La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring

Identifieur interne : 000934 ( Pmc/Corpus ); précédent : 000933; suivant : 000935

Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring

Auteurs : Dafna Sussman ; Jurgen Germann ; Mark Henkelman

Source :

RBID : PMC:4309881

Abstract

Introduction

The ketogenic diet (KD) has seen an increase in popularity for clinical and non-clinical purposes, leading to rise in concern about the diet's impact on following generations. The KD is known to have a neurological effect, suggesting that exposure to it during prenatal brain development may alter neuro-anatomy. Studies have also indicated that the KD has an anti-depressant effect on the consumer. However, it is unclear whether any neuro-anatomical and/or behavioral changes would occur in the offspring and persist into adulthood.

Methods

To fill this knowledge gap we assessed the brain morphology and behavior of 8-week-old young-adult CD-1 mice, who were exposed to the KD in utero, and were fed only a standard-diet (SD) in postnatal life. Standardized neuro-behavior tests included the Open-Field, Forced-Swim, and Exercise Wheel tests, and were followed by post-mortem Magnetic Resonance Imaging (MRI) to assess brain anatomy.

Results

The adult KD offspring exhibit reduced susceptibility to anxiety and depression, and elevated physical activity level when compared with controls exposed to the SD both in utero and postnatally. Many neuro-anatomical differences exist between the KD offspring and controls, including, for example, a cerebellar volumetric enlargement by 4.8%, a hypothalamic reduction by 1.39%, and a corpus callosum reduction by 4.77%, as computed relative to total brain volume.

Conclusions

These results suggest that prenatal exposure to the KD programs the offspring neuro-anatomy and influences their behavior in adulthood.


