNR
<break></break>
controls
<break></break>
  (
<italic>n</italic>
= 39)  
<break></break>
M, SD</th>
<th align="center" rowspan="1" colspan="1">(3) BNR
<break></break>
patients
<break></break>
  (
<italic>n</italic>
= 49)  
<break></break>
M, SD</th>
<th align="center" rowspan="1" colspan="1">(4) BNR
<break></break>
controls
<break></break>
  (
<italic>n</italic>
= 24)  
<break></break>
M, SD</th>
<th align="left" rowspan="1" colspan="1">
<italic>F</italic>
(3,123)</th>
<th align="center" rowspan="1" colspan="1">Bonferroni adjusted comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Whole brain</td>
<td align="center" rowspan="1" colspan="1">2.46 (.10)</td>
<td align="center" rowspan="1" colspan="1">2.54 (.10)</td>
<td align="center" rowspan="1" colspan="1">2.46 (.10)</td>
<td align="center" rowspan="1" colspan="1">2.51 (.10)</td>
<td align="left" rowspan="1" colspan="1">5.56
<sup>
<italic>∗∗</italic>
</sup>
</td>
<td align="center" rowspan="1" colspan="1">2 > 1,3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Default mode</td>
<td align="center" rowspan="1" colspan="1">2.55 (.11)</td>
<td align="center" rowspan="1" colspan="1">2.68 (.11)</td>
<td align="center" rowspan="1" colspan="1">2.56 (.11)</td>
<td align="center" rowspan="1" colspan="1">2.62 (.11)</td>
<td align="left" rowspan="1" colspan="1">8.93
<sup>
<italic>∗∗∗</italic>
</sup>
</td>
<td align="center" rowspan="1" colspan="1">2 > 1,3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Salience</td>
<td align="center" rowspan="1" colspan="1">2.70 (.12)</td>
<td align="center" rowspan="1" colspan="1">2.81 (.12)</td>
<td align="center" rowspan="1" colspan="1">2.72 (.12)</td>
<td align="center" rowspan="1" colspan="1">2.77 (.12)</td>
<td align="left" rowspan="1" colspan="1">6.25
<sup>
<italic>∗∗</italic>
</sup>
</td>
<td align="center" rowspan="1" colspan="1">2 > 1,3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Central executive</td>
<td align="center" rowspan="1" colspan="1">2.55 (.13)</td>
<td align="center" rowspan="1" colspan="1">2.61 (.12)</td>
<td align="center" rowspan="1" colspan="1">2.57 (.13)</td>
<td align="center" rowspan="1" colspan="1">2.61 (.12)</td>
<td align="left" rowspan="1" colspan="1">1.65</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>
<sup>
<italic>∗∗</italic>
</sup>
<italic>p</italic>
< 0.01.</p>
</fn>
<fn>
<p>
<sup>
<italic>∗∗∗</italic>
</sup>
<italic>p</italic>
< 0.001.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B43 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000B43 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5350425
   |texte=   Cortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:28348889" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022