La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Oral antioxidant therapy for juvenile rats with kaolin-induced hydrocephalus

Identifieur interne : 000497 ( Pmc/Corpus ); précédent : 000496; suivant : 000498

Oral antioxidant therapy for juvenile rats with kaolin-induced hydrocephalus

Auteurs : Domenico L. Di Curzio ; Emily Turner-Brannen ; Marc R. Del Bigio

Source :

RBID : PMC:4199774

Abstract

Background

Oxidative and nitrosylative changes have been shown to occur in conjunction with the hypoxic changes and cellular/axonal damage in hydrocephalic rodent brains. We hypothesized that antioxidant therapy would improve behavioral, neurophysiological, and/or neurobiochemical outcomes in juvenile rats following induction of hydrocephalus.

Methods

Three-week old rats received an injection of kaolin (aluminum silicate) into the cisterna magna. Magnetic resonance (MR) imaging was performed two weeks later to assess ventricle size and stratify rats to four treatment conditions. Rats were treated for two weeks daily with sham therapy of either oral canola oil or dextrose or experimental therapy of a low or high dose of an antioxidant mixture containing α-tocopherol, L-ascorbic acid, coenzyme Q10 (CoQ10), reduced glutathione, and reduced lipoic acid. Behavior was examined thrice weekly.

Results

All hydrocephalic groups lagged in weight gain in comparison to non-hydrocephalic controls, all developed significant ventriculomegaly, and all exhibited white matter destruction. Canola oil with or without the antioxidant mixture normalized antioxidant capacity in brain tissue, and the dextrose-treated rats had the greatest ventricular enlargement during the treatment period. However, there were no significant differences between the four treatment groups of hydrocephalic rats for the various behavioral tasks. Glial fibrillary acidic protein and myelin basic protein quantitation showed no differences between the treatment groups or with control rats. There was increased lipid peroxidation in the hydrocephalic rats compared to controls but no differences between treatment groups.

Conclusion

The antioxidant cocktail showed no therapeutic benefits for juvenile rats with kaolin-induced hydrocephalus although canola oil might have mild benefit.