Url:
DOI: 10.1002/brb3.300
PubMed: 25642385
PubMed Central: 4309881

Links to Exploration step

PMC:4309881

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring</title>
<author>
<name sortKey="Sussman, Dafna" sort="Sussman, Dafna" uniqKey="Sussman D" first="Dafna" last="Sussman">Dafna Sussman</name>
<affiliation>
<nlm:aff id="au1">
<institution>Physiology and Experimental Medicine, The Hospital for Sick Children</institution>
<addr-line>Toronto, Ontario, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Germann, Jurgen" sort="Germann, Jurgen" uniqKey="Germann J" first="Jurgen" last="Germann">Jurgen Germann</name>
<affiliation>
<nlm:aff id="au2">
<institution>Mouse Imaging Center (MICe), The Hospital for Sick Children</institution>
<addr-line>Toronto, Ontario, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Henkelman, Mark" sort="Henkelman, Mark" uniqKey="Henkelman M" first="Mark" last="Henkelman">Mark Henkelman</name>
<affiliation>
<nlm:aff id="au2">
<institution>Mouse Imaging Center (MICe), The Hospital for Sick Children</institution>
<addr-line>Toronto, Ontario, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25642385</idno>
<idno type="pmc">4309881</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309881</idno>
<idno type="RBID">PMC:4309881</idno>
<idno type="doi">10.1002/brb3.300</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000934</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000934</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring</title>
<author>
<name sortKey="Sussman, Dafna" sort="Sussman, Dafna" uniqKey="Sussman D" first="Dafna" last="Sussman">Dafna Sussman</name>
<affiliation>
<nlm:aff id="au1">
<institution>Physiology and Experimental Medicine, The Hospital for Sick Children</institution>
<addr-line>Toronto, Ontario, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Germann, Jurgen" sort="Germann, Jurgen" uniqKey="Germann J" first="Jurgen" last="Germann">Jurgen Germann</name>
<affiliation>
<nlm:aff id="au2">
<institution>Mouse Imaging Center (MICe), The Hospital for Sick Children</institution>
<addr-line>Toronto, Ontario, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Henkelman, Mark" sort="Henkelman, Mark" uniqKey="Henkelman M" first="Mark" last="Henkelman">Mark Henkelman</name>
<affiliation>
<nlm:aff id="au2">
<institution>Mouse Imaging Center (MICe), The Hospital for Sick Children</institution>
<addr-line>Toronto, Ontario, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Brain and Behavior</title>
<idno type="ISSN">2162-3279</idno>
<idno type="eISSN">2162-3279</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Introduction</title>
<p>The ketogenic diet (KD) has seen an increase in popularity for clinical and non-clinical purposes, leading to rise in concern about the diet's impact on following generations. The KD is known to have a neurological effect, suggesting that exposure to it during prenatal brain development may alter neuro-anatomy. Studies have also indicated that the KD has an anti-depressant effect on the consumer. However, it is unclear whether any neuro-anatomical and/or behavioral changes would occur in the offspring and persist into adulthood.</p>
</sec>
<sec>
<title>Methods</title>
<p>To fill this knowledge gap we assessed the brain morphology and behavior of 8-week-old young-adult CD-1 mice, who were exposed to the KD in utero, and were fed only a standard-diet (SD) in postnatal life. Standardized neuro-behavior tests included the Open-Field, Forced-Swim, and Exercise Wheel tests, and were followed by post-mortem Magnetic Resonance Imaging (MRI) to assess brain anatomy.</p>
</sec>
<sec>
<title>Results</title>
<p>The adult KD offspring exhibit reduced susceptibility to anxiety and depression, and elevated physical activity level when compared with controls exposed to the SD both in utero and postnatally. Many neuro-anatomical differences exist between the KD offspring and controls, including, for example, a cerebellar volumetric enlargement by 4.8%, a hypothalamic reduction by 1.39%, and a corpus callosum reduction by 4.77%, as computed relative to total brain volume.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>These results suggest that prenatal exposure to the KD programs the offspring neuro-anatomy and influences their behavior in adulthood.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahren, B" uniqKey="Ahren B">B Ahren</name>
</author>
<author>
<name sortKey="Mansson, S" uniqKey="Mansson S">S Mansson</name>
</author>
<author>
<name sortKey="Gingerich, Rl" uniqKey="Gingerich R">RL Gingerich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alamy, M" uniqKey="Alamy M">M Alamy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benjamini, Y" uniqKey="Benjamini Y">Y Benjamini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benjamini, Y" uniqKey="Benjamini Y">Y Benjamini</name>
</author>
<author>
<name sortKey="Hochberg, Y" uniqKey="Hochberg Y">Y Hochberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bough, Kj" uniqKey="Bough K">KJ Bough</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Breu, J" uniqKey="Breu J">J Breu</name>
</author>
<author>
<name sortKey="Touma, C" uniqKey="Touma C">C Touma</name>
</author>
<author>
<name sortKey="Holter, Sm" uniqKey="Holter S">SM Holter</name>
</author>
<author>
<name sortKey="Knapman, A" uniqKey="Knapman A">A Knapman</name>
</author>
<author>
<name sortKey="Wurst, W" uniqKey="Wurst W">W Wurst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cahill, Ls" uniqKey="Cahill L">LS Cahill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Cm" uniqKey="Cheng C">CM Cheng</name>
</author>
<author>
<name sortKey="Kelley, B" uniqKey="Kelley B">B Kelley</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Strauss, D" uniqKey="Strauss D">D Strauss</name>
</author>
<author>
<name sortKey="Eagles, Da" uniqKey="Eagles D">DA Eagles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cintra, L" uniqKey="Cintra L">L Cintra</name>
</author>
<author>
<name sortKey="Diaaz Cintra, S" uniqKey="Diaaz Cintra S">S Diaaz-Cintra</name>
</author>
<author>
<name sortKey="Galvan, A" uniqKey="Galvan A">A Galvan</name>
</author>
<author>
<name sortKey="Kemper, T" uniqKey="Kemper T">T Kemper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dahlin, M" uniqKey="Dahlin M">M Dahlin</name>
</author>
<author>
<name sortKey="Mansson, Je" uniqKey="Mansson J">JE Mansson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davids, E" uniqKey="Davids E">E Davids</name>
</author>
<author>
<name sortKey="Zhang, K" uniqKey="Zhang K">K Zhang</name>
</author>
<author>
<name sortKey="Tarazi, Fi" uniqKey="Tarazi F">FI Tarazi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dazai, J" uniqKey="Dazai J">J Dazai</name>
</author>
<author>
<name sortKey="Spring, S" uniqKey="Spring S">S Spring</name>
</author>
<author>
<name sortKey="Cahill, Ls" uniqKey="Cahill L">LS Cahill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dorr, Ae" uniqKey="Dorr A">AE Dorr</name>
</author>
<author>
<name sortKey="Lerch, Jp" uniqKey="Lerch J">JP Lerch</name>
</author>
<author>
<name sortKey="Spring, S" uniqKey="Spring S">S Spring</name>
</author>
<author>
<name sortKey="Kabani, N" uniqKey="Kabani N">N Kabani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellegood, J" uniqKey="Ellegood J">J Ellegood</name>
</author>
<author>
<name sortKey="Henkelman, Rm" uniqKey="Henkelman R">RM Henkelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Francolin Silva, Al" uniqKey="Francolin Silva A">AL Francolin-Silva</name>
</author>
<author>
<name sortKey="Da Silva Hernandes, A" uniqKey="Da Silva Hernandes A">A da Silva Hernandes</name>
</author>
<author>
<name sortKey="Fukuda, Mth" uniqKey="Fukuda M">MTH Fukuda</name>
</author>
<author>
<name sortKey="Valadares, Ct" uniqKey="Valadares C">CT Valadares</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fushiki, T" uniqKey="Fushiki T">T Fushiki</name>
</author>
<author>
<name sortKey="Matsumoto, K" uniqKey="Matsumoto K">K Matsumoto</name>
</author>
<author>
<name sortKey="Inoue, K" uniqKey="Inoue K">K Inoue</name>
</author>
<author>
<name sortKey="Kawada, T" uniqKey="Kawada T">T Kawada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gerlai, R" uniqKey="Gerlai R">R Gerlai</name>
</author>
<author>
<name sortKey="Millen, Kj" uniqKey="Millen K">KJ Millen</name>
</author>
<author>
<name sortKey="Herrup, K" uniqKey="Herrup K">K Herrup</name>
</author>
<author>
<name sortKey="Fabien, K" uniqKey="Fabien K">K Fabien</name>
</author>
<author>
<name sortKey="Joyner, Al" uniqKey="Joyner A">AL Joyner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Girden, Er" uniqKey="Girden E">ER Girden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Haaren, F" uniqKey="Van Haaren F">F van Haaren</name>
</author>
<author>
<name sortKey="Van Hest, A" uniqKey="Van Hest A">A van Hest</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hartman, Al" uniqKey="Hartman A">AL Hartman</name>
</author>
<author>
<name sortKey="Gasior, M" uniqKey="Gasior M">M Gasior</name>
</author>
<author>
<name sortKey="Vining, Epg" uniqKey="Vining E">EPG Vining</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hussain, Ta" uniqKey="Hussain T">TA Hussain</name>
</author>
<author>
<name sortKey="Mathew, Tc" uniqKey="Mathew T">TC Mathew</name>
</author>
<author>
<name sortKey="Dashti, Aa" uniqKey="Dashti A">AA Dashti</name>
</author>
<author>
<name sortKey="Asfar, S" uniqKey="Asfar S">S Asfar</name>
</author>
<author>
<name sortKey="Al Zaid, N" uniqKey="Al Zaid N">N Al-Zaid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y Jiang</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S Wang</name>
</author>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y Ding</name>
</author>
<author>
<name sortKey="Guo, Y" uniqKey="Guo Y">Y Guo</name>
</author>
<author>
<name sortKey="Zhang, M M" uniqKey="Zhang M">M-M Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kazutaka, M" uniqKey="Kazutaka M">M Kazutaka</name>
</author>
<author>
<name sortKey="Shimokawa, Y" uniqKey="Shimokawa Y">Y Shimokawa</name>
</author>
<author>
<name sortKey="Nagasawa, M" uniqKey="Nagasawa M">M Nagasawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knab, Am" uniqKey="Knab A">AM Knab</name>
</author>
<author>
<name sortKey="Bowen, Rs" uniqKey="Bowen R">RS Bowen</name>
</author>
<author>
<name sortKey="Moore Harrison, T" uniqKey="Moore Harrison T">T Moore-Harrison</name>
</author>
<author>
<name sortKey="Hamilton, At" uniqKey="Hamilton A">AT Hamilton</name>
</author>
<author>
<name sortKey="Turner, Mj" uniqKey="Turner M">MJ Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lerch, Jp" uniqKey="Lerch J">JP Lerch</name>
</author>
<author>
<name sortKey="Yiu, Ap" uniqKey="Yiu A">AP Yiu</name>
</author>
<author>
<name sortKey="Martinez Canabal, A" uniqKey="Martinez Canabal A">A Martinez-Canabal</name>
</author>
<author>
<name sortKey="Pekar, T" uniqKey="Pekar T">T Pekar</name>
</author>
<author>
<name sortKey="Bohbot, Vd" uniqKey="Bohbot V">VD Bohbot</name>
</author>
<author>
<name sortKey="Frankland, Pw" uniqKey="Frankland P">PW Frankland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levitt, P" uniqKey="Levitt P">P Levitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lopez Aumatell, R" uniqKey="Lopez Aumatell R">R Lopez-Aumatell</name>
</author>
<author>
<name sortKey="Guitart Masip, M" uniqKey="Guitart Masip M">M Guitart-Masip</name>
</author>
<author>
<name sortKey="Vicens Costa, E" uniqKey="Vicens Costa E">E Vicens-Costa</name>
</author>
<author>
<name sortKey="Gimenez Llort, L" uniqKey="Gimenez Llort L">L Gimenez-Llort</name>
</author>
<author>
<name sortKey="Valdar, W" uniqKey="Valdar W">W Valdar</name>
</author>
<author>
<name sortKey="Johannesson, M" uniqKey="Johannesson M">M Johannesson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maalouf, M" uniqKey="Maalouf M">M Maalouf</name>
</author>
<author>
<name sortKey="Rho, Jm" uniqKey="Rho J">JM Rho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcmahon, A" uniqKey="Mcmahon A">A McMahon</name>
</author>
<author>
<name sortKey="Wong, Bs" uniqKey="Wong B">BS Wong</name>
</author>
<author>
<name sortKey="Iacopino, Am" uniqKey="Iacopino A">AM Iacopino</name>
</author>
<author>
<name sortKey="Ng, Mc" uniqKey="Ng M">MC Ng</name>
</author>
<author>
<name sortKey="Chi, S" uniqKey="Chi S">S Chi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mokler, Dj" uniqKey="Mokler D">DJ Mokler</name>
</author>
<author>
<name sortKey="Torres, Oi" uniqKey="Torres O">OI Torres</name>
</author>
<author>
<name sortKey="Galler, Jr" uniqKey="Galler J">JR Galler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morris, Aam" uniqKey="Morris A">AAM Morris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, P" uniqKey="Murphy P">P Murphy</name>
</author>
<author>
<name sortKey="Likhodii, S" uniqKey="Likhodii S">S Likhodii</name>
</author>
<author>
<name sortKey="Nylen, K" uniqKey="Nylen K">K Nylen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nehlig, A" uniqKey="Nehlig A">A Nehlig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nieman, Bj" uniqKey="Nieman B">BJ Nieman</name>
</author>
<author>
<name sortKey="Lerch, Jp" uniqKey="Lerch J">JP Lerch</name>
</author>
<author>
<name sortKey="Bock, Na" uniqKey="Bock N">NA Bock</name>
</author>
<author>
<name sortKey="Chen, Xj" uniqKey="Chen X">XJ Chen</name>
</author>
<author>
<name sortKey="Sled, Jg" uniqKey="Sled J">JG Sled</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noh, Hs" uniqKey="Noh H">HS Noh</name>
</author>
<author>
<name sortKey="Kim, Ys" uniqKey="Kim Y">YS Kim</name>
</author>
<author>
<name sortKey="Lee, Hp" uniqKey="Lee H">HP Lee</name>
</author>
<author>
<name sortKey="Chung, Km" uniqKey="Chung K">KM Chung</name>
</author>
<author>
<name sortKey="Kim, Dw" uniqKey="Kim D">DW Kim</name>
</author>
<author>
<name sortKey="Kang, Ss" uniqKey="Kang S">SS Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noh, Hs" uniqKey="Noh H">HS Noh</name>
</author>
<author>
<name sortKey="Kang, Ss" uniqKey="Kang S">SS Kang</name>
</author>
<author>
<name sortKey="Kim, Dw" uniqKey="Kim D">DW Kim</name>
</author>
<author>
<name sortKey="Kim, Yh" uniqKey="Kim Y">YH Kim</name>
</author>
<author>
<name sortKey="Park, Ch" uniqKey="Park C">CH Park</name>
</author>
<author>
<name sortKey="Han, Jy" uniqKey="Han J">JY Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noh, Hs" uniqKey="Noh H">HS Noh</name>
</author>
<author>
<name sortKey="Kim, Dw" uniqKey="Kim D">DW Kim</name>
</author>
<author>
<name sortKey="Kang, Ss" uniqKey="Kang S">SS Kang</name>
</author>
<author>
<name sortKey="Cho, Gj" uniqKey="Cho G">GJ Cho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petit Demouliere, B" uniqKey="Petit Demouliere B">B Petit-Demouliere</name>
</author>
<author>
<name sortKey="Chenu, F" uniqKey="Chenu F">F Chenu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Puchowicz, Ma" uniqKey="Puchowicz M">MA Puchowicz</name>