Url:
DOI: 10.1186/2045-8118-11-23
PubMed: 25324960
PubMed Central: 4199774

Links to Exploration step

PMC:4199774

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Oral antioxidant therapy for juvenile rats with kaolin-induced hydrocephalus</title>
<author>
<name sortKey="Di Curzio, Domenico L" sort="Di Curzio, Domenico L" uniqKey="Di Curzio D" first="Domenico L" last="Di Curzio">Domenico L. Di Curzio</name>
<affiliation>
<nlm:aff id="I1">Departments of Human Anatomy & Cell Science, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Turner Brannen, Emily" sort="Turner Brannen, Emily" uniqKey="Turner Brannen E" first="Emily" last="Turner-Brannen">Emily Turner-Brannen</name>
<affiliation>
<nlm:aff id="I2">Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Del Bigio, Marc R" sort="Del Bigio, Marc R" uniqKey="Del Bigio M" first="Marc R" last="Del Bigio">Marc R. Del Bigio</name>
<affiliation>
<nlm:aff id="I2">Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I3">Department of Pathology, University of Manitoba, 727 McDermot Avenue, Winnipeg, R3E 3P5, Canada</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25324960</idno>
<idno type="pmc">4199774</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199774</idno>
<idno type="RBID">PMC:4199774</idno>
<idno type="doi">10.1186/2045-8118-11-23</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000497</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000497</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Oral antioxidant therapy for juvenile rats with kaolin-induced hydrocephalus</title>
<author>
<name sortKey="Di Curzio, Domenico L" sort="Di Curzio, Domenico L" uniqKey="Di Curzio D" first="Domenico L" last="Di Curzio">Domenico L. Di Curzio</name>
<affiliation>
<nlm:aff id="I1">Departments of Human Anatomy & Cell Science, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Turner Brannen, Emily" sort="Turner Brannen, Emily" uniqKey="Turner Brannen E" first="Emily" last="Turner-Brannen">Emily Turner-Brannen</name>
<affiliation>
<nlm:aff id="I2">Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Del Bigio, Marc R" sort="Del Bigio, Marc R" uniqKey="Del Bigio M" first="Marc R" last="Del Bigio">Marc R. Del Bigio</name>
<affiliation>
<nlm:aff id="I2">Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I3">Department of Pathology, University of Manitoba, 727 McDermot Avenue, Winnipeg, R3E 3P5, Canada</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Fluids and Barriers of the CNS</title>
<idno type="eISSN">2045-8118</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Oxidative and nitrosylative changes have been shown to occur in conjunction with the hypoxic changes and cellular/axonal damage in hydrocephalic rodent brains. We hypothesized that antioxidant therapy would improve behavioral, neurophysiological, and/or neurobiochemical outcomes in juvenile rats following induction of hydrocephalus.</p>
</sec>
<sec>
<title>Methods</title>
<p>Three-week old rats received an injection of kaolin (aluminum silicate) into the cisterna magna. Magnetic resonance (MR) imaging was performed two weeks later to assess ventricle size and stratify rats to four treatment conditions. Rats were treated for two weeks daily with sham therapy of either oral canola oil or dextrose or experimental therapy of a low or high dose of an antioxidant mixture containing α-tocopherol, L-ascorbic acid, coenzyme Q10 (CoQ10), reduced glutathione, and reduced lipoic acid. Behavior was examined thrice weekly.</p>
</sec>
<sec>
<title>Results</title>
<p>All hydrocephalic groups lagged in weight gain in comparison to non-hydrocephalic controls, all developed significant ventriculomegaly, and all exhibited white matter destruction. Canola oil with or without the antioxidant mixture normalized antioxidant capacity in brain tissue, and the dextrose-treated rats had the greatest ventricular enlargement during the treatment period. However, there were no significant differences between the four treatment groups of hydrocephalic rats for the various behavioral tasks. Glial fibrillary acidic protein and myelin basic protein quantitation showed no differences between the treatment groups or with control rats. There was increased lipid peroxidation in the hydrocephalic rats compared to controls but no differences between treatment groups.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>The antioxidant cocktail showed no therapeutic benefits for juvenile rats with kaolin-induced hydrocephalus although canola oil might have mild benefit.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Del Bigio, M" uniqKey="Del Bigio M">M Del Bigio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcallister, J" uniqKey="Mcallister J">J McAllister</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Del Bigio, M" uniqKey="Del Bigio M">M Del Bigio</name>
</author>
<author>
<name sortKey="Khan, Oh" uniqKey="Khan O">OH Khan</name>
</author>
<author>
<name sortKey="Da Silva Lopes, L" uniqKey="Da Silva Lopes L">L da Silva Lopes</name>
</author>
<author>
<name sortKey="Packiasamy, Arj" uniqKey="Packiasamy A">ARJ Packiasamy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Butterfield, D" uniqKey="Butterfield D">D Butterfield</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emerit, J" uniqKey="Emerit J">J Emerit</name>
</author>
<author>
<name sortKey="Edeas, M" uniqKey="Edeas M">M Edeas</name>
</author>
<author>
<name sortKey="Bricaire, F" uniqKey="Bricaire F">F Bricaire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simonian, N" uniqKey="Simonian N">N Simonian</name>
</author>
<author>
<name sortKey="Coyle, Jt" uniqKey="Coyle J">JT Coyle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, A" uniqKey="Sun A">A Sun</name>
</author>
<author>
<name sortKey="Chen, Ym" uniqKey="Chen Y">YM Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uttara, B" uniqKey="Uttara B">B Uttara</name>
</author>
<author>
<name sortKey="Singh, Av" uniqKey="Singh A">AV Singh</name>
</author>
<author>
<name sortKey="Zamboni, P" uniqKey="Zamboni P">P Zamboni</name>
</author>
<author>
<name sortKey="Mahajan, Rt" uniqKey="Mahajan R">RT Mahajan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caner, H" uniqKey="Caner H">H Caner</name>
</author>
<author>
<name sortKey="Atasever, A" uniqKey="Atasever A">A Atasever</name>
</author>
<author>
<name sortKey="Kilinc, K" uniqKey="Kilinc K">K Kilinç</name>
</author>
<author>
<name sortKey="Durgun, B" uniqKey="Durgun B">B Durgun</name>
</author>
<author>
<name sortKey="Peker, S" uniqKey="Peker S">S Peker</name>
</author>
<author>
<name sortKey="Ozcan, Oe" uniqKey="Ozcan O">OE Ozcan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Etus, V" uniqKey="Etus V">V Etus</name>
</author>
<author>
<name sortKey="Gazioglu, N" uniqKey="Gazioglu N">N Gazioglu</name>
</author>
<author>
<name sortKey="Belce, A" uniqKey="Belce A">A Belce</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Etus, V" uniqKey="Etus V">V Etus</name>
</author>
<author>
<name sortKey="Altug, T" uniqKey="Altug T">T Altug</name>
</author>
<author>
<name sortKey="Belce, A" uniqKey="Belce A">A Belce</name>
</author>
<author>
<name sortKey="Ceylan, S" uniqKey="Ceylan S">S Ceylan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Socci, D" uniqKey="Socci D">D Socci</name>
</author>
<author>
<name sortKey="Bjugstad, Kb" uniqKey="Bjugstad K">KB Bjugstad</name>
</author>
<author>
<name sortKey="Jones, Hc" uniqKey="Jones H">HC Jones</name>
</author>
<author>
<name sortKey="Pattisapu, Jv" uniqKey="Pattisapu J">JV Pattisapu</name>
</author>
<author>
<name sortKey="Arendash, Gw" uniqKey="Arendash G">GW Arendash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mori, K" uniqKey="Mori K">K Mori</name>
</author>
<author>
<name sortKey="Miyake, H" uniqKey="Miyake H">H Miyake</name>
</author>
<author>
<name sortKey="Kurisaka, M" uniqKey="Kurisaka M">M Kurisaka</name>
</author>
<author>
<name sortKey="Sakamoto, T" uniqKey="Sakamoto T">T Sakamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pudenz, R" uniqKey="Pudenz R">R Pudenz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Del Bigio, M" uniqKey="Del Bigio M">M Del Bigio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eskandari, R" uniqKey="Eskandari R">R Eskandari</name>
</author>
<author>
<name sortKey="Mcallister, Jp" uniqKey="Mcallister J">JP McAllister</name>
</author>
<author>
<name sortKey="Miller, Jm" uniqKey="Miller J">JM Miller</name>
</author>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y Ding</name>
</author>
<author>
<name sortKey="Ham, Sd" uniqKey="Ham S">SD Ham</name>
</author>
<author>
<name sortKey="Shearer, Dm" uniqKey="Shearer D">DM Shearer</name>
</author>
<author>
<name sortKey="Way, Js" uniqKey="Way J">JS Way</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Epstein, F" uniqKey="Epstein F">F Epstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riva, D" uniqKey="Riva D">D Riva</name>
</author>
<author>
<name sortKey="Milani, N" uniqKey="Milani N">N Milani</name>
</author>
<author>
<name sortKey="Giorgi, C" uniqKey="Giorgi C">C Giorgi</name>
</author>
<author>
<name sortKey="Pantaleoni, C" uniqKey="Pantaleoni C">C Pantaleoni</name>
</author>
<author>
<name sortKey="Zorzi, C" uniqKey="Zorzi C">C Zorzi</name>
</author>
<author>
<name sortKey="Devoti, M" uniqKey="Devoti M">M Devoti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Del Bigio, M" uniqKey="Del Bigio M">M Del Bigio</name>
</author>
<author>
<name sortKey="Massicotte, Em" uniqKey="Massicotte E">EM Massicotte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khan, O" uniqKey="Khan O">O Khan</name>
</author>
<author>
<name sortKey="Enno, T" uniqKey="Enno T">T Enno</name>
</author>
<author>
<name sortKey="Del Bigio, Mr" uniqKey="Del Bigio M">MR Del Bigio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Botfield, H" uniqKey="Botfield H">H Botfield</name>
</author>
<author>
<name sortKey="Gonzalez, Am" uniqKey="Gonzalez A">AM Gonzalez</name>
</author>
<author>
<name sortKey="Abdullah, O" uniqKey="Abdullah O">O Abdullah</name>
</author>
<author>
<name sortKey="Skjolding, Ad" uniqKey="Skjolding A">AD Skjolding</name>
</author>
<author>
<name sortKey="Berry, M" uniqKey="Berry M">M Berry</name>
</author>
<author>
<name sortKey="Mcallister, Jp" uniqKey="Mcallister J">JP McAllister</name>
</author>
<author>
<name sortKey="Logan, A" uniqKey="Logan A">A Logan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Del Bigio, M" uniqKey="Del Bigio M">M Del Bigio</name>
</author>
<author>
<name sortKey="Crook, Cr" uniqKey="Crook C">CR Crook</name>
</author>
<author>
<name sortKey="Buist, R" uniqKey="Buist R">R Buist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Del Bigio, M" uniqKey="Del Bigio M">M Del Bigio</name>
</author>
<author>
<name sortKey="Kanfer, Jn" uniqKey="Kanfer J">JN Kanfer</name>
</author>
<author>
<name sortKey="Zhang, Yw" uniqKey="Zhang Y">YW Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Del Bigio, M" uniqKey="Del Bigio M">M Del Bigio</name>
</author>
<author>
<name sortKey="Zhang, Yw" uniqKey="Zhang Y">YW Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Romijn, H" uniqKey="Romijn H">H Romijn</name>
</author>
<author>
<name sortKey="Hofman, Ma" uniqKey="Hofman M">MA Hofman</name>
</author>
<author>
<name sortKey="Gramsbergen, A" uniqKey="Gramsbergen A">A Gramsbergen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuor, U" uniqKey="Tuor U">U Tuor</name>
</author>
<author>
<name sortKey="Del Bigio, Mr" uniqKey="Del Bigio M">MR Del Bigio</name>
</author>
<author>
<name sortKey="Chumas, Pd" uniqKey="Chumas P">PD Chumas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clancy, B" uniqKey="Clancy B">B Clancy</name>
</author>
<author>
<name sortKey="Darlington, Rb" uniqKey="Darlington R">RB Darlington</name>
</author>
<author>
<name sortKey="Finlay, Bl" uniqKey="Finlay B">BL Finlay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Littarru, G" uniqKey="Littarru G">G Littarru</name>
</author>
<author>
<name sortKey="Tiano, L" uniqKey="Tiano L">L Tiano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Young, A" uniqKey="Young A">A Young</name>
</author>
<author>
<name sortKey="Johnson, S" uniqKey="Johnson S">S Johnson</name>
</author>
<author>
<name sortKey="Steffens, Dc" uniqKey="Steffens D">DC Steffens</name>
</author>
<author>
<name sortKey="Doraiswamy, Pm" uniqKey="Doraiswamy P">PM Doraiswamy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B Zhang</name>
</author>
<author>
<name sortKey="Tanaka, J" uniqKey="Tanaka J">J Tanaka</name>
</author>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L Yang</name>
</author>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L Yang</name>
</author>
<author>
<name sortKey="Sakanaka, M" uniqKey="Sakanaka M">M Sakanaka</name>
</author>
<author>
<name sortKey="Hata, R" uniqKey="Hata R">R Hata</name>
</author>
<author>
<name sortKey="Maeda, N" uniqKey="Maeda N">N Maeda</name>
</author>
<author>
<name sortKey="Mitsuda, N" uniqKey="Mitsuda N">N Mitsuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ibrahim, W" uniqKey="Ibrahim W">W Ibrahim</name>
</author>
<author>
<name sortKey="Bhagavan, Hn" uniqKey="Bhagavan H">HN Bhagavan</name>
</author>
<author>
<name sortKey="Chopra, Rk" uniqKey="Chopra R">RK Chopra</name>
</author>
<author>
<name sortKey="Chow, Ck" uniqKey="Chow C">CK Chow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gonzalez Perez, O" uniqKey="Gonzalez Perez O">O Gonzalez-Perez</name>
</author>
<author>
<name sortKey="Gonzalez Castaneda, Re" uniqKey="Gonzalez Castaneda R">RE Gonzalez-Castaneda</name>
</author>
<author>
<name sortKey="Huerta, M" uniqKey="Huerta M">M Huerta</name>
</author>
<author>
<name sortKey="Luquin, S" uniqKey="Luquin S">S Luquin</name>
</author>
<author>
<name sortKey="Gomez Pinedo, U" uniqKey="Gomez Pinedo U">U Gomez-Pinedo</name>
</author>
<author>
<name sortKey="Sanchez Almaraz, E" uniqKey="Sanchez Almaraz E">E Sanchez-Almaraz</name>
</author>
<author>
<name sortKey="Navarro Ruiz, A" uniqKey="Navarro Ruiz A">A Navarro-Ruiz</name>
</author>
<author>
<name sortKey="Garcia Estrada, J" uniqKey="Garcia Estrada J">J Garcia-Estrada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marriage, B" uniqKey="Marriage B">B Marriage</name>
</author>
<author>
<name sortKey="Clandinin, Mt" uniqKey="Clandinin M">MT Clandinin</name>
</author>
<author>
<name sortKey="Glerum, Dm" uniqKey="Glerum D">DM Glerum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faria, R" uniqKey="Faria R">R Faria</name>
</author>
<author>
<name sortKey="Abilio, Vc" uniqKey="Abilio V">VC Abilio</name>
</author>
<author>
<name sortKey="Grassl, C" uniqKey="Grassl C">C Grassl</name>
</author>
<author>
<name sortKey="Chinen, Cc" uniqKey="Chinen C">CC Chinen</name>
</author>
<author>
<name sortKey="Negrao, Lt" uniqKey="Negrao L">LT Negrao</name>
</author>
<author>
<name sortKey="De Castro, Jp" uniqKey="De Castro J">JP de Castro</name>
</author>
<author>
<name sortKey="Fukushiro, Df" uniqKey="Fukushiro D">DF Fukushiro</name>
</author>
<author>
<name sortKey="Rodrigues, Ms" uniqKey="Rodrigues M">MS Rodrigues</name>
</author>
<author>
<name sortKey="Gomes, Ph" uniqKey="Gomes P">PH Gomes</name>
</author>
<author>
<name sortKey="Registro, S" uniqKey="Registro S">S Registro</name>
</author>
<author>
<name sortKey="De Carvalho Rde, C" uniqKey="De Carvalho Rde C">C de Carvalho Rde</name>
</author>
<author>
<name sortKey="D Lmeida, V" uniqKey="D Lmeida V">V D’Almeida</name>
</author>
<author>
<name sortKey="Silva, Rh" uniqKey="Silva R">RH Silva</name>
</author>
<author>
<name sortKey="Ribeiro Rde, A" uniqKey="Ribeiro Rde A">A Ribeiro Rde</name>
</author>
<author>
<name sortKey="Frussa Filho, R" uniqKey="Frussa Filho R">R Frussa-Filho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vatassery, G" uniqKey="Vatassery G">G Vatassery</name>
</author>
<author>
<name sortKey="Lai, Jc" uniqKey="Lai J">JC Lai</name>
</author>
<author>
<name sortKey="Demaster, Eg" uniqKey="Demaster E">EG DeMaster</name>
</author>
<author>
<name sortKey="Smith, We" uniqKey="Smith W">WE Smith</name>
</author>
<author>
<name sortKey="Quach, Ht" uniqKey="Quach H">HT Quach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, P" uniqKey="Sharma P">P Sharma</name>
</author>
<author>
<name sortKey="Ahmad Shah, Z" uniqKey="Ahmad Shah Z">Z Ahmad Shah</name>