</author>
<author>
<name sortKey="Xu, K" uniqKey="Xu K">K Xu</name>
</author>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X Sun</name>
</author>
<author>
<name sortKey="Ivy, A" uniqKey="Ivy A">A Ivy</name>
</author>
<author>
<name sortKey="Emancipator, D" uniqKey="Emancipator D">D Emancipator</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rogers, Dc" uniqKey="Rogers D">DC Rogers</name>
</author>
<author>
<name sortKey="Fisher, Em" uniqKey="Fisher E">EM Fisher</name>
</author>
<author>
<name sortKey="Brown, Sd" uniqKey="Brown S">SD Brown</name>
</author>
<author>
<name sortKey="Peters, J" uniqKey="Peters J">J Peters</name>
</author>
<author>
<name sortKey="Hunter, Aj" uniqKey="Hunter A">AJ Hunter</name>
</author>
<author>
<name sortKey="Martin, Je" uniqKey="Martin J">JE Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rood, Bd" uniqKey="Rood B">BD Rood</name>
</author>
<author>
<name sortKey="Stott, Rt" uniqKey="Stott R">RT Stott</name>
</author>
<author>
<name sortKey="You, S" uniqKey="You S">S You</name>
</author>
<author>
<name sortKey="Smith, Cjw" uniqKey="Smith C">CJW Smith</name>
</author>
<author>
<name sortKey="Woodbury, Me" uniqKey="Woodbury M">ME Woodbury</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silva, Mc" uniqKey="Silva M">MC Silva</name>
</author>
<author>
<name sortKey="Rocha, J" uniqKey="Rocha J">J Rocha</name>
</author>
<author>
<name sortKey="Pires, Cs" uniqKey="Pires C">CS Pires</name>
</author>
<author>
<name sortKey="Ribeiro, Lc" uniqKey="Ribeiro L">LC Ribeiro</name>
</author>
<author>
<name sortKey="Brolese, G" uniqKey="Brolese G">G Brolese</name>
</author>
<author>
<name sortKey="Leite, Mc" uniqKey="Leite M">MC Leite</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Da Silva Hernandes, A" uniqKey="Da Silva Hernandes A">A da Silva Hernandes</name>
</author>
<author>
<name sortKey="Francolin Silva, Al" uniqKey="Francolin Silva A">AL Francolin-Silva</name>
</author>
<author>
<name sortKey="Valadares, Ct" uniqKey="Valadares C">CT Valadares</name>
</author>
<author>
<name sortKey="Fukuda, Mth" uniqKey="Fukuda M">MTH Fukuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sussman, D" uniqKey="Sussman D">D Sussman</name>
</author>
<author>
<name sortKey="Van Eede, M" uniqKey="Van Eede M">M van Eede</name>
</author>
<author>
<name sortKey="Wong, Md" uniqKey="Wong M">MD Wong</name>
</author>
<author>
<name sortKey="Adamson, Sl" uniqKey="Adamson S">SL Adamson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sussman, D" uniqKey="Sussman D">D Sussman</name>
</author>
<author>
<name sortKey="Ellegood, J" uniqKey="Ellegood J">J Ellegood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thomas, Dl" uniqKey="Thomas D">DL Thomas</name>
</author>
<author>
<name sortKey="De Vita, E" uniqKey="De Vita E">E De-Vita</name>
</author>
<author>
<name sortKey="Roberts, S" uniqKey="Roberts S">S Roberts</name>
</author>
<author>
<name sortKey="Turner, R" uniqKey="Turner R">R Turner</name>
</author>
<author>
<name sortKey="Yousry, Ta" uniqKey="Yousry T">TA Yousry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tieu, K" uniqKey="Tieu K">K Tieu</name>
</author>
<author>
<name sortKey="Perier, C" uniqKey="Perier C">C Perier</name>
</author>
<author>
<name sortKey="Caspersen, C" uniqKey="Caspersen C">C Caspersen</name>
</author>
<author>
<name sortKey="Teismann, P" uniqKey="Teismann P">P Teismann</name>
</author>
<author>
<name sortKey="Wu, Dc" uniqKey="Wu D">DC Wu</name>
</author>
<author>
<name sortKey="Yan, Sd" uniqKey="Yan S">SD Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Der Auwera, I" uniqKey="Van Der Auwera I">I Van der Auwera</name>
</author>
<author>
<name sortKey="Wera, S" uniqKey="Wera S">S Wera</name>
</author>
<author>
<name sortKey="Van Leuven, F" uniqKey="Van Leuven F">F Van Leuven</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veech, Rl" uniqKey="Veech R">RL Veech</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veech, Rl" uniqKey="Veech R">RL Veech</name>
</author>
<author>
<name sortKey="Chance, B" uniqKey="Chance B">B Chance</name>
</author>
<author>
<name sortKey="Kashiwaya, Y" uniqKey="Kashiwaya Y">Y Kashiwaya</name>
</author>
<author>
<name sortKey="Lardy, Ha" uniqKey="Lardy H">HA Lardy</name>
</author>
<author>
<name sortKey="Cahill, Gf" uniqKey="Cahill G">GF Cahill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Watson, Re" uniqKey="Watson R">RE Watson</name>
</author>
<author>
<name sortKey="Desesso, Jm" uniqKey="Desesso J">JM Desesso</name>
</author>
<author>
<name sortKey="Hurtt, Me" uniqKey="Hurtt M">ME Hurtt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, W" uniqKey="Zhou W">W Zhou</name>
</author>
<author>
<name sortKey="Mukherjee, P" uniqKey="Mukherjee P">P Mukherjee</name>
</author>
<author>
<name sortKey="Kiebish, Ma" uniqKey="Kiebish M">MA Kiebish</name>
</author>
<author>
<name sortKey="Markis, Wt" uniqKey="Markis W">WT Markis</name>
</author>
<author>
<name sortKey="Mantis, Jg" uniqKey="Mantis J">JG Mantis</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Brain Behav</journal-id>
<journal-id journal-id-type="iso-abbrev">Brain Behav</journal-id>
<journal-id journal-id-type="publisher-id">brb3</journal-id>
<journal-title-group>
<journal-title>Brain and Behavior</journal-title>
</journal-title-group>
<issn pub-type="ppub">2162-3279</issn>
<issn pub-type="epub">2162-3279</issn>
<publisher>
<publisher-name>BlackWell Publishing Ltd</publisher-name>
<publisher-loc>Oxford, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25642385</article-id>
<article-id pub-id-type="pmc">4309881</article-id>
<article-id pub-id-type="doi">10.1002/brb3.300</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Sussman</surname>
<given-names>Dafna</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
<xref ref-type="corresp" rid="cor1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Germann</surname>
<given-names>Jurgen</given-names>
</name>
<xref ref-type="aff" rid="au2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Henkelman</surname>
<given-names>Mark</given-names>
</name>
<xref ref-type="aff" rid="au2">2</xref>
</contrib>
<aff id="au1">
<label>1</label>
<institution>Physiology and Experimental Medicine, The Hospital for Sick Children</institution>
<addr-line>Toronto, Ontario, Canada</addr-line>
</aff>
<aff id="au2">
<label>2</label>
<institution>Mouse Imaging Center (MICe), The Hospital for Sick Children</institution>
<addr-line>Toronto, Ontario, Canada</addr-line>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<bold>Correspondence</bold>
, Dafna Sussman, Physiology and Experimental Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario. M5G 1A4. Canada., Tel: 416-813-7654 ext. 309118, Fax: 416-813-7362, E-mail:
<email>dafna.sussman@utoronto.ca</email>
</corresp>
<fn>
<p>
<bold>Funding Information</bold>
The study was supported by The Hospital for Sick Children in Toronto, Canada. D. Sussman holds an Alexander Graham Bell Canada Graduate Scholarship (CGS) from the Natural Sciences and Engineering Research Council of Canada (NSERC). R.M. Henkelman holds a Canada Research Chair in Imaging Technologies in Human Disease and Preclinical Models.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>2</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>29</day>
<month>12</month>
<year>2014</year>
</pub-date>
<volume>5</volume>
<issue>2</issue>
<elocation-id>e00300</elocation-id>
<history>
<date date-type="received">
<day>22</day>
<month>7</month>
<year>2014</year>
</date>
<date date-type="rev-recd">
<day>12</day>
<month>10</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>10</day>
<month>11</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© 2014 The Authors.
<italic>Brain and Behavior</italic>
published by Wiley Periodicals, Inc.</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<sec>
<title>Introduction</title>
<p>The ketogenic diet (KD) has seen an increase in popularity for clinical and non-clinical purposes, leading to rise in concern about the diet's impact on following generations. The KD is known to have a neurological effect, suggesting that exposure to it during prenatal brain development may alter neuro-anatomy. Studies have also indicated that the KD has an anti-depressant effect on the consumer. However, it is unclear whether any neuro-anatomical and/or behavioral changes would occur in the offspring and persist into adulthood.</p>
</sec>
<sec>
<title>Methods</title>
<p>To fill this knowledge gap we assessed the brain morphology and behavior of 8-week-old young-adult CD-1 mice, who were exposed to the KD in utero, and were fed only a standard-diet (SD) in postnatal life. Standardized neuro-behavior tests included the Open-Field, Forced-Swim, and Exercise Wheel tests, and were followed by post-mortem Magnetic Resonance Imaging (MRI) to assess brain anatomy.</p>
</sec>
<sec>
<title>Results</title>
<p>The adult KD offspring exhibit reduced susceptibility to anxiety and depression, and elevated physical activity level when compared with controls exposed to the SD both in utero and postnatally. Many neuro-anatomical differences exist between the KD offspring and controls, including, for example, a cerebellar volumetric enlargement by 4.8%, a hypothalamic reduction by 1.39%, and a corpus callosum reduction by 4.77%, as computed relative to total brain volume.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>These results suggest that prenatal exposure to the KD programs the offspring neuro-anatomy and influences their behavior in adulthood.</p>
</sec>
</abstract>
<kwd-group>
<kwd>Behavior</kwd>
<kwd>development</kwd>
<kwd>ketogenic diet</kwd>
<kwd>magnetic resonance imaging</kwd>
<kwd>neuroimaging</kwd>
<kwd>prenatal programming</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>The ketogenic diet (KD), a known treatment for intractable epilepsy, has been recently found efficacious in treating and/or managing a variety of other conditions; from type-II diabetes, to Alzheimer's disease and cancer (Veech et al.
<xref rid="b52" ref-type="bibr">2001</xref>
; Van der Auwera et al.
<xref rid="b50" ref-type="bibr">2005</xref>
; Zhou et al.
<xref rid="b54" ref-type="bibr">2007</xref>
; Hussain et al.
<xref rid="b23" ref-type="bibr">2012</xref>
). This very low-carbohydrate, high-fat diet has also been applied in non-clinical settings, and has been adopted as a lifestyle choice by healthy individuals. The increase in popularity of the KD has elicited concern among clinicians about the diet's impact on following generations. Specifically, if women are adhering to a KD during gestation, would this diet have any implications for their offspring? Would their offspring develop and behave normally? And would they be at an increased risk for developing neurobehavioral disease?</p>
<p>The fact that a KD does reduce frequency of epileptic seizures clearly indicates that the diet has a neurological effect (Bough and Rho
<xref rid="b6" ref-type="bibr">2007</xref>
; Hartman et al.
<xref rid="b22" ref-type="bibr">2007</xref>
). In fact, the KD was found to significantly alter the levels of metabolites of serotonin and dopamine, suggesting its mechanism of action may be through these mono-amine neurotransmitters (Dahlin et al.
<xref rid="b11" ref-type="bibr">2012</xref>
). Since these neurotransmitters play a role in anxiety and depression, the KD may actually confer anti-depressant and anti-anxiety properties, as observed and suggested by Murphy et al. (
<xref rid="b34" ref-type="bibr">2004</xref>
). The KD has also been reported to increase the vascular density in the brain (Puchowicz et al.
<xref rid="b41" ref-type="bibr">2007</xref>
), and protect against neuronal loss (Maalouf et al.
<xref rid="b30" ref-type="bibr">2009</xref>
; Jiang et al.
<xref rid="b24" ref-type="bibr">2012</xref>
), implying the diet can alter the anatomy as well as the chemistry of the brain.</p>
<p>To the best of our knowledge, no study has thoroughly investigated the neuroanatomical along with the behavioral effects of prenatal exposure to a KD. While the above-cited studies did investigate the implications of following a KD, none investigated the implications for the subsequent generation, in the case when the diet is followed during gestation.</p>
<p>In our previous studies we started investigating the physiological consequences of a gestational KD on the offspring in mice (Sussman et al.
<xref rid="b46" ref-type="bibr">2013a</xref>
,
<xref rid="b47" ref-type="bibr">b</xref>
). Those studies focused on the embryonic and neonatal periods and revealed embryonic growth retardation, and alterations in brain structure just prior to parturition, and also in early postnatal life. The current study uses a new group of mice not previously included in our previous papers. This study focuses on the adult mouse offspring, and assesses their brain morphology, using 3-dimensional (3D), high resolution imaging, as well as measuring their susceptibility to anxiety, depression, and altered physical activity level, using standardized neurobehavioral tests (Rogers et al.
<xref rid="b42" ref-type="bibr">1997</xref>
). Mice prenatally exposed to a KD are compared to those exposed to a prenatal standard diet (SD). In both cases, all mice are fed the SD postnatally until adulthood.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and Methods</title>
<p>Six-week old male and female CD-1 mice were weight-matched and arbitrarily assigned to either a control group (SD) or a study group (KD). They were kept under controlled room temperature and a 12-h light-dark cycle with ad lib water and their respective diets. After 30 days on their assigned diet, they were naturally mated by setting up a single male with a single female from the same group. The morning newly-born pups were observed was considered day 0.5 of post-natal life (P0.5). Since lactation in the KD dams leads to fatal ketoacidosis (Sussman et al.
<xref rid="b47" ref-type="bibr">2013b</xref>
), cessation of milk production was induced via separation of the KD dams from their pups by P2.5. The separated KD pups were adopted by lactating SD-foster dams whose pups were at the same age as that of the KDs’. The control group was treated similarly. This ensured the viability of the KD dams as well as that of the pups. At weaning (P21.5), randomly selected SD and KD pups were perfused and their brains imaged with MRI. The remaining pups were allowed to reach early adulthood (8 weeks of age), at which point they underwent neurobehavioral tests and were perfused thereafter. These perfused adult offspring brains were also imaged with MRI, using the same sequence as that used for the P21.5 brains.</p>
<sec>
<title>Diet</title>
<p>Both the Standard Diet (SD) and the Ketogenic Diet (KD) were manufactured by Harlan (Madison, WI) (Harlan
<xref rid="b21" ref-type="bibr">2009</xref>