</author>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A Kumar</name>
</author>
<author>
<name sortKey="Islam, F" uniqKey="Islam F">F Islam</name>
</author>
<author>
<name sortKey="Mishra, Kp" uniqKey="Mishra K">KP Mishra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Estrada, J" uniqKey="Garcia Estrada J">J Garcia-Estrada</name>
</author>
<author>
<name sortKey="Gonzalez Perez, O" uniqKey="Gonzalez Perez O">O Gonzalez-Perez</name>
</author>
<author>
<name sortKey="Gonzalez Castaneda, Re" uniqKey="Gonzalez Castaneda R">RE Gonzalez-Castaneda</name>
</author>
<author>
<name sortKey="Martinez Contreras, A" uniqKey="Martinez Contreras A">A Martinez-Contreras</name>
</author>
<author>
<name sortKey="Luquin, S" uniqKey="Luquin S">S Luquin</name>
</author>
<author>
<name sortKey="De La Mora, Pg" uniqKey="De La Mora P">PG de la Mora</name>
</author>
<author>
<name sortKey="Navarro Ruiz, A" uniqKey="Navarro Ruiz A">A Navarro-Ruiz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Metz, G" uniqKey="Metz G">G Metz</name>
</author>
<author>
<name sortKey="Whishaw, Iq" uniqKey="Whishaw I">IQ Whishaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Curzio, D" uniqKey="Di Curzio D">D Di Curzio</name>
</author>
<author>
<name sortKey="Buist, Rj" uniqKey="Buist R">RJ Buist</name>
</author>
<author>
<name sortKey="Del Bigio, Mr" uniqKey="Del Bigio M">MR Del Bigio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khan, O" uniqKey="Khan O">O Khan</name>
</author>
<author>
<name sortKey="Enno, Tl" uniqKey="Enno T">TL Enno</name>
</author>
<author>
<name sortKey="Del Bigio, Mr" uniqKey="Del Bigio M">MR Del Bigio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohkawa, H" uniqKey="Ohkawa H">H Ohkawa</name>
</author>
<author>
<name sortKey="Ohishi, N" uniqKey="Ohishi N">N Ohishi</name>
</author>
<author>
<name sortKey="Yagi, K" uniqKey="Yagi K">K Yagi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wakamatsu, D" uniqKey="Wakamatsu D">D Wakamatsu</name>
</author>
<author>
<name sortKey="Morimura, S" uniqKey="Morimura S">S Morimura</name>
</author>
<author>
<name sortKey="Sawa, T" uniqKey="Sawa T">T Sawa</name>
</author>
<author>
<name sortKey="Kida, K" uniqKey="Kida K">K Kida</name>
</author>
<author>
<name sortKey="Nakal, C" uniqKey="Nakal C">C Nakal</name>
</author>
<author>
<name sortKey="Maeda, H" uniqKey="Maeda H">H Maeda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Del Bigio, M" uniqKey="Del Bigio M">M Del Bigio</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Wilson, Mj" uniqKey="Wilson M">MJ Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khan, O" uniqKey="Khan O">O Khan</name>
</author>
<author>
<name sortKey="Enno, T" uniqKey="Enno T">T Enno</name>
</author>
<author>
<name sortKey="Del Bigio, Mr" uniqKey="Del Bigio M">MR Del Bigio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khan, O" uniqKey="Khan O">O Khan</name>
</author>
<author>
<name sortKey="Mcphee, Lc" uniqKey="Mcphee L">LC McPhee</name>
</author>
<author>
<name sortKey="Moddemann, Ln" uniqKey="Moddemann L">LN Moddemann</name>
</author>
<author>
<name sortKey="Del Bigio, Mr" uniqKey="Del Bigio M">MR Del Bigio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcallister, J" uniqKey="Mcallister J">J McAllister</name>
</author>
<author>
<name sortKey="Miller, Jm" uniqKey="Miller J">JM Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cabuk, B" uniqKey="Cabuk B">B Cabuk</name>
</author>
<author>
<name sortKey="Etus, V" uniqKey="Etus V">V Etus</name>
</author>
<author>
<name sortKey="Bozkurt, Su" uniqKey="Bozkurt S">SU Bozkurt</name>
</author>
<author>
<name sortKey="Sav, A" uniqKey="Sav A">A Sav</name>
</author>
<author>
<name sortKey="Ceylan, S" uniqKey="Ceylan S">S Ceylan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Botsoglou, N" uniqKey="Botsoglou N">N Botsoglou</name>
</author>
<author>
<name sortKey="Fletouris, Dj" uniqKey="Fletouris D">DJ Fletouris</name>
</author>
<author>
<name sortKey="Papageorgiou, Ge" uniqKey="Papageorgiou G">GE Papageorgiou</name>
</author>
<author>
<name sortKey="Vassilopoulos, Vn" uniqKey="Vassilopoulos V">VN Vassilopoulos</name>
</author>
<author>
<name sortKey="Mantis, Aj" uniqKey="Mantis A">AJ Mantis</name>
</author>
<author>
<name sortKey="Trakatellis, Ag" uniqKey="Trakatellis A">AG Trakatellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fisher, M" uniqKey="Fisher M">M Fisher</name>
</author>
<author>
<name sortKey="Feuerstein, G" uniqKey="Feuerstein G">G Feuerstein</name>
</author>
<author>
<name sortKey="Howells, Dw" uniqKey="Howells D">DW Howells</name>
</author>
<author>
<name sortKey="Hurn, Pd" uniqKey="Hurn P">PD Hurn</name>
</author>
<author>
<name sortKey="Kent, Ta" uniqKey="Kent T">TA Kent</name>
</author>
<author>
<name sortKey="Savitz, Si" uniqKey="Savitz S">SI Savitz</name>
</author>
<author>
<name sortKey="Lo, Eh" uniqKey="Lo E">EH Lo</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Del Bigio, M" uniqKey="Del Bigio M">M Del Bigio</name>
</author>
<author>
<name sortKey="Slobodian, I" uniqKey="Slobodian I">I Slobodian</name>
</author>
<author>
<name sortKey="Schellenberg, Ae" uniqKey="Schellenberg A">AE Schellenberg</name>
</author>
<author>
<name sortKey="Buist, Rj" uniqKey="Buist R">RJ Buist</name>
</author>
<author>
<name sortKey="Kemp Buors, Tl" uniqKey="Kemp Buors T">TL Kemp-Buors</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kannan, R" uniqKey="Kannan R">R Kannan</name>
</author>
<author>
<name sortKey="Kuhlenkamp, Jf" uniqKey="Kuhlenkamp J">JF Kuhlenkamp</name>
</author>
<author>
<name sortKey="Jeandidier, E" uniqKey="Jeandidier E">E Jeandidier</name>
</author>
<author>
<name sortKey="Trinh, H" uniqKey="Trinh H">H Trinh</name>
</author>
<author>
<name sortKey="Ookhtens, M" uniqKey="Ookhtens M">M Ookhtens</name>
</author>
<author>
<name sortKey="Kaplowitz, N" uniqKey="Kaplowitz N">N Kaplowitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Turunen, M" uniqKey="Turunen M">M Turunen</name>
</author>
<author>
<name sortKey="Appelkvist, El" uniqKey="Appelkvist E">EL Appelkvist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matthews, R" uniqKey="Matthews R">R Matthews</name>
</author>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L Yang</name>
</author>
<author>
<name sortKey="Browne, S" uniqKey="Browne S">S Browne</name>
</author>
<author>
<name sortKey="Balk, M" uniqKey="Balk M">M Balk</name>
</author>
<author>
<name sortKey="Beal, F" uniqKey="Beal F">F Beal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Aberg, F" uniqKey="Aberg F">F Aberg</name>
</author>
<author>
<name sortKey="Appelkvist, El" uniqKey="Appelkvist E">EL Appelkvist</name>
</author>
<author>
<name sortKey="Dallner, G" uniqKey="Dallner G">G Dallner</name>
</author>
<author>
<name sortKey="Ernster, L" uniqKey="Ernster L">L Ernster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Klein, G" uniqKey="Klein G">G Klein</name>
</author>
<author>
<name sortKey="Sun, P" uniqKey="Sun P">P Sun</name>
</author>
<author>
<name sortKey="Buchan, Am" uniqKey="Buchan A">AM Buchan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sikorska, M" uniqKey="Sikorska M">M Sikorska</name>
</author>
<author>
<name sortKey="Borowy Borowski, H" uniqKey="Borowy Borowski H">H Borowy-Borowski</name>
</author>
<author>
<name sortKey="Zurakowski, B" uniqKey="Zurakowski B">B Zurakowski</name>
</author>
<author>
<name sortKey="Walker, Pr" uniqKey="Walker P">PR Walker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez Moreno, C" uniqKey="Sanchez Moreno C">C Sánchez-Moreno</name>
</author>
<author>
<name sortKey="Dorfman, Se" uniqKey="Dorfman S">SE Dorfman</name>
</author>
<author>
<name sortKey="Lichtenstein, Ah" uniqKey="Lichtenstein A">AH Lichtenstein</name>
</author>
<author>
<name sortKey="Martin, A" uniqKey="Martin A">A Martín</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuwahara, H" uniqKey="Kuwahara H">H Kuwahara</name>
</author>
<author>
<name sortKey="Kanazawa, A" uniqKey="Kanazawa A">A Kanazawa</name>
</author>
<author>
<name sortKey="Wakamatsu, D" uniqKey="Wakamatsu D">D Wakamatsu</name>
</author>
<author>
<name sortKey="Morimura, S" uniqKey="Morimura S">S Morimura</name>