). The SD provided 3.1 Kcal/g and consisted of 5% fat, 76.1% carbohydrate, and 18.9% protein wt/wt (Teklad diet no. TD.2918). The KD provided 6.7 Kcal/g and consisted of 67.4% fat, 0.6% carbohydrate, and 15.3% protein wt/wt (Teklad diet no. TD.96355). The KD contained a 4:1 ratio by weight of fat to combined protein and carbohydrate, consistent with the formulation of the classical ketogenic diet. Food and water were supplied ad lib prior to mating, during gestation, and post parturition to all mice, independent of diet.</p>
</sec>
<sec>
<title>Animals</title>
<p>All animal procedures in this study were carried out in accordance with the standards of the Canadian Council on Animal Care, and approved by the Animal Care Committee of the Toronto Centre for Phenogenomics (TCP). Prior to mating, body weight, blood glucose and
<italic>β</italic>
−ketones (
<italic>β</italic>
<italic>hydroxybutyrate</italic>
) were measured in randomly chosen animals from both groups. Blood concentrations were measured using an Abbott “Precision Xtra” glucometer, which required a relatively minute blood volume of 0.6–1.5 
<italic>μ</italic>
L/test (Abbott
<xref rid="b16" ref-type="bibr">2006</xref>
) drawn from the tail vein.</p>
<p>Adoption of P2.5 KD and SD pups by SD foster dams was conducted by mixing the adopted pups with soiled wet bedding from the foster dam's cage. This ensured adopted and biological pups were similar in scent. Since the litter size of the SD foster dam was to not exceed a 30% increase compared with the biological litter size, these dams could only keep about half of their biological pups. The tails of the biological pups that were kept were clipped, for easy recognition. After adoption, cages were not disturbed for 48 h, and afterwards were only interrupted once a week for cage and/or food changes. Any biological or adopted pups that were not adopted by the SD foster dam, were euthanized.</p>
<p>At P21.5 all pups were weaned, separated by gender and litter, and ear-notched for identification. Of the mice that did not undergo the neurobehavioral tests, a subset was randomly selected to undergo weight, blood glucose, and blood ketone measurements at 8-weeks of age. This subset consisted of 24 adopted SD mice (13 F and 11 M) and 20 KD mice (8 F and 12 M).</p>
</sec>
<sec>
<title>Neurobehavioral tests</title>
<p>Neurobehavioral tests were initiated at 8 weeks of age (P56.5), and were concluded at 12 weeks of age (P90.5). Each mouse was handled for 1–2 min per day for 2–3 days prior to beginning the behavioral tests. The battery of tests consisted of the open-field test (OFT), which tested general locomotor activity and anxiety, followed by the forced-swim test (FST), which tested behavioral despair, and by the exercise wheel test (EWT), which tested level of physical activity. Both the OFT and FST took place between 8:00
<sc>am</sc>
and 11:00
<sc>am</sc>
. Since anxiety- and depression-like behaviors are most noticeable during the latter half of each test, only the last 3 min of the OFT and FST were analyzed and reported in the results.</p>
<p>Mice that completed any given test, but whose computerized tracking was inaccurate or failed to start on time, were excluded from the data analysis. Only mice that completed all tests and whose data were included in all data analyses are reported in this paper. Some SD mice that completed all tests were randomly excluded in order to maintain a roughly 2:1 ratio between KD and SD mice, and the same ratio of males to females in the KD compared with SD groups. Overall, 110 KD mice (51 F and 59 M) and 55 adopted SD mice (24 F and 21 M) completed all three tests and were included in the data analyses. The statistical analyses utilized Analysis of Variance (ANOVA) (Girden
<xref rid="b19" ref-type="bibr">1992</xref>
) with prenatal diet and gender as factors. In cases where gender was not statistically significant, sexes were combined and these combined results were shown.</p>
</sec>
<sec>
<title>Open-field test (OFT)</title>
<p>The open-field consisted of a square arena having dimensions 50  ×  50  cm, which was surrounded by opaque walls having a height of 50 cm, and illuminated by bright light (200 lux). Each mouse was placed at the center of the arena and was given 6 min to explore it freely. A video-camera was positioned above the arena and recorded the mouse behavior. This behavior was then analyzed by a specialized software (EthoVision 8) which computed the distance traveled, the time spent in the central (40  ×  40 cm) versus peripheral regions, and the average speed of motion. The apparatus was sanitized with 1:3:1 Clidox after each mouse (Gerlai et al.
<xref rid="b18" ref-type="bibr">1996</xref>
).</p>
</sec>
<sec>
<title>Forced-swim test (FST)</title>
<p>The FST was conducted 1.5 weeks after the OFT. Each mouse was placed for 6 min in a clear 5 L Pyrex cylinder measuring 27 cm in height and 17 cm in inner diameter, which was filled to a height of 17 cm (3.5 L). The water was maintained at 25–27
<inline-formula>
<inline-graphic xlink:href="brb30005-e00300-mu1.jpg" mimetype="image"></inline-graphic>
</inline-formula>
C. The cylinder was sanitized with 70% Ethanol and the water changed between cages. The time spent struggling, actively floating, and immobile were measured in real-time throughout each trial. Struggling was defined as an escape-oriented behavior in which the mouse was moving its limbs rapidly, facing the Pyrex wall, and/or attempting to get out of the water. Actively floating was characterized by motion along the wall of the cylinder or across the center, and involved movement of 3 or 4 limbs. Immobility was defined as lack of motion, or the occasional movement of 1 or 2 limbs that was sufficient only to keep the mouse floating (Petit-Demouliere et al.
<xref rid="b40" ref-type="bibr">2004</xref>
).</p>
</sec>
<sec>
<title>Exercise wheel test (EWT)</title>
<p>The EWT was conducted 2 weeks after the FST. Each mouse was individually placed in a cage with an exercise wheel for a period of 24 h. An odometer attached to the wheel counted the number of rotations each mouse completed during the test. During the test, mice were provided with ad lib supply of food and water. At the end of each test, the number of rotations was recorded and the cage and wheel were disinfected with Virox Wipes (Virox Technologies Inc., Oakville, ON) (Knab et al.
<xref rid="b26" ref-type="bibr">2009</xref>
).</p>
</sec>
<sec>
<title>Perfusions</title>
<p>Perfusions took place at two time-points: at weaning (P21.5), and in adulthood (P90.5). The latter perfusion time-point corresponded to the same day - and within 8 h - of completion of the EWT. Mice were initially sedated by an intraperitoneal injection (0.1 mL/10 g of body weight) containing Ketamine and Xylazine, at concentrations of 150 mg/kg and 10 mg/kg, respectively. Mice were then trans-cardially perfused in two steps: (1) Heparin flush – 30 mL of 0.1 mol/L PBS containing 1 
<italic>μ</italic>
L/mL Heparin and 2 mmol/L Gadolinium (Gd; “ProHance” gadoteridol by Bracco Diagnostics), followed by (2) fixation flush – 30 mL of 0.1 mol/L PBS containing 4% Para-formaldehyde (PFA) and 2 mmol/L Gd. Both perfusion steps were conducted with a fluid flow rate of 100 mL/h. The perfused brain was maintained within the skull; the skin, lower jaw, and eyes were removed. The brain along with remaining skull structure were immersed in 4% PFA containing 2 mmol/L Gd overnight at 4
<inline-formula>
<inline-graphic xlink:href="brb30005-e00300-mu2.jpg" mimetype="image"></inline-graphic>
</inline-formula>
C, and then transferred to 0.1 mol/L PBS containing 0.02% sodium azide with 2  mmol/L Gd for at least 3 days prior to imaging (Nieman et al.
<xref rid="b36" ref-type="bibr">2007</xref>
; Cahill
<xref rid="b8" ref-type="bibr">2012</xref>
).</p>
<p>At P21.5 24 adopted SD and 26 adopted KD mice were arbitrarily selected, perfused, and imaged. In adulthood, of the 110 KD mice that completed the neurobehavioral tests, a subset of 82 (41 F and 41 M ) was arbitrarily selected to undergo perfusion and imaging. Seventy-four adopted SD mice (31 F and 43 M) underwent perfusion and imaging. Gender was used as a covariate in the analysis of the adult brain, but was not considered an important factor at the younger timepoint due to it being prior to puberty.</p>
</sec>
<sec>
<title>Brain imaging</title>
<p>Anatomical brain images of the 12-week-old mice were acquired with a 7.0 Tesla Magnetic Resonance Imaging (MRI) scanner (Varian Inc., Palo Alto, CA), using a T2-weighted 3D fast spin-echo sequence. This sequence, which is routinely used for adult mice (Cahill
<xref rid="b8" ref-type="bibr">2012</xref>
), consisted of an echo train length of 6, TR =  2000 msec, TEeff = 42 msec, field-of-view (FOV) of 25 ×  28  ×  14 mm and matrix size = 450  ×  504  ×  250. This sequence provided an image with 56 
<italic>μ</italic>
m isotropic voxels. Sixteen brains were imaged concurrently, using a custom-built 16-coil solenoid array (Dazai et al.
<xref rid="b13" ref-type="bibr">2011</xref>
; Ellegood et al.
<xref rid="b15" ref-type="bibr">2012</xref>
). In the first phase-encode dimension, consecutive k-space lines were assigned to alternating echoes to move discontinuity-related ghosting artifacts to the edges of the FOV (Thomas et al.
<xref rid="b48" ref-type="bibr">2004</xref>
). This scheme necessitates oversampling by a factor of 2 in the phase-encode direction to avoid interference of the ghosts with the main image, yielding a FOV of 28 mm that was subsequently cropped to 14 mm after reconstruction. Total imaging time was 11.7 h.</p>
</sec>
<sec>
<title>Image statistical analysis</title>
<p>The image registration process has been previously outlined in detail by Nieman et al. (
<xref rid="b36" ref-type="bibr">2007</xref>
); Sussman et al. (
<xref rid="b46" ref-type="bibr">2013a</xref>
,
<xref rid="b47" ref-type="bibr">b</xref>
). Briefly, all brains were linearly and, subsequently, non-linearly registered together in a common 3D space. For each brain image, a deformation field was created, which transformed each individual image to the common registered space. The determinant of the Jacobian of each deformation field was then computed for each image voxel (3D pixel). This measure revealed local changes in each image with respect to the consensus average image. A statistical analysis of these Jacobians was carried out to determine whether the KD brains significantly differed from the SD (control) ones in any particular 3D region. The result from this analysis is reported as a structural brain image overlaid with a t-statistics map which colors significantly-different voxels in red and blue, as indicated by the accompanying scale-bars. To account for multiple comparisons in this analyses, a False Discovery Rate (FDR) method was utilized (Benjamini and Hochberg
<xref rid="b5" ref-type="bibr">1995</xref>
; Benjamini
<xref rid="b4" ref-type="bibr">2010</xref>
), and is reported along with the results. Entire structures were also segmented from the final average image using a pre-existing brain atlas (Dorr et al.
<xref rid="b14" ref-type="bibr">2008</xref>
); their relative volumes were computed and compared between the two dietary groups. Only regions that were significantly different with an FDR ≤ 5% in this region-based analysis are reported in tabulated form. The results are provided in the form of mean ± standard deviation (Stdv).</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<sec>
<title>Neurobehavior in adult offspring</title>
<p>There were notable behavioral differences between the adult adopted offspring, which were prenatally exposed to a KD, and those prenatally exposed to a SD. In the OFT, KD mice, regardless of gender, travelled shorter distances over the last 3 min of the test (Fig.
<xref ref-type="fig" rid="fig01">1A</xref>
). This was accompanied by a slight yet insignificant increase (
<italic>P</italic>
 = 0.08) in time spent in the center of the open-field arena (Fig.
<xref ref-type="fig" rid="fig01">1B</xref>
). Neither gender nor diet affected the distance travelled in the open-field arena (Fig.
<xref ref-type="fig" rid="fig01">1C</xref>
). However, gender did affect the frequency at which mice visited the centre. As shown in Fig.
<xref ref-type="fig" rid="fig01">1D</xref>
, female mice visited the center less frequently than male mice, regardless of their prenatal diet. Hence, not only prenatal diet, but also gender dictates behavior of the adult offspring.</p>
<fig id="fig01" position="float">
<label>Figure 1</label>
<caption>
<p>Behavior during the last 3 min of the OFT as a function of diet: (A) Distance travelled - Group effect, (B) Time spent in the center of the arena - group effect, (C) Distance travelled - gender effect, and (D) Cumulative frequency of center visits over the last half of the test - gender effect (Mean ± Stdv;
<italic>P</italic>
 = 0.08; *
<italic>P</italic>
 ≤ 0.05).</p>
</caption>
<graphic xlink:href="brb30005-e00300-f1"></graphic>
</fig>
<p>The mean velocity during the open-field exploratory motion was also found to be slower for the KD mice, independent of their gender (Fig.
<xref ref-type="fig" rid="fig02">2A</xref>
and
<xref ref-type="fig" rid="fig02">B</xref>
). Assessment of their overall physical activity, as measured by the number of wheel rotations, indicated that the KD females were more physically active than the SD females (Fig.
<xref ref-type="fig" rid="fig02">2C</xref>
).</p>
<fig id="fig02" position="float">
<label>Figure 2</label>
<caption>
<p>Mean velocity of KD and SD mice in the last 3 min of the OFT: (A) Group effect, (B) Group and Gender effects (insignificant), and (C) Number of wheel rotations in the 24-h EWT *
<italic>P</italic>
 ≤ 0.05.</p>
</caption>
<graphic xlink:href="brb30005-e00300-f2"></graphic>
</fig>
<p>The Forced Swim Test (FST) revealed that the KD mice spent a significantly longer period of time struggling (Fig.
<xref ref-type="fig" rid="fig03">3A</xref>
) and less time immobile (Fig.
<xref ref-type="fig" rid="fig03">3C</xref>
) compared with the SD mice. A similar trend was observed for the frequency of these behaviors, as depicted in Fig.
<xref ref-type="fig" rid="fig03">3B</xref>
and E. That is, the frequency of the struggling behavior was significantly higher, and that of the immobile behavior was significantly smaller, for the KD mice as compared with the SD ones.</p>
<fig id="fig03" position="float">
<label>Figure 3</label>
<caption>
<p>Behavior during the last 3 min of the FST: (A) Struggling duration - Group and Gender effects, (B) Struggling cumulative frequency, (C) Immobility duration, (D) Floating latency, and (E) Immobility cumulative frequency. (Mean ± Stdv; *
<italic>P</italic>
 ≤ 0.05).</p>
</caption>
<graphic xlink:href="brb30005-e00300-f3"></graphic>
</fig>
<p>There was also an interaction effect of diet and gender: while the SD females struggled significantly more than SD males, the KD females had a tendency to struggle less than KD males, but this tendency did not reach statistical significance.</p>
<p>Analysis of the body weight, blood glucose and blood ketone concentrations of the adult offspring revealed that the male KD mice had a significantly lower blood glucose ( 
<italic>P</italic>
≪ 0.05) compared with the male SD control. A similar trend was seen for the female KD mice, but this difference did not reach statistical significance (
<italic>P</italic>
 = 0.06). Ketone concentration and body weight did not differ between the two dietary groups. These results are summarized in Table 
<xref ref-type="table" rid="tbl1">1</xref>
, along with absolute brain volume, for reference.</p>
<table-wrap id="tbl1" position="float">
<label>Table 1</label>
<caption>
<p>Body weight, blood glucose, blood ketones, and brain volume for adult male and female mice (Mean ± Stdv)</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="center" rowspan="1" colspan="1">SD Females</th>
<th align="center" rowspan="1" colspan="1">SD Males</th>
<th align="center" rowspan="1" colspan="1">KD Females</th>
<th align="center" rowspan="1" colspan="1">KD Males</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Body weight (g)</td>
<td align="center" rowspan="1" colspan="1">29.2 ± 2.9</td>
<td align="center" rowspan="1" colspan="1">37.3 ± 3.4</td>
<td align="center" rowspan="1" colspan="1">27.9 ± 3.2</td>
<td align="center" rowspan="1" colspan="1">36.5 ± 4.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Blood glucose (mmol/L)</td>
<td align="center" rowspan="1" colspan="1">5.9 ± 1.3</td>
<td align="center" rowspan="1" colspan="1">7.4 ± 1.0</td>
<td align="center" rowspan="1" colspan="1">4.8 ± 1.1</td>
<td align="center" rowspan="1" colspan="1">5.1 ± 1.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Blood ketones (mmol/L)</td>
<td align="center" rowspan="1" colspan="1">0.3 ± 0.1</td>
<td align="center" rowspan="1" colspan="1">0.4 ± 0.1</td>
<td align="center" rowspan="1" colspan="1">0.4 ± 0.2</td>
<td align="center" rowspan="1" colspan="1">0.4 ± 0.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Brain volume (mm
<inline-formula>
<inline-graphic xlink:href="brb30005-e00300-mu3.jpg" mimetype="image"></inline-graphic>
</inline-formula>
)</td>
<td align="center" colspan="2" rowspan="1">527.6 ± 60.5</td>
<td align="center" colspan="2" rowspan="1">511.5 ± 54.5</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>SD, Standard diet; KD, ketogenic diet.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Brain structure at weaning and in adulthood</title>
<p>Assessment of brain morphology, as conducted by MR imaging and image registration, revealed that the whole-brain volume did not differ significantly with diet either at weaning (SD: 474 ± 43 mm
<inline-formula>
<inline-graphic xlink:href="brb30005-e00300-mu4.jpg" mimetype="image"></inline-graphic>
</inline-formula>
, KD: 461 ± 39 mm
<inline-formula>
<inline-graphic xlink:href="brb30005-e00300-mu5.jpg" mimetype="image"></inline-graphic>
</inline-formula>
) or in adulthood (SD: 528 ± 61 mm
<inline-formula>
<inline-graphic xlink:href="brb30005-e00300-mu6.jpg" mimetype="image"></inline-graphic>
</inline-formula>
, KD: 512 ± 55 mm
<inline-formula>
<inline-graphic xlink:href="brb30005-e00300-mu7.jpg" mimetype="image"></inline-graphic>
</inline-formula>
), independently of gender (
<italic>P</italic>
 > 0.05). However, several brain structures differed in volume relative to total brain volume in the average KD brain, when compared with the SD one, at both weaning as well as in adulthood. The regional differences in relative brain volume are shown in selected cross-sectional images in Fig.
<xref ref-type="fig" rid="fig04">4</xref>
, where the highlighted regions are those that are statistically different. These images show that the average KD brain had a bilateral increase in relative volume in the frontal cortex, cerebellum, and primary somatosensory cortex, and a bilateral decrease in relative volume in the hippocampus, striatum, motor cortex, and auditory cortex. Additionally, the thalamus and dentate gyrus had a mix of relatively enlarged and relatively smaller regions in the KD brain. As can be seen in Fig.
<xref ref-type="fig" rid="fig04">4</xref>
, most of the relative volume differences are visible in the adult brain, while only a few show up in the younger brain. A region-based analysis was also carried out and the results for all statistically different regions are reported in Table 
<xref ref-type="table" rid="tbl2">2</xref>
.</p>
<fig id="fig04" position="float">
<label>Figure 4</label>
<caption>
<p>(Top panel) T-statistics map overlaid on top of the registered P21.5 and P90.5 brain images, highlighting voxels with statistically different deformation (FDR ≤ 15%). Blue regions are statistically smaller, whereas red regions are statistically larger in relative volume in the KD compared with the SD brain. Shown are three cross-sectional views of the average P21.5 brains, along with the corresponding cross-sections and (bottom panel) color-coded atlas segmentation at P90.5, for comparison.</p>
</caption>
<graphic xlink:href="brb30005-e00300-f4"></graphic>
</fig>
<table-wrap id="tbl2" position="float">
<label>Table 2</label>
<caption>
<p>Adult brain structures whose relative volumes are significantly different with an FDR  ≤ 5%. Relative volume is provided in the form of Mean ± Stdv</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Structure</th>
<th align="left" rowspan="1" colspan="1">Relative volume of KD</th>
<th align="left" rowspan="1" colspan="1">Relative volume of SD</th>
<th align="left" rowspan="1" colspan="1">% Change of KD</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
value</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Anterior commissure: pars posterior</td>
<td align="left" rowspan="1" colspan="1">0.086 ± 0.006</td>
<td align="left" rowspan="1" colspan="1">0.088 ± 0.005</td>
<td align="left" rowspan="1" colspan="1">−2.53</td>
<td align="left" rowspan="1" colspan="1">0.01334</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Bed nucleus of stria terminalis</td>
<td align="left" rowspan="1" colspan="1">0.305 ± 0.018</td>
<td align="left" rowspan="1" colspan="1">0.319 ± 0.020</td>
<td align="left" rowspan="1" colspan="1">−4.30</td>
<td align="left" rowspan="1" colspan="1"><0.0001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cerebellar cortex</td>
<td align="left" rowspan="1" colspan="1">12.057 ± 0.7451</td>
<td align="left" rowspan="1" colspan="1">11.505 ± 0.959</td>
<td align="left" rowspan="1" colspan="1">4.80</td>
<td align="left" rowspan="1" colspan="1"><0.0001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cerebellar peduncle: superior</td>
<td align="left" rowspan="1" colspan="1">0.228 ± 0.012</td>
<td align="left" rowspan="1" colspan="1">0.236 ± 0.018</td>
<td align="left" rowspan="1" colspan="1">−3.26</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cerebral aqueduct</td>
<td align="left" rowspan="1" colspan="1">0.146 ± 0.018</td>
<td align="left" rowspan="1" colspan="1">0.159 ± 0.040</td>
<td align="left" rowspan="1" colspan="1">−7.97</td>
<td align="left" rowspan="1" colspan="1">0.01042</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cerebral cortex: entorhinal cortex</td>
<td align="left" rowspan="1" colspan="1">2.158 ± 0.080</td>
<td align="left" rowspan="1" colspan="1">2.200 ± 0.111</td>
<td align="left" rowspan="1" colspan="1">−1.90</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cerebral peduncle</td>
<td align="left" rowspan="1" colspan="1">0.494 ± 0.019</td>
<td align="left" rowspan="1" colspan="1">0.505 ± 0.026</td>
<td align="left" rowspan="1" colspan="1">−2.23</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Colliculus: superior</td>
<td align="left" rowspan="1" colspan="1">1.985 ± 0.089</td>
<td align="left" rowspan="1" colspan="1">2.036 ± 0.143</td>
<td align="left" rowspan="1" colspan="1">−2.49</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Corpus callosum</td>
<td align="left" rowspan="1" colspan="1">3.289 ± 0.140</td>
<td align="left" rowspan="1" colspan="1">3.454 ± 0.158</td>
<td align="left" rowspan="1" colspan="1">−4.77</td>
<td align="left" rowspan="1" colspan="1"><0.0001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Dentate gyrus of hippocampus</td>
<td align="left" rowspan="1" colspan="1">0.764 ± 0.043</td>
<td align="left" rowspan="1" colspan="1">0.789 ± 0.049</td>
<td align="left" rowspan="1" colspan="1">−3.18</td>
<td align="left" rowspan="1" colspan="1"><0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fasciculus retroflexus</td>
<td align="left" rowspan="1" colspan="1">0.052 ± 0.002</td>
<td align="left" rowspan="1" colspan="1">0.053 ± 0.003</td>
<td align="left" rowspan="1" colspan="1">−2.07</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fimbria</td>
<td align="left" rowspan="1" colspan="1">0.689 ± 0.038</td>
<td align="left" rowspan="1" colspan="1">0.724 ± 0.055</td>
<td align="left" rowspan="1" colspan="1">−4.88</td>
<td align="left" rowspan="1" colspan="1"><0.0001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fornix</td>
<td align="left" rowspan="1" colspan="1">0.141 ± 0.006</td>
<td align="left" rowspan="1" colspan="1">0.145 ± 0.006</td>
<td align="left" rowspan="1" colspan="1">−2.61</td>
<td align="left" rowspan="1" colspan="1"><0.0001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Globus pallidus</td>
<td align="left" rowspan="1" colspan="1">0.610 ± 0.022</td>
<td align="left" rowspan="1" colspan="1">0.634 ± 0.037</td>
<td align="left" rowspan="1" colspan="1">−3.76</td>
<td align="left" rowspan="1" colspan="1"><0.0001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Hypothalamus</td>
<td align="left" rowspan="1" colspan="1">2.355 ± 0.077</td>
<td align="left" rowspan="1" colspan="1">2.388 ± 0.090</td>
<td align="left" rowspan="1" colspan="1">−1.39</td>
<td align="left" rowspan="1" colspan="1">0.01382</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Inferior olivary complex</td>
<td align="left" rowspan="1" colspan="1">0.042 ± 0.008</td>
<td align="left" rowspan="1" colspan="1">0.038 ± 0.010</td>
<td align="left" rowspan="1" colspan="1">9.84</td>
<td align="left" rowspan="1" colspan="1">0.01024</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Internal capsule</td>
<td align="left" rowspan="1" colspan="1">0.547 ± 0.024</td>
<td align="left" rowspan="1" colspan="1">0.559 ± 0.030</td>
<td align="left" rowspan="1" colspan="1">−2.22</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Lateral septum</td>
<td align="left" rowspan="1" colspan="1">0.716 ± 0.030</td>
<td align="left" rowspan="1" colspan="1">0.736 ± 0.038</td>
<td align="left" rowspan="1" colspan="1">−2.78</td>
<td align="left" rowspan="1" colspan="1"><0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Lateral ventricle</td>
<td align="left" rowspan="1" colspan="1">0.756 ± 0.076</td>
<td align="left" rowspan="1" colspan="1">0.792 ± 0.083</td>
<td align="left" rowspan="1" colspan="1">−4.47</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Mammillary bodies</td>
<td align="left" rowspan="1" colspan="1">0.123 ± 0.010</td>
<td align="left" rowspan="1" colspan="1">0.118 ± 0.008</td>
<td align="left" rowspan="1" colspan="1">4.25</td>
<td align="left" rowspan="1" colspan="1"><0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Midbrain</td>
<td align="left" rowspan="1" colspan="1">3.106 ± 0.091</td>
<td align="left" rowspan="1" colspan="1">3.156 ± 0.104</td>
<td align="left" rowspan="1" colspan="1">−1.58</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Optic tract</td>
<td align="left" rowspan="1" colspan="1">0.334 ± 0.012</td>
<td align="left" rowspan="1" colspan="1">0.356 ± 0.015</td>
<td align="left" rowspan="1" colspan="1">−6.03</td>
<td align="left" rowspan="1" colspan="1"><0.0001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pontine nucleus</td>
<td align="left" rowspan="1" colspan="1">0.172 ± 0.023</td>
<td align="left" rowspan="1" colspan="1">0.164 ± 0.020</td>
<td align="left" rowspan="1" colspan="1">5.21</td>
<td align="left" rowspan="1" colspan="1">0.01554</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Posterior commissure</td>
<td align="left" rowspan="1" colspan="1">0.037 ± 0.002</td>
<td align="left" rowspan="1" colspan="1">0.039 ± 0.002</td>
<td align="left" rowspan="1" colspan="1">−5.23</td>
<td align="left" rowspan="1" colspan="1"><0.0001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Stratum granulosum of hippocampus</td>
<td align="left" rowspan="1" colspan="1">0.190 ± 0.014</td>
<td align="left" rowspan="1" colspan="1">0.200 ± 0.017</td>
<td align="left" rowspan="1" colspan="1">−5.26</td>
<td align="left" rowspan="1" colspan="1"><0.0001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Stria terminalis</td>
<td align="left" rowspan="1" colspan="1">0.171 ± 0.010</td>
<td align="left" rowspan="1" colspan="1">0.177 ± 0.010</td>
<td align="left" rowspan="1" colspan="1">−3.49</td>
<td align="left" rowspan="1" colspan="1"><0.0001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Striatum</td>
<td align="left" rowspan="1" colspan="1">5.061 ± 0.218</td>
<td align="left" rowspan="1" colspan="1">5.165 ± 0.269</td>
<td align="left" rowspan="1" colspan="1">−2.02</td>
<td align="left" rowspan="1" colspan="1"><0.01</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Third ventricle</td>
<td align="left" rowspan="1" colspan="1">0.240 ± 0.014</td>
<td align="left" rowspan="1" colspan="1">0.252 ± 0.020</td>
<td align="left" rowspan="1" colspan="1">−4.56</td>
<td align="left" rowspan="1" colspan="1"><0.0001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ventral tegmental decussation</td>
<td align="left" rowspan="1" colspan="1">0.029 ± 0.001</td>
<td align="left" rowspan="1" colspan="1">0.030 ± 0.002</td>
<td align="left" rowspan="1" colspan="1">−4.24</td>
<td align="left" rowspan="1" colspan="1"><0.0001</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>SD, Standard diet; KD, ketogenic diet.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>The region-based analysis revealed significant changes in relative volume in several other brain regions, including a prominent decrease in the hypothalamus, and an increase in the cerebellar cortex. For reference, these changes are larger than those seen in learning and memory studies (Lerch et al.
<xref rid="b27" ref-type="bibr">2010</xref>
). A comparison between the results from this region-based analysis (Table 
<xref ref-type="table" rid="tbl2">2</xref>
) and the results from the deformation-based analysis (Fig.
<xref ref-type="fig" rid="fig04">4</xref>