</author>
<author>
<name sortKey="Kida, K" uniqKey="Kida K">K Kida</name>
</author>
<author>
<name sortKey="Akaike, T" uniqKey="Akaike T">T Akaike</name>
</author>
<author>
<name sortKey="Maeda, H" uniqKey="Maeda H">H Maeda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Torreilles, F" uniqKey="Torreilles F">F Torreilles</name>
</author>
<author>
<name sortKey="Salman Tabcheh, S" uniqKey="Salman Tabcheh S">S Salman-Tabcheh</name>
</author>
<author>
<name sortKey="Guerin, M" uniqKey="Guerin M">M Guerin</name>
</author>
<author>
<name sortKey="Torreilles, J" uniqKey="Torreilles J">J Torreilles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szabo, C" uniqKey="Szabo C">C Szabo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quijano, C" uniqKey="Quijano C">C Quijano</name>
</author>
<author>
<name sortKey="Romero, N" uniqKey="Romero N">N Romero</name>
</author>
<author>
<name sortKey="Radi, R" uniqKey="Radi R">R Radi</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article" xml:lang="en">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Fluids Barriers CNS</journal-id>
<journal-id journal-id-type="iso-abbrev">Fluids Barriers CNS</journal-id>
<journal-title-group>
<journal-title>Fluids and Barriers of the CNS</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-8118</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25324960</article-id>
<article-id pub-id-type="pmc">4199774</article-id>
<article-id pub-id-type="publisher-id">2045-8118-11-23</article-id>
<article-id pub-id-type="doi">10.1186/2045-8118-11-23</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Oral antioxidant therapy for juvenile rats with kaolin-induced hydrocephalus</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="A1">
<name>
<surname>Di Curzio</surname>
<given-names>Domenico L</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I2">2</xref>
<email>umdicurd@myumanitoba.ca</email>
</contrib>
<contrib contrib-type="author" id="A2">
<name>
<surname>Turner-Brannen</surname>
<given-names>Emily</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>eturner-brannen@mich.ca</email>
</contrib>
<contrib contrib-type="author" corresp="yes" id="A3">
<name>
<surname>Del Bigio</surname>
<given-names>Marc R</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<xref ref-type="aff" rid="I3">3</xref>
<email>marc.delbigio@med.umanitoba.ca</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
Departments of Human Anatomy & Cell Science, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada</aff>
<aff id="I2">
<label>2</label>
Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada</aff>
<aff id="I3">
<label>3</label>
Department of Pathology, University of Manitoba, 727 McDermot Avenue, Winnipeg, R3E 3P5, Canada</aff>
<pub-date pub-type="collection">
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>13</day>
<month>10</month>
<year>2014</year>
</pub-date>
<volume>11</volume>
<fpage>23</fpage>
<lpage>23</lpage>
<history>
<date date-type="received">
<day>28</day>
<month>7</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>23</day>
<month>9</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014 Di Curzio et al.; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2014</copyright-year>
<copyright-holder>Di Curzio et al.; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0">http://creativecommons.org/licenses/by/4.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<self-uri xlink:href="http://www.fluidsbarrierscns.com/content/11/1/23"></self-uri>
<abstract>
<sec>
<title>Background</title>
<p>Oxidative and nitrosylative changes have been shown to occur in conjunction with the hypoxic changes and cellular/axonal damage in hydrocephalic rodent brains. We hypothesized that antioxidant therapy would improve behavioral, neurophysiological, and/or neurobiochemical outcomes in juvenile rats following induction of hydrocephalus.</p>
</sec>
<sec>
<title>Methods</title>
<p>Three-week old rats received an injection of kaolin (aluminum silicate) into the cisterna magna. Magnetic resonance (MR) imaging was performed two weeks later to assess ventricle size and stratify rats to four treatment conditions. Rats were treated for two weeks daily with sham therapy of either oral canola oil or dextrose or experimental therapy of a low or high dose of an antioxidant mixture containing α-tocopherol, L-ascorbic acid, coenzyme Q10 (CoQ10), reduced glutathione, and reduced lipoic acid. Behavior was examined thrice weekly.</p>
</sec>
<sec>
<title>Results</title>
<p>All hydrocephalic groups lagged in weight gain in comparison to non-hydrocephalic controls, all developed significant ventriculomegaly, and all exhibited white matter destruction. Canola oil with or without the antioxidant mixture normalized antioxidant capacity in brain tissue, and the dextrose-treated rats had the greatest ventricular enlargement during the treatment period. However, there were no significant differences between the four treatment groups of hydrocephalic rats for the various behavioral tasks. Glial fibrillary acidic protein and myelin basic protein quantitation showed no differences between the treatment groups or with control rats. There was increased lipid peroxidation in the hydrocephalic rats compared to controls but no differences between treatment groups.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>The antioxidant cocktail showed no therapeutic benefits for juvenile rats with kaolin-induced hydrocephalus although canola oil might have mild benefit.</p>
</sec>
</abstract>
<kwd-group>
<kwd>Rodent model</kwd>
<kwd>Brain</kwd>
<kwd>Hydrocephalus</kwd>
<kwd>Antioxidant</kwd>
<kwd>Oxidative stress</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>Hydrocephalus is a neurological condition in which altered cerebrospinal fluid (CSF) flow dynamics lead to expansion of ventricular cavities in the brain. The neuropathophysiological damage associated with hydrocephalus is multifactorial with mechanical factors and reduced white matter blood flow simultaneously contributing to axonal and oligodendroglial damage [
<xref ref-type="bibr" rid="B1">1</xref>
,
<xref ref-type="bibr" rid="B2">2</xref>
]. Hypoxic changes in proteins of white matter glial and endothelial cells have been found in hydrocephalic rats using immunohistochemical detection of pimonidazole [
<xref ref-type="bibr" rid="B3">3</xref>
]. Oxidative stress leads to cell damage in various neurodegenerative disorders, including Parkinson disease, Alzheimer disease, Huntington disease, amyotrophic lateral sclerosis, and multiple sclerosis [
<xref ref-type="bibr" rid="B4">4</xref>
-
<xref ref-type="bibr" rid="B8">8</xref>
]. Lipid peroxidation, which follows oxygen free radical damage to cell membranes, has been shown in rodent hydrocephalic brains by measuring malondialdehyde (MDA) levels using the biochemical assay of thiobarbituric acid reaction substances (TBARS) [
<xref ref-type="bibr" rid="B3">3</xref>
,
<xref ref-type="bibr" rid="B9">9</xref>
-
<xref ref-type="bibr" rid="B11">11</xref>
] and a lipid peroxidation assay kit [
<xref ref-type="bibr" rid="B12">12</xref>
]. Immunohistochemical detection of MDA and 4-hydroxy-2-nonenal (4-HNE) [
<xref ref-type="bibr" rid="B3">3</xref>
] and superoxide dismutase (SOD) [
<xref ref-type="bibr" rid="B13">13</xref>
] and a fluorometric assay for reactive oxygen species (ROS), using dichlorofluorescein fluorescence [
<xref ref-type="bibr" rid="B12">12</xref>
], have also shown evidence of oxidation in hydrocephalic rat brain tissue.</p>
<p>Symptomatic hydrocephalus is typically treated by shunting, where CSF is diverted to another body site [
<xref ref-type="bibr" rid="B14">14</xref>
]. Although early CSF shunting shows some benefits in restoring periventricular white matter damage and cerebral blood flow, axonal damage is irreversible [
<xref ref-type="bibr" rid="B1">1</xref>
,
<xref ref-type="bibr" rid="B2">2</xref>
,
<xref ref-type="bibr" rid="B15">15</xref>
,
<xref ref-type="bibr" rid="B16">16</xref>
]. Moreover, treatment by shunting is associated with frequent complications, particularly obstruction and infection in young infants, which add to its morbidity and mortality [