) indicates that brain regions that have localized deformations are not necessarily different in overall relative volume.</p>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>Our study reveals that prenatal exposure to a ketogenic diet (KD) alters neurobehavior in adult mice. In the open field test (OFT), the average KD mouse travelled shorter distances. While shorter distances travelled in the OFT can, in general, be triggered by anxiety, the fact that this was accompanied by a slower average speed of motion and a slightly increased duration in the center, actually suggests that KD mice were somewhat less anxious about visiting the center of the arena compared with the standard diet (SD) mice. This slight reduction in anxiety may be attributed to the reduced protein contents of the KD compared with the SD (15.3 vs. 18.9%, respectively). In fact, similar behavior was reported in prenatally protein-malnourished rats (da Silva Hernandes et al.
<xref rid="b45" ref-type="bibr">2005</xref>
; Francolin-Silva et al.
<xref rid="b16" ref-type="bibr">2006</xref>
; Mokler et al.
<xref rid="b32" ref-type="bibr">2007</xref>
; Alamy and Bengelloun
<xref rid="b3" ref-type="bibr">2012</xref>
). These authors speculated that early-life protein malnutrition alters the developing neurochemical systems that underlie behavioral expression in anxiogenic situations (Alamy and Bengelloun
<xref rid="b3" ref-type="bibr">2012</xref>
). Specifically, since stress triggers a release of dopamine, alterations in dopaminergic pathways were thought to underlie the dampened stress response. Indeed, it was found that prenatal protein malnutrition decreases extra-cellular dopamine release in the prefrontal cortex, hypothalamus, and hippocampus (Davids et al.
<xref rid="b12" ref-type="bibr">2003</xref>
; Mokler et al.
<xref rid="b32" ref-type="bibr">2007</xref>
; Alamy and Bengelloun
<xref rid="b3" ref-type="bibr">2012</xref>
), which can alter the regulation of stress and reward pathways, as well as associated movement.</p>
<p>In the exercise wheel test (EWT), KD mice were found to be significantly more physically active than SD mice. This result was consistent with that of the forced swim test (FST), in which KD mice spent more time struggling. Together these results suggest that KD mice had an increased tendency towards hyperactivity in adulthood. Such behavior may also be attributed to the lower protein contents in the KD, and subsequent alterations in dopamine release. Since the dopaminergic system is believed to play a role in both regulation of reward and movement, it is possible that any prenatal alteration to it resulted in the hyperactive behavior we are seeing here. Another possible explanation could come from ketones’ improvement of mitochondrial respiration (Maalouf et al.
<xref rid="b30" ref-type="bibr">2009</xref>
). Since improved mitochondrial respiration enhances ATP production, KD mice are likely to have an increase in overall energy to carry out motor function, which could potentially explain their hyperactivity. This speculation is supported by a study that showed that ketosis enhances swimming endurance capacity of mice (Fushiki et al.
<xref rid="b17" ref-type="bibr">1995</xref>
). Also, the fact that the male KD mice had a significantly lower blood glucose without a concomitant increase in blood ketone concentration compared with SD males, further supports the hypothesis that their metabolism is indeed different.</p>
<p>Regardless of gender, KD mice also exhibited reduced behavioral despair, as measured by the smaller duration of immobility in the FST. A similar lower susceptibility to depression-like behavior has been observed in mice consuming the KD (Murphy et al.
<xref rid="b34" ref-type="bibr">2004</xref>
); yet, to the best of our knowledge, this effect has not been previously reported in the KD progeny. This indicates that a prenatal KD confers an antidepressant effect, which continues until adulthood, and is not reversed by the postnatal consumption of a standard diet.</p>
<p>While gender did not affect the physical activity of the SD mice, it did affect that of the KD mice, since the KD females used the exercise wheel significantly more than the KD males. Gender, independent of prenatal diet, also affected the frequency at which the mice visited the center in the OFT. Namely, male mice visited the center of the arena more frequently than female mice, regardless of dietary condition, suggesting that male mice experienced reduced anxiety and/or increased exploratory behavior compared with the female mice. In the FST, there was a gender-by-diet interaction: while the SD females struggled more than SD males, the KD females struggled slightly less than the KD males, yet this did not reach statistical significance. This seemingly opposite trend may be attributed to a gender-dependent effect of the KD diet. The effects of gender on rodent neurobehavior have been previously reported (van Haaren et al.
<xref rid="b20" ref-type="bibr">1990</xref>
; Lopez-Aumatell et al.
<xref rid="b29" ref-type="bibr">2008</xref>
; Breu et al.
<xref rid="b7" ref-type="bibr">2012</xref>
; Kazutaka et al.
<xref rid="b25" ref-type="bibr">2012</xref>
; Rood et al.
<xref rid="b43" ref-type="bibr">2012</xref>
); however, the underlying mechanisms remain unknown. Recent attempts to elucidate these mechanisms revealed that female mice have a sparser arginine vasopressin (AVP) innervation compared with males (Rood et al.
<xref rid="b43" ref-type="bibr">2012</xref>
). Since the peripheral action of AVP is to control homeostasis and stress response, as well as to regulate behavioral state, a decrease in AVG innervation in females could result in their heightened stress response.</p>
<p>Our study also reveals that brain morphology of KD mice is altered slightly at weaning (P21.5), but more noticeably in adulthood (P90.5), after 69 days on a SD. Regardless of gender, the adult KD mice have reduced relative volume in the hippocampus, hypothalamus, corpus callosum, striatum, motor cortex, and auditory cortex, and increased relative volume in the cortex and cerebellum. The thalamus and dentate gyrus in the average KD brain both show regions which are enlarged, and others which are smaller compared with the average SD brain. Such volumetric changes may be attributed to the neuro-protective properties of the ketogenic diet, and its effects on neurogenesis. The KD has been found to decrease reactive oxygen species (ROS) formation (Maalouf et al.
<xref rid="b30" ref-type="bibr">2009</xref>
), thereby protecting the cell against oxidative stress. Since ketones cross the blood-brain barrier though proton-linked monocarboxylic acid transporters (MCT), they can then also enter neurons (again through MCT or diffusion), be incorporated into their ATP synthesis pathway, and reduce oxidative stress in neuronal cells (Nehlig
<xref rid="b35" ref-type="bibr">2004</xref>
; Morris
<xref rid="b33" ref-type="bibr">2005</xref>
; Maalouf et al.
<xref rid="b30" ref-type="bibr">2009</xref>
). It has also been implicated that the KD has an anti-apoptotic effect; it decreased pro-apoptotic factors in the kainic-acid-induced neuro-degenerative animal model (Noh et al.
<xref rid="b37" ref-type="bibr">2003</xref>
,
<xref rid="b38" ref-type="bibr">2005a</xref>
,
<xref rid="b39" ref-type="bibr">b</xref>
), increased the activity of the intra-cellular calcium-binding protein
<italic>calbindin</italic>
, which protects cells against degeneration (McMahon et al.
<xref rid="b31" ref-type="bibr">1998</xref>
), protected against dopaminergic cell loss in a mouse model of Parkinson's disease (Tieu et al.
<xref rid="b49" ref-type="bibr">2003</xref>
), and reduced neuronal loss in animal models of hypoxia, hypoglycemia and focal ischemia (Maalouf et al.
<xref rid="b30" ref-type="bibr">2009</xref>
). The KD has also been found to enhance glial proliferation in the CA3 region of the hippocampus (Silva et al.
<xref rid="b44" ref-type="bibr">2005</xref>
), and protected against neuronal loss in hippocampal and para-hippocampal cortices in mouse model of amygdaloid-kindling seizures (Jiang et al.
<xref rid="b24" ref-type="bibr">2012</xref>
). Since decreased neurogenesis – particularly in the hippocampus – has been implicated in the pathogenesis of anxiety and depression, this protective effect of KD on hippocampal neurogenesis could explain the reduced susceptibility to anxiety and depression exhibited by our adult KD mice.</p>
<p>The low protein contents of the KD may also change the neuroanatomy of the KD mouse. Low protein consumption has been shown to reduce dendritic branching in the dentate gyrus (Cintra et al.
<xref rid="b10" ref-type="bibr">1990</xref>
). Prenatal protein malnutrition has also induced delayed astrogenesis and abnormal neuronal differentiation, and more specifically, abnormal hippocampal formation, altered time course of dentate gyrus development and the morphology of hippocampal cells (Alamy and Bengelloun
<xref rid="b3" ref-type="bibr">2012</xref>
).</p>
<p>The KD is also known to alter the levels of several hormones, including insulin, glucagon, IGF-1, leptin, and ghrelin (Ahren et al.
<xref rid="b2" ref-type="bibr">1997</xref>
; Cheng et al.
<xref rid="b9" ref-type="bibr">2003</xref>
; Veech
<xref rid="b51" ref-type="bibr">2004</xref>
). Such hormonal imbalance could also play a role in the neuro-anatomical and behavioral changes reported here.</p>
<p>While the studies we cite above do report an effect of diet on neurogenesis, unless stated otherwise, these effects are those observed in the
<italic>first</italic>
(parent) generation of animals consuming the respective diet. That is, most of these cited studies do not investigate the effects on
<italic>offspring</italic>
that were prenatally exposed to the offensive environment. Since the impact on the offspring is modulated by the placenta during gestation, and can be altered by any subsequent postnatal neurogenesis (Levitt
<xref rid="b28" ref-type="bibr">2003</xref>
; Watson et al.
<xref rid="b53" ref-type="bibr">2006</xref>
), the final alterations that can be detected in the adult offspring may be different than those seen in the parents. This difference can be the cause of discrepancy between our results, and the results reported in the above-cited studies.</p>
<p>One of the shortcomings of our study is that we assumed gender was not an important factor at the first imaging time-point P21.5, due to it being prior to puberty. However, the impact of maternal KD on offspring pubertal age has not been previously assessed. Should puberty in the KD offspring occur at an earlier age that is closer or prior to P21.5, our assumption of the insignificant sexual dimorphism at P21.5 may in fact be inaccurate. In that case, sex should be added as a covariate to the P21.5 analysis. Further studies on the effect of pubertal age in the offspring should attempt to elucidate this.</p>
<p>Overall, the volumetric alterations to brain morphology do imply that a prenatal KD programs subsequent brain development in a way that modifies neurogenesis in multiple brain regions, some of which may underlie the behavioral alterations exhibited by the adult KD mice.</p>
<p>Our study shows that prenatal exposure to a ketogenic diet results in gross differences in brain anatomy as well as behavioral alterations, which include reduced susceptibility to anxiety and depression, and elevated hyperactivity in the adult mouse offspring. Adult male KD mice were also found to have reduced blood glucose concentration compared with SD males. Since both the ketogenic diet (KD) and the standard diet (SD) mice were fed the standard diet postnatally, the alterations we are seeing can only be due to the different prenatal diet. We, therefore, conclude that a prenatal KD programs the offspring neuroanatomy and metabolism, and dictates their behavior in adulthood. Since the mouse and human share high genetic homology, the effects we are seeing on the mouse offspring could be indicative of similar effects human offspring may exhibit if exposed to a KD prenatally. As such, it is important to educate women about the potential effects of a gestational KD to their offspring. To reveal the exact effects on human offspring, human studies need to be conducted. However, human studies will be far more difficult to analyze, due to the high genetic heterogeneity and the vastly more complex environmental factors within human populations.</p>
<p>While our study is the first to reveal behavioral and morphological changes in the KD offspring, there may still be additional behavioral alterations, such as changes in learning and memory, and altered susceptibility to neuro-degenerative disease in older offspring. Hence, future studies should attempt to elucidate any additional behavioral effects, so as to fully characterize the long-term impact of prenatal exposure to a KD.</p>
</sec>
</body>
<back>
<ack>
<p>D. Sussman acknowledges the support of J. Ellegood for technical imaging assistance, and J. Pollock for editorial and graphic assistance. The study was supported by The Hospital for Sick Children in Toronto, Canada. D. Sussman holds an Alexander Graham Bell Canada Graduate Scholarship (CGS) from the Natural Sciences and Engineering Research Council of Canada (NSERC). R.M. Henkelman holds a Canada Research Chair in Imaging Technologies in Human Disease and Preclinical Models.</p>
</ack>
<sec>
<title>Conflict of Interest</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
<ref-list>
<title>References</title>
<ref id="b1">
<element-citation publication-type="other">
<collab>Abbott</collab>
<year>2010</year>
<comment>Precision xtra system product specifications. Available at:
<ext-link ext-link-type="uri" xlink:href="http://www.abbottdiabetescare.ca">http://www.abbottdiabetescare.ca</ext-link>
. accessed september 18, 2011</comment>
</element-citation>
</ref>
<ref id="b2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahren</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mansson</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gingerich</surname>
<given-names>RL</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Havel</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Regulation of plasma leptin in mice: influence of age, high-fat diet, and fasting</article-title>
<source>Am. J. Physiol. Regul. Integr. Comp. Physiol</source>
<year>1997</year>
<volume>273</volume>
<fpage>R113</fpage>
<lpage>R120</lpage>
</element-citation>
</ref>
<ref id="b3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alamy</surname>
<given-names>M</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Bengelloun</surname>
<given-names>WA</given-names>
</name>
</person-group>
<article-title>Malnutrition and brain development: an analysis of the effects of inadequate diet during different stages of life in rat</article-title>
<source>Neurosci. Biobehav. Rev</source>
<year>2012</year>
<volume>36</volume>
<fpage>1463</fpage>
<lpage>1480</lpage>
<pub-id pub-id-type="pmid">22487135</pub-id>
</element-citation>
</ref>
<ref id="b4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benjamini</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Discovering the false discovery rate</article-title>
<source>J. R. Stat. Soc. Series B Stat. Methodol</source>
<year>2010</year>
<volume>72</volume>
<fpage>405</fpage>
<lpage>416</lpage>
</element-citation>
</ref>
<ref id="b5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benjamini</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hochberg</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Controlling the false discovery rate: A practical and powerful approach to multiple testing</article-title>
<source>J. R. Stat. Soc. Series B Stat. Methodol</source>
<year>1995</year>
<volume>57</volume>
<fpage>289</fpage>
<lpage>300</lpage>
</element-citation>
</ref>
<ref id="b6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bough</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Rho</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Anticonvulsant mechanisms of the ketogenic diet</article-title>
<source>Epilepsia</source>
<year>2007</year>
<volume>48</volume>
<fpage>43</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="pmid">17241207</pub-id>
</element-citation>
</ref>
<ref id="b7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Breu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Touma</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Holter</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Knapman</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wurst</surname>
<given-names>W</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Deussing</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Urocortin 2 modulates aspects of social behaviour in mice</article-title>
<source>Behav. Brain Res</source>
<year>2012</year>
<volume>233</volume>
<fpage>331</fpage>
<lpage>336</lpage>
<pub-id pub-id-type="pmid">22640813</pub-id>
</element-citation>
</ref>
<ref id="b8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cahill</surname>
<given-names>LS</given-names>
</name>
</person-group>
<article-title>Preparation of fixed mouse brains for MRI</article-title>
<source>NeuroImage</source>
<year>2012</year>
<volume>60</volume>
<fpage>933</fpage>
<lpage>939</lpage>
<pub-id pub-id-type="pmid">22305951</pub-id>
</element-citation>
</ref>
<ref id="b9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Kelley</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Strauss</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Eagles</surname>
<given-names>DA</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Bondy</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>A ketogenic diet increases brain insulin-like growth factor receptor and glucose transporter gene expression</article-title>
<source>Endocrinology</source>
<year>2003</year>
<volume>144</volume>
<fpage>2676</fpage>
<lpage>2682</lpage>
<pub-id pub-id-type="pmid">12746332</pub-id>
</element-citation>
</ref>
<ref id="b10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cintra</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Diaaz-Cintra</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Galvan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kemper</surname>
<given-names>T</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Morgane</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Effects of protein undernutrition on the dentate gyrus in rats of three age groups</article-title>
<source>Brain Res</source>
<year>1990</year>
<volume>532</volume>
<fpage>271</fpage>
<lpage>277</lpage>
<pub-id pub-id-type="pmid">2282520</pub-id>
</element-citation>
</ref>
<ref id="b11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dahlin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mansson</surname>
<given-names>JE</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Amark</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>CSF levels of dopamine and serotonin but not norepinephrine metabolites are influenced by the ketogenic diet in children with epilepsy</article-title>
<source>Epilepsy Res</source>
<year>2012</year>
<volume>99</volume>
<fpage>132</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="pmid">22240327</pub-id>
</element-citation>
</ref>
<ref id="b12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davids</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tarazi</surname>
<given-names>FI</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Baldessarini</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>Animal models of attention-deficit hyperactivity disorder</article-title>
<source>Brain Res. Rev</source>
<year>2003</year>
<volume>42</volume>
<fpage>1</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="pmid">12668288</pub-id>
</element-citation>
</ref>
<ref id="b13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dazai</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Spring</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cahill</surname>
<given-names>LS</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Henkelman</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Multiple-mouse Neuroanatomical Magnetic Resonance Imaging</article-title>
<source>Journal of Visualized Experiments: JoVE</source>
<year>2011</year>
<volume>48</volume>
<fpage>e2497</fpage>
<lpage>6</lpage>
<comment>doi:
<ext-link ext-link-type="doi" xlink:href="10.3791/2497">10.3791/2497</ext-link>
</comment>
</element-citation>
</ref>
<ref id="b14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dorr</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Lerch</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Spring</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kabani</surname>
<given-names>N</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Henkelman</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult c57bl/6j mice</article-title>
<source>NeuroImage</source>
<year>2008</year>
<volume>42</volume>
<fpage>60</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="pmid">18502665</pub-id>
</element-citation>
</ref>
<ref id="b15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ellegood</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Henkelman</surname>
<given-names>RM</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Lerch</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>Neuroanatomical Assessment of the Integrin beta3 Mouse Model Related to Autism and the Serotonin System Using High Resolution MRI</article-title>
<source>Front. Psychiatr</source>
<year>2012</year>
<volume>3</volume>
<fpage>37</fpage>
<comment>doi:
<ext-link ext-link-type="doi" xlink:href="10.3389/fpsyt.2012.00037">10.3389/fpsyt.2012.00037</ext-link>
</comment>
</element-citation>
</ref>
<ref id="b16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Francolin-Silva</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>da Silva Hernandes</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fukuda</surname>
<given-names>MTH</given-names>
</name>
<name>
<surname>Valadares</surname>
<given-names>CT</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Almeida</surname>
<given-names>SS</given-names>
</name>
</person-group>
<article-title>Anxiolytic-like effects of short-term postnatal protein malnutrition in the elevated plus-maze test</article-title>
<source>Behav. Brain Res</source>
<year>2006</year>
<volume>173</volume>
<fpage>310</fpage>
<lpage>314</lpage>
<pub-id pub-id-type="pmid">16919816</pub-id>
</element-citation>
</ref>
<ref id="b17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fushiki</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Matsumoto</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kawada</surname>
<given-names>T</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Sugimoto</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Swimming endurance capacity of mice is increased by chronic consumption of medium-chain triglycerides</article-title>
<source>J. Nutr</source>
<year>1995</year>
<volume>125</volume>
<fpage>531</fpage>
<lpage>539</lpage>
<pub-id pub-id-type="pmid">7876928</pub-id>
</element-citation>
</ref>
<ref id="b18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gerlai</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Millen</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Herrup</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Fabien</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Joyner</surname>
<given-names>AL</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Roder</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Impaired motor learning performance in cerebellar En-2 mutant mice</article-title>
<source>Behav. Neurosci</source>
<year>1996</year>
<volume>110</volume>
<fpage>126</fpage>
<lpage>133</lpage>
<pub-id pub-id-type="pmid">8652061</pub-id>
</element-citation>
</ref>
<ref id="b19">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Girden</surname>
<given-names>ER</given-names>
</name>
</person-group>
<source>ANOVA: repeated measures</source>
<year>1992</year>
<publisher-loc>Newbury Park, CA</publisher-loc>
<publisher-name>Sage University Paper Series on Quantitative Applications in the Social Sciences</publisher-name>
<comment>series no. 07-084.</comment>
</element-citation>
</ref>
<ref id="b20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Haaren</surname>
<given-names>F</given-names>
</name>
<name>
<surname>van Hest</surname>
<given-names>A</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Heinsbroek</surname>
<given-names>RP</given-names>
</name>
</person-group>
<article-title>Behavioral differences between male and female rats: effects of gonadal hormones on learning and memory</article-title>
<source>Neurosci. Biobehav. Rev</source>
<year>1990</year>
<volume>14</volume>
<fpage>23</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="pmid">2183097</pub-id>
</element-citation>
</ref>
<ref id="b21">
<element-citation publication-type="other">
<collab>Harlan</collab>
<article-title>Teklad lab animal diets</article-title>
<year>2009</year>
<comment>Available at:
<ext-link ext-link-type="uri" xlink:href="http://www.harlan.com/">http://www.harlan.com/</ext-link>
</comment>
</element-citation>
</ref>
<ref id="b22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hartman</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Gasior</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Vining</surname>
<given-names>EPG</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Rogawski</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>The neuropharmacology of the ketogenic diet</article-title>
<source>Pediatr. Neurol</source>
<year>2007</year>
<volume>36</volume>
<fpage>281</fpage>
<lpage>292</lpage>
<pub-id pub-id-type="pmid">17509459</pub-id>
</element-citation>
</ref>
<ref id="b23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hussain</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Mathew</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Dashti</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Asfar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Al-Zaid</surname>
<given-names>N</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Dashti</surname>
<given-names>HM</given-names>
</name>
</person-group>
<article-title>Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes</article-title>
<source>Nutrition (Burbank Los Angeles County Calif.)</source>
<year>2012</year>
<volume>28</volume>
<fpage>1016</fpage>
<lpage>1021</lpage>
</element-citation>
</ref>
<ref id="b24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>M-M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ketogenic diet protects against epileptogenesis as well as neuronal loss in amygdaloid-kindling seizures</article-title>
<source>Neurosci. Lett</source>
<year>2012</year>
<volume>508</volume>
<fpage>22</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="pmid">22178860</pub-id>
</element-citation>
</ref>
<ref id="b25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kazutaka</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shimokawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nagasawa</surname>
<given-names>M</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Kikusui</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Effects of sex and rearing environment on imipramine response in mice</article-title>
<source>Psychopharmacology</source>
<year>2012</year>
<volume>224</volume>
<fpage>201</fpage>
<lpage>208</lpage>
<pub-id pub-id-type="pmid">22868412</pub-id>
</element-citation>
</ref>
<ref id="b26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knab</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Bowen</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Moore-Harrison</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hamilton</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Lightfoot</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>Repeatability of exercise behaviors in mice</article-title>
<source>Physiol. Behav</source>
<year>2009</year>
<volume>98</volume>
<fpage>433</fpage>
<lpage>440</lpage>
<pub-id pub-id-type="pmid">19619567</pub-id>
</element-citation>
</ref>
<ref id="b27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lerch</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Yiu</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Martinez-Canabal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pekar</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Bohbot</surname>
<given-names>VD</given-names>
</name>
<name>
<surname>Frankland</surname>
<given-names>PW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Maze training in mice induces mri-detectable brain shape changes specific to the type of learning</article-title>
<source>NeuroImage</source>
<year>2010</year>
<volume>54</volume>
<fpage>2086</fpage>
<lpage>2095</lpage>
<pub-id pub-id-type="pmid">20932918</pub-id>
</element-citation>
</ref>
<ref id="b28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levitt</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Structural and functional maturation of the developing primate brain</article-title>
<source>J. Pediatr</source>
<year>2003</year>
<volume>143</volume>
<fpage>35</fpage>
<lpage>45</lpage>
</element-citation>
</ref>
<ref id="b29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lopez-Aumatell</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Guitart-Masip</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Vicens-Costa</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gimenez-Llort</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Valdar</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Johannesson</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fearfulness in a large N/Nih genetically heterogeneous rat stock: differential profiles of timidity and defensive flight in males and females</article-title>
<source>Behav. Brain Res</source>
<year>2008</year>
<volume>188</volume>
<fpage>41</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="pmid">18079010</pub-id>
</element-citation>
</ref>