<xref ref-type="bibr" rid="B17">17</xref>
,
<xref ref-type="bibr" rid="B18">18</xref>
]. With such potential complications, current methods of treatment need improvement, which warrants the need for novel therapeutic interventions to supplement shunt surgeries. In the juvenile rat model, parenteral administration of nimodipine or magnesium sulfate [
<xref ref-type="bibr" rid="B19">19</xref>
,
<xref ref-type="bibr" rid="B20">20</xref>
] and continuous intraventricular infusion of decorin [
<xref ref-type="bibr" rid="B21">21</xref>
] has some protective value. Experimental hydrocephalus was induced by kaolin (aluminum silicate) injections into the cisterna magna at 3 weeks in the rats in these and other studies in our laboratory [
<xref ref-type="bibr" rid="B3">3</xref>
,
<xref ref-type="bibr" rid="B22">22</xref>
-
<xref ref-type="bibr" rid="B24">24</xref>
] because the rat brain at this age is developmentally similar to that of a human infant [
<xref ref-type="bibr" rid="B25">25</xref>
-
<xref ref-type="bibr" rid="B27">27</xref>
].</p>
<p>Because oxidative stress is associated with brain damage in hydrocephalus, antioxidant therapy has been considered a potential pharmacological treatment for this condition. N-acetylcysteine [
<xref ref-type="bibr" rid="B10">10</xref>
] and the main constituent of green tea polyphenols, epigallocatechin gallate [
<xref ref-type="bibr" rid="B11">11</xref>
] have been shown to reduce lipid peroxidation when injected daily into the peritoneum of rats with experimentally-induced hydrocephalus at 7 days and 3 weeks, respectively. Antioxidants have shown beneficial outcomes in treating other neurological disorders. In particular, oral coenzyme Q10 (CoQ10) dietary supplementation in humans and animals is found to reduce oxidative stress by decreasing lipid peroxidation and may be a neuroprotectant in Parkinson disease, atherosclerosis, ischemia, toxic brain injury, and Alzheimer disease [
<xref ref-type="bibr" rid="B28">28</xref>
,
<xref ref-type="bibr" rid="B29">29</xref>
]. Alpha/gamma tocopherol (vitamin E) added to drinking water has been shown to reduce brain infarct volume after middle cerebral artery occlusion focal ischemia in rats [
<xref ref-type="bibr" rid="B30">30</xref>
] and is functionally interrelated with other antioxidants, including CoQ10, ascorbic acid, glutathione, and lipoic acid [
<xref ref-type="bibr" rid="B31">31</xref>
]. Oral treatment with the combination of α-lipoic acid and vitamin E can decrease lipid peroxidation and astroglial and microglial reactivity in the cerebrum of ischemic rats [
<xref ref-type="bibr" rid="B32">32</xref>
]. Oral CoQ10 and ascorbic acid (vitamin C) have been used to enhance oxidative phosphorylation in patients with mitochondrial disorders [
<xref ref-type="bibr" rid="B33">33</xref>
]. These antioxidant agents alone and in combination have low toxicity and have been shown to be of potential value in animal and human studies when given orally. Thus, we hypothesized that oral treatment with a combination of these antioxidant agents would lead to behavioral and/or structural improvements in rats induced with experimental hydrocephalus using kaolin injections.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<sec>
<title>Animals</title>
<p>Locally bred Sprague–Dawley (Trial 1, n = 45) and Long Evans rats (Trial 2, n = 52) were housed in conventional cages with four animals per cage. Pelleted food and water were provided ad libitum. The housing room was kept on a 12:12 h (6 a.m. – 6 p.m.) light–dark cycle, and the room temperature was 21–23
<bold>°</bold>
C. For identification, the rats were ear punched. All animals were treated humanely in accordance with guidelines set forth by the Canadian Council on Animal Care. The University of Manitoba Bannatyne Campus (Animal) Protocol Management & Review Committee approved the experimental protocols.</p>
</sec>
<sec>
<title>Hydrocephalus induction</title>
<p>At 21–23 days of age (weight 42-88 g) rats were anesthetized using 3% isoflurane in oxygen. The back of the neck was shaved, the skin was cleaned with chlorhexidine followed by 70% alcohol, and then a sterile 27-gauge needle (shallow bevel “blunt” tip) was inserted percutaneously into the cisterna magna. A sterile suspension of kaolin (aluminum silicate, 250 mg/mL; Sigma, St. Louis MO) in 0.9% normal saline (0.04 mL) was injected slowly to induce hydrocephalus (n = 89). Littermate controls (n = 8) received sham injections of sterile saline solution. Following recovery from the anesthetic, the rats were observed for signs of neurological impairment. Subcutaneous buprenorphine (0.03 mg/kg) was administered every 12 hours for 2 days to control pain. Rats were weighed daily. Those experiencing severe impairment or weight loss >15% of the starting weight were euthanized.</p>
</sec>
<sec>
<title>Magnetic resonance imaging and assignment to treatment groups</title>
<p>
<italic>T2</italic>
–weighted magnetic resonance imaging (MRI) was performed as previously described [
<xref ref-type="bibr" rid="B20">20</xref>
,
<xref ref-type="bibr" rid="B22">22</xref>
] on day 13 or 14 post injection. The ventricle to brain area ratio was performed using computerized planimetry with Marevisi (NRC, Winnipeg, MB, Canada) and Image J software on a coronal image of the cerebrum just caudal to the optic chiasm. The size of frontal horn of the lateral ventricles was calculated by dividing the area of the ventricles by the area of the cerebrum. Rats were stratified according to ventricle size and assigned listwise to vehicle sham, dextrose sham, low dose, or high dose dietary intervention treatment groups. A second set of MR images was obtained 2 weeks later, no more than 24 hours prior to euthanasia. For each rat, the ventricle to brain area ratio was measured again and compared to the images obtained prior to treatment to determine the relative change in ventricle size within treatment groups.</p>
</sec>
<sec>
<title>Drug preparation and administration</title>
<p>The antioxidant therapy was performed separately with two trials of rats (n = 45 and n = 52, respectively). The treatment procedures were the same for both trials except where indicated. All animals were weighed daily, and their weights were used to determine treatment volumes. The rats received these calculated dosages daily for two weeks by oral gavage to ensure that all animals consumed the entire dosage. Daily gavage with 1 ml saline was started 1 week prior to kaolin injection so that the rats were habituated to the intervention. The rats in the first trial received their oral treatment in the late afternoon after all behavioral testing was completed, whereas the rats in the second trial received their treatment in the early morning before any behavioral testing was performed.</p>
<p>A combination of antioxidant agents shown to be effective in a variety of neurological disease models was chosen. Alpha-tocopherol (Sigma T3251) at 50 and 250 mg/kg, L-ascorbic acid (Sigma A7506) at 20 and 100 mg/kg [
<xref ref-type="bibr" rid="B34">34</xref>
,
<xref ref-type="bibr" rid="B35">35</xref>
], CoQ10 (Sigma C9538) at 40 and 200 mg/kg [
<xref ref-type="bibr" rid="B31">31</xref>
], reduced glutathione (Sigma G4251) at 20 and 100 mg/kg [
<xref ref-type="bibr" rid="B36">36</xref>
], and reduced lipoic acid (Sigma T8260) at 20 and 100 mg/kg [
<xref ref-type="bibr" rid="B37">37</xref>
] provided the antioxidant ingredients for the low and high dose concentrations, respectively. These were made up in a mixture of 0.45% saline with 30% canola oil. Ingredients were blended thoroughly at room temperature and stored in dark containers at 4°C. In the first trial, the control rats received saline solution with 5% dextrose added to make up for the calories in the treatment groups. In addition, because of supply problems, the first trial rats received the reduced lipoic acid only during the first week. For the second trial, the low and high doses were made up separately and stored in different containers. The control hydrocephalic rats received a 0.20 mL/100 g volume of either saline solution with 5% dextrose or the vehicle of 30% canola oil (which was also given to nonhydrocephalic controls).</p>