<ref id="b30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maalouf</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rho</surname>
<given-names>JM</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Mattson</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>The neuroprotective properties of calorie restriction the ketogenic diet, and ketone bodies</article-title>
<source>Brain Res. Rev</source>
<year>2009</year>
<volume>59</volume>
<fpage>293</fpage>
<lpage>315</lpage>
<pub-id pub-id-type="pmid">18845187</pub-id>
</element-citation>
</ref>
<ref id="b31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McMahon</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Iacopino</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Chi</surname>
<given-names>S</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>German</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>Calbindin-d28k buffers intracellular calcium and promotes resistance to degeneration in pc12 cells</article-title>
<source>Brain Res. Mol. Brain Res</source>
<year>1998</year>
<volume>54</volume>
<fpage>56</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">9526044</pub-id>
</element-citation>
</ref>
<ref id="b32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mokler</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Torres</surname>
<given-names>OI</given-names>
</name>
<name>
<surname>Galler</surname>
<given-names>JR</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Morgane</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Stress-induced changes in extracellular dopamine and serotonin in the medial prefrontal cortex and dorsal hippocampus of prenatally malnourished rats</article-title>
<source>Brain Res</source>
<year>2007</year>
<volume>1148</volume>
<fpage>226</fpage>
<lpage>233</lpage>
<pub-id pub-id-type="pmid">17368432</pub-id>
</element-citation>
</ref>
<ref id="b33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morris</surname>
<given-names>AAM</given-names>
</name>
</person-group>
<article-title>Cerebral ketone body metabolism</article-title>
<source>J. Inherit. Metab. Dis</source>
<year>2005</year>
<volume>28</volume>
<fpage>109</fpage>
<lpage>121</lpage>
<pub-id pub-id-type="pmid">15877199</pub-id>
</element-citation>
</ref>
<ref id="b34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murphy</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Likhodii</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nylen</surname>
<given-names>K</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Burnham</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>The antidepressant properties of the ketogenic diet</article-title>
<source>Biol. Psychiatr</source>
<year>2004</year>
<volume>56</volume>
<fpage>981</fpage>
<lpage>983</lpage>
</element-citation>
</ref>
<ref id="b35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nehlig</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Brain uptake and metabolism of ketone bodies in animal models</article-title>
<source>Prostaglandins Leukot. Essent. Fatty Acids</source>
<year>2004</year>
<volume>70</volume>
<fpage>265</fpage>
<lpage>275</lpage>
<pub-id pub-id-type="pmid">14769485</pub-id>
</element-citation>
</ref>
<ref id="b36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nieman</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Lerch</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Bock</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Sled</surname>
<given-names>JG</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Henkelman</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Mouse behavioral mutants have neuroimaging abnormalities</article-title>
<source>Hum. Brain Mapp</source>
<year>2007</year>
<volume>28</volume>
<fpage>567</fpage>
<lpage>575</lpage>
<pub-id pub-id-type="pmid">17437292</pub-id>
</element-citation>
</ref>
<ref id="b37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noh</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>YS</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>SS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The protective effect of a ketogenic diet on kainic acid-induced hippocampal cell death in the male ICR mice</article-title>
<source>Epilepsy Res</source>
<year>2003</year>
<volume>53</volume>
<fpage>119</fpage>
<lpage>128</lpage>
<pub-id pub-id-type="pmid">12576173</pub-id>
</element-citation>
</ref>
<ref id="b38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noh</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>JY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ketogenic diet increases calbindin-d28k in the hippocampi of male ICR mice with kainic acid seizures</article-title>
<source>Epilepsy Res</source>
<year>2005a</year>
<volume>65</volume>
<fpage>153</fpage>
<lpage>159</lpage>
<pub-id pub-id-type="pmid">16046100</pub-id>
</element-citation>
</ref>
<ref id="b39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noh</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>GJ</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>WS</given-names>
</name>
</person-group>
<article-title>The protective effect of a ketogenic diet on kainic acid-induced hippocampal cell death in the male ICR mice</article-title>
<source>Brain Res</source>
<year>2005b</year>
<volume>1042</volume>
<fpage>114</fpage>
<lpage>118</lpage>
<pub-id pub-id-type="pmid">15823260</pub-id>
</element-citation>
</ref>
<ref id="b40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petit-Demouliere</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chenu</surname>
<given-names>F</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Bourin</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Forced swimming test in mice: a review of antidepressant activity</article-title>
<source>Psychopharmacology</source>
<year>2004</year>
<volume>177</volume>
<fpage>245</fpage>
<lpage>255</lpage>
<pub-id pub-id-type="pmid">15609067</pub-id>
</element-citation>
</ref>
<ref id="b41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Puchowicz</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ivy</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Emancipator</surname>
<given-names>D</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>LaManna</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Diet-induced ketosis increases capillary density without altered blood flow in rat brain</article-title>
<source>Am. J. Physiol. Endocrinol. Metabol</source>
<year>2007</year>
<volume>292</volume>
<fpage>E1607</fpage>
<lpage>E1615</lpage>
</element-citation>
</ref>
<ref id="b42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rogers</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Fisher</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hunter</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>JE</given-names>
</name>
</person-group>
<article-title>Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment</article-title>
<source>Mamm. Genome</source>
<year>1997</year>
<volume>8</volume>
<fpage>711</fpage>
<lpage>713</lpage>
<pub-id pub-id-type="pmid">9321461</pub-id>
</element-citation>
</ref>
<ref id="b43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rood</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Stott</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>You</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>CJW</given-names>
</name>
<name>
<surname>Woodbury</surname>
<given-names>ME</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>de Vries</surname>
<given-names>GJ</given-names>
</name>
</person-group>
<article-title>Site of origin of and sex differences in the vasopressin innervation of the mouse (mus musculus) brain</article-title>
<source>J. Comp. Neurol</source>
<year>2012</year>
<volume>521</volume>
<fpage>2321</fpage>
<lpage>2358</lpage>
<pub-id pub-id-type="pmid">23239101</pub-id>
</element-citation>
</ref>
<ref id="b44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silva</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Rocha</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pires</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Ribeiro</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Brolese</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Leite</surname>
<given-names>MC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transitory gliosis in the CA3 hippocampal region in rats fed on a ketogenic diet</article-title>
<source>Nutr. Neurosci</source>
<year>2005</year>
<volume>8</volume>
<fpage>259</fpage>
<lpage>264</lpage>
<pub-id pub-id-type="pmid">16491652</pub-id>
</element-citation>
</ref>
<ref id="b45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>da Silva Hernandes</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Francolin-Silva</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Valadares</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Fukuda</surname>
<given-names>MTH</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Almeida</surname>
<given-names>SS</given-names>
</name>
</person-group>
<article-title>Effects of different malnutrition techniques on the behavior of rats tested in the elevated t-maze</article-title>
<source>Behav. Brain Res</source>
<year>2005</year>
<volume>162</volume>
<fpage>240</fpage>
<lpage>245</lpage>
<pub-id pub-id-type="pmid">15878787</pub-id>
</element-citation>
</ref>
<ref id="b46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sussman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>van Eede</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Adamson</surname>
<given-names>SL</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Henkelman</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Effects of a ketogenic diet during pregnancy on embryonic growthin the mouse</article-title>
<source>BMC Pregnancy & Childbirth</source>
<year>2013a</year>
<volume>13</volume>
<fpage>109</fpage>
<pub-id pub-id-type="pmid">23656724</pub-id>
</element-citation>
</ref>
<ref id="b47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sussman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ellegood</surname>
<given-names>J</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Henkelman</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>A gestational ketogenic diet alters maternal metabolic status and offspring physiological growth and brain structure in the neonatalmouse</article-title>
<source>BMC Pregnancy & Childbirth</source>
<year>2013b</year>
<volume>13</volume>
<fpage>198</fpage>
<comment>doi:
<ext-link ext-link-type="doi" xlink:href="10.1186/1471-2393-13-198">10.1186/1471-2393-13-198</ext-link>
</comment>
<pub-id pub-id-type="pmid">24168053</pub-id>
</element-citation>
</ref>
<ref id="b48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thomas</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>De-Vita</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yousry</surname>
<given-names>TA</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Ordidge</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>High-resolution fast spin echo imaging of the human brain at 4.7 T: implementation and sequence characteristics</article-title>
<source>Magn. Reson. Med</source>
<year>2004</year>
<volume>51</volume>
<fpage>1254</fpage>
<lpage>1264</lpage>
<pub-id pub-id-type="pmid">15170847</pub-id>
</element-citation>
</ref>
<ref id="b49">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tieu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Perier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Caspersen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Teismann</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>SD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of parkinson disease</article-title>
<source>J. Clin. Investig</source>
<year>2003</year>
<volume>112</volume>
<fpage>892</fpage>
<lpage>901</lpage>
<pub-id pub-id-type="pmid">12975474</pub-id>
</element-citation>
</ref>
<ref id="b50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van der Auwera</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Wera</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Van Leuven</surname>
<given-names>F</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Henderson</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease</article-title>
<source>Nutr. Metabol</source>
<year>2005</year>
<volume>2</volume>
<fpage>28</fpage>
</element-citation>
</ref>
<ref id="b51">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Veech</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot</article-title>
<source>Essent. Fatty Acids</source>
<year>2004</year>
<volume>70</volume>
<fpage>309</fpage>
<lpage>319</lpage>
</element-citation>
</ref>
<ref id="b52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Veech</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Chance</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kashiwaya</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lardy</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Cahill</surname>
<given-names>GF</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>Ketone bodies potential therapeutic uses</article-title>
<source>IUBMB Life</source>
<year>2001</year>
<volume>51</volume>
<fpage>241</fpage>
<lpage>247</lpage>
<pub-id pub-id-type="pmid">11569918</pub-id>
</element-citation>
</ref>
<ref id="b53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Watson</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Desesso</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Hurtt</surname>
<given-names>ME</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Cappon</surname>
<given-names>GD</given-names>
</name>
</person-group>
<article-title>Postnatal growth and morphological development of the brain: a species comparison</article-title>
<source>Birth Defects Res. B Dev. Reprod. Toxicol</source>
<year>2006</year>
<volume>77</volume>
<fpage>471</fpage>
<lpage>484</lpage>
<pub-id pub-id-type="pmid">17066419</pub-id>
</element-citation>
</ref>
<ref id="b54">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Mukherjee</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kiebish</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Markis</surname>
<given-names>WT</given-names>
</name>
<name>
<surname>Mantis</surname>
<given-names>JG</given-names>
</name>
</person-group>
<person-group person-group-type="author">
<name>
<surname>Seyfried</surname>
<given-names>TN</given-names>
</name>
</person-group>
<article-title>The calorically restricted ketogenic diet an effective alternative therapy for malignant brain cancer</article-title>
<source>Nutr. Metabol</source>
<year>2007</year>
<volume>4</volume>
<fpage>5</fpage>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000934 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000934 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4309881
   |texte=   Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25642385" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022