</sec>
<sec>
<title>Behavioral testing</title>
<p>All behavioral testing was completed in a blinded manner. The rats performed various tests including mobility, stance, and gait in the open field, gait on a rotarod at steady and accelerating speed, swim speed in a narrow pool, memory in a modified water maze test as assessed previously [
<xref ref-type="bibr" rid="B19">19</xref>
,
<xref ref-type="bibr" rid="B20">20</xref>
,
<xref ref-type="bibr" rid="B22">22</xref>
], and gait on a modified ladder test [
<xref ref-type="bibr" rid="B38">38</xref>
]. They were always tested in the same order, where open field and rotarod tests were done on one day, the ladder test on the next day, and the water-related tasks on the third day weekly. Testing began the same week of kaolin and sham injections and was performed for 4 weeks, i.e., during the 2 weeks after injections and the 2 weeks of antioxidant or sham therapy. During the first trial, all quantitative behavioral measurements were obtained by manual timing using a stopwatch only. For the second trial, water maze behavior was videotaped and analyzed using HVS Image 2100 Plus Tracking System software (HVS Image Ltd, Twickenham, Middlesex, UK). The ladder test was only performed during the second trial.</p>
</sec>
<sec>
<title>Histopathological and biochemical studies following drug treatments</title>
<p>Rats were euthanized within 24 hours of final MR imaging using isoflurane anesthesia (5%) followed by carbon dioxide gas narcosis and exsanguination. Blood was flushed by transcardiac perfusion with ice-cold 0.1 M phosphate-buffered saline (PBS), and the brains quickly removed. Cerebral hemispheres were split in the midline. The left side was divided into dorsal frontal cerebrum, dorsal parietal cerebrum, hippocampus, and cerebellum then frozen in liquid nitrogen and stored at -70°C. The right side was immersion fixed in cold 3% buffered paraformaldehyde and after 3–5 days was cut coronally, dehydrated, and embedded in paraffin wax.</p>
<p>Paraffin sections (6 μm thickness) of the cerebrum at the level of the anterior horn of the lateral ventricles were stained with hematoxylin & eosin Y (H&E) and solochrome cyanine & eosin for visualization of myelin. Sections were immunostained with rabbit polyclonal anti-glial fibrillary acidic protein (GFAP) (1:12800 dilution; DAKO Z0334; Glostrup, Denmark) to label astrocytes. The primary antibody underwent 1–2 hour incubation at room temperature. This was followed by incubation with appropriate biotinylated secondary antibody, followed by reaction with streptavidin-peroxidase, detection with diaminobenzidine (DAB, Sigma D5905), and finally counterstaining with hematoxylin. Negative controls were treated without the primary antibody. Corpus callosum thickness was measured using 400x ocular magnification at the sagittal midline and above the lateral angle of the frontal horn of the lateral ventricle medial to the external capsule. The latter site was chosen because the midline region was often disrupted preventing proper measure and comparison to nonhydrocephalic animals.</p>
<p>Frozen frontal and parietal cerebrum samples were homogenized using a RIPA buffer with protease inhibitors phenylmethylsulfonyl fluoride (PMSF) and aprotinin. Total protein quantification was performed using the Micro BCA™ (Pierce) Protein Assay kit (Thermo Scientific, Rockford, Illinois, USA). Homogenates were used to quantitate myelin basic protein (MBP) and GFAP by using enzyme-linked immunosorbent assays (ELISA), as previously described in detail [
<xref ref-type="bibr" rid="B39">39</xref>
,
<xref ref-type="bibr" rid="B40">40</xref>
]. Assays were performed in triplicate. Results for the first trial are given in mg GFAP per gram of protein and averaged for all dilutions, while the second trial averaged results per sample.</p>
</sec>
<sec>
<title>TBARS and total antioxidant assays</title>
<p>Lipid peroxidation was measured to determine if hydrocephalic rat brains had increased oxidative byproduct formation. Dorsal frontal and parietal cerebrum homogenates (second trial only) were tested using the thiobarbituric acid reactive substances (TBARS) assay at pH 3.5; TBA reacts with malondialdehyde (MDA), which is a secondary product of lipid peroxidation, yielding a product that can be detected spectrophotometrically at 532 nm [
<xref ref-type="bibr" rid="B3">3</xref>
,
<xref ref-type="bibr" rid="B41">41</xref>
]. The assay was performed as previously described with a few modifications, and samples were run in triplicate. The standard, 1′1′3′3 tetramethoxypropane (TMP) (Sigma Cat #108383), was dissolved initially with dimethyl sulfoxide (DMSO) to 1 M concentration and then diluted in distilled water to 2.5-50 μM. In addition, 1-butanol and pyridine were not added after heating the TBA solution at 95
<bold>°</bold>
C for one hour, as the TBA and MDA red pigmented reaction product was evident during the heating process.</p>
<p>The Antioxidant Assay Kit (Sigma Cat #CS0790) was used to measure total antioxidant levels in brain tissue (second trial only). The frozen hippocampus was mechanically homogenized in ice-cold 1x Assay Buffer as instructed (Sigma Cat # A3605). The assay is based on the reaction between hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
) and metmyoglobin; the ferryl myoglobin radical oxidizes 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) to form a radical cation (ABTS
<sup>
<bold>+</bold>
</sup>
), which is detected by spectrophotometry at 405 nm. Samples were run in duplicate.</p>
</sec>
<sec>
<title>Statistical analysis</title>
<p>Unless otherwise stated, all data are presented as mean ± standard error of the mean (SEM). Quantitative data were analyzed to confirm a normal distribution. For all analyses,
<italic>p</italic>
values ≤ 0.05 were deemed statistically significant. Statistical analyses were conducted separately for the first (n = 45) and second (n = 52) trials of rats, which consisted of ANOVA with post-hoc analyses conducted for some measures using the Bonferroni-Dunn multiple inter-group comparisons approaches where indicated. Non-parametric score data were analyzed with Mann–Whitney
<italic>U</italic>
test or Kruskal-Wallis test for two or three groups, respectively. For the second trial, qualitative assessments for the sham control and hydrocephalic rats were analyzed separately from quantitative measures. Two-tailed Student’s
<italic>t</italic>
-tests were conducted for behavioral testing, ventricle size, histological data, biochemical, and ELISA values to compare the control and hydrocephalus groups. Statistical analyses were conducted using the SPSS 14.0 software program.</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<sec>
<title>Mortality</title>
<p>No animals died during kaolin injection. Of the 89 rats that were given a kaolin-injection at three weeks age, 4 were euthanized approximately two weeks post-injection before the onset of therapy and 1 died 2 days before the end of treatment because of severe neurological deficits. The remaining rats underwent the two-week antioxidant therapy regime according to the stratification of treatment conditions and were sacrificed at seven weeks of age. Age-matched control rats (n = 8) were also euthanized at seven weeks age and 24 hours post-MRI.</p>
</sec>
<sec>
<title>Ventricle size on magnetic resonance imaging</title>
<p>The first MR images showed that kaolin injections into the cisterna magna lead to dilatation of the cerebral ventricles in five-week old rats (Figure 
<xref ref-type="fig" rid="F1">1</xref>
). In both trials, there was no significant difference between the groups prior to onset of antioxidant therapy. All groups showed continued enlargement of the ventricles during the therapeutic period, and all groups displayed significant increases in lateral ventricle size compared to the images before treatment began (all
<italic>p</italic>
 < 0.05,
<italic>t</italic>
-tests; Tables 
<xref ref-type="table" rid="T1">1</xref>
and
<xref ref-type="table" rid="T2">2</xref>
; Figure 
<xref ref-type="fig" rid="F2">2</xref>
). In the first trial, the high dose treatment groups had the most severe ventricular enlargement with a 33.5% increase after treatment (Table 
<xref ref-type="table" rid="T1">1</xref>
). In the second trial, the low and high dose groups showed less ventricular enlargement than dextrose control (
<italic>p</italic>
 = 0.012 and 0.041, respectively), but there was no benefit above canola oil vehicle-treated hydrocephalic rats (Table 
<xref ref-type="table" rid="T2">2</xref>
).</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Magnetic resonance (MR) images displaying progressive hydrocephalus in rats at 5 and 7 weeks of age that underwent injection of kaolin into the cisterna magna at 3 weeks.</bold>
These
<italic>T2</italic>
-weighted images depict the coronal view of the cerebral cortex at the level of the frontal horn of the lateral ventricle where cerebrospinal fluid (CSF) is white (bright) in the lateral and third ventricles and subarachnoid space (SAS). The control rat images are shown at the top, and the ventricles are very narrow. Ventricular enlargement is obvious in all hydrocephalic rats before treatment, and all treated groups displayed further dilatation after treatment.</p>
</caption>
<graphic xlink:href="2045-8118-11-23-1"></graphic>
</fig>
<table-wrap position="float" id="T1">
<label>Table 1</label>
<caption>
<p>Results of antioxidant treatment on hydrocephalic rats (Trial 1)*</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left"> </th>
<th align="left">
<bold>Dextrose</bold>
</th>
<th align="left">
<bold>Low dose antiox.†</bold>
</th>
<th align="left">
<bold>High dose antiox.†</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="bottom">Sample size
<hr></hr>
</td>
<td align="left" valign="bottom">14
<hr></hr>
</td>
<td align="left" valign="bottom">14
<hr></hr>
</td>
<td align="left" valign="bottom">15
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Ventricle area index (pre-treat)
<hr></hr>
</td>
<td align="left" valign="bottom">0.130 ± 0.010
<hr></hr>
</td>
<td align="left" valign="bottom">0.128 ± 0.008
<hr></hr>
</td>
<td align="left" valign="bottom">0.145 ± 0.021
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Ventricle area index (post-treat)
<hr></hr>
</td>
<td align="left" valign="bottom">0.141 ± 0.012#
<hr></hr>
</td>
<td align="left" valign="bottom">0.138 ± 0.009#
<hr></hr>
</td>
<td align="left" valign="bottom">0.198 ± 0.039#
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Percent enlargement ventricles during treatment
<hr></hr>
</td>
<td align="left" valign="bottom">9.3 ± 3.1
<hr></hr>
</td>
<td align="left" valign="bottom">8.6 ± 2.0
<hr></hr>
</td>
<td align="left" valign="bottom">33.5 ± 18.7
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Body weight (g) (pre-treat)
<hr></hr>
</td>
<td align="left" valign="bottom">106.1 ± 2.4
<hr></hr>
</td>
<td align="left" valign="bottom">103.7 ± 1.1
<hr></hr>
</td>
<td align="left" valign="bottom">106.6 ± 3.3
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Body weight (g) (post-treat)
<hr></hr>
</td>
<td align="left" valign="bottom">223.8 ± 4.5
<hr></hr>
</td>
<td align="left" valign="bottom">223.1 ± 3.2
<hr></hr>
</td>
<td align="left" valign="bottom">222.8 ± 7.0
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Rearing activity (post-treat) (beam breaks in 5 min)
<hr></hr>
</td>
<td align="left" valign="bottom">108 ± 18
<hr></hr>
</td>
<td align="left" valign="bottom">146 ± 18
<hr></hr>
</td>
<td align="left" valign="bottom">166 ± 26
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Ambulatory activity (post-treat) (beam breaks in 5 min)
<hr></hr>
</td>
<td align="left" valign="bottom">760 ± 85
<hr></hr>
</td>
<td align="left" valign="bottom">824 ± 87
<hr></hr>
</td>
<td align="left" valign="bottom">1284 ± 221
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Total activity (post-treat) (beam breaks in 5 min)
<hr></hr>
</td>
<td align="left" valign="bottom">1089 ± 107
<hr></hr>
</td>
<td align="left" valign="bottom">1210 ± 107
<hr></hr>
</td>
<td align="left" valign="bottom">1684 ± 248
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Endurance of rotarod (cont. speed, post-treat) (sec)
<hr></hr>
</td>
<td align="left" valign="bottom">60 ± 12
<hr></hr>
</td>
<td align="left" valign="bottom">64 ± 11
<hr></hr>
</td>
<td align="left" valign="bottom">44 ± 11
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Endurance of rotarod (accelerating speed, post-treat) (sec)
<hr></hr>
</td>
<td align="left" valign="bottom">21 ± 6
<hr></hr>
</td>
<td align="left" valign="bottom">27 ± 6
<hr></hr>
</td>
<td align="left" valign="bottom">25 ± 8
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Morris water maze test (post-treat, 3 trials mean) (sec)
<hr></hr>
</td>
<td align="left" valign="bottom">15.98 ± 1.21
<hr></hr>
</td>
<td align="left" valign="bottom">15.17 ± 1.82
<hr></hr>
</td>
<td align="left" valign="bottom">33.86 ± 12.17
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Swim time 150 cm (post-treat) (sec)
<hr></hr>
</td>
<td align="left" valign="bottom">11.98 ± 1.31
<hr></hr>
</td>
<td align="left" valign="bottom">16.45 ± 1.87
<hr></hr>
</td>
<td align="left" valign="bottom">14.31 ± 1.78
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">GFAP content (ELISA) frontal cerebrum (mg GFAP/g protein)
<hr></hr>
</td>
<td align="left" valign="bottom">1.30 ± 0.13
<hr></hr>
</td>
<td align="left" valign="bottom">1.54 ± 0.31
<hr></hr>
</td>
<td align="left" valign="bottom">1.56 ± 0.32
<hr></hr>
</td>
</tr>
<tr>
<td align="left">MBP content (ELISA) frontal cerebrum (mg MBP/g protein)</td>
<td align="left">5.19 ± 0.19</td>
<td align="left">5.31 ± 0.12</td>
<td align="left">5.24 ± 0.25</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>All data are presented as mean ± SEM.</p>
<p>*There were no significant differences between the treatment groups for any of the results in Trial 1.</p>
<p>†The low and high dose antioxidant combinations were made up in 0.45% saline with 30% canola oil.</p>
<p>#
<italic>p <</italic>
 0.05 before (pre-treat) vs. after (post-treat) treatment, Student’s
<italic>t</italic>
-tests.</p>
</table-wrap-foot>
</table-wrap>
<table-wrap position="float" id="T2">
<label>Table 2</label>
<caption>
<p>Results of antioxidant treatment on hydrocephalic rats (Trial 2)</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left"> </th>
<th align="left">
<bold>Nonhydrocephalic controls</bold>
</th>
<th align="left">
<bold>Vehicle (30</bold>
<bold>% </bold>
<bold>canola)</bold>
</th>
<th align="left">
<bold>Dextrose</bold>
</th>
<th align="left">
<bold>Low dose antiox.†</bold>
</th>
<th align="left">
<bold>High dose antiox.†</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="bottom">Sample size
<hr></hr>
</td>
<td align="left" valign="bottom">8
<hr></hr>
</td>
<td align="left" valign="bottom">11
<hr></hr>
</td>
<td align="left" valign="bottom">10
<hr></hr>
</td>
<td align="left" valign="bottom">11
<hr></hr>
</td>
<td align="left" valign="bottom">10
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Ventricle area index (pre-treat)
<hr></hr>
</td>
<td align="left" valign="bottom">0.006 ± 0.0007
<hr></hr>
</td>
<td align="left" valign="bottom">0.114 ± 0.013**
<hr></hr>
</td>
<td align="left" valign="bottom">0.119 ± 0.016**
<hr></hr>
</td>
<td align="left" valign="bottom">0.107 ± 0.015**
<hr></hr>
</td>
<td align="left" valign="bottom">0.118 ± 0.015**
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Ventricle area index (post-treat)
<hr></hr>
</td>
<td align="left" valign="bottom">0.012 ± 0.003
<hr></hr>
</td>
<td align="left" valign="bottom">0.140 ± 0.018**#
<hr></hr>
</td>
<td align="left" valign="bottom">0.169 ± 0.027**#
<hr></hr>
</td>
<td align="left" valign="bottom">0.125 ± 0.013**#
<hr></hr>
</td>
<td align="left" valign="bottom">0.140 ± 0.010**#
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Percent enlargement ventricles during treatment
<hr></hr>
</td>
<td align="left" valign="bottom">-
<hr></hr>
</td>
<td align="left" valign="bottom">22.5 ± 8.1
<hr></hr>
</td>
<td align="left" valign="bottom">40.1 ± 6.2
<hr></hr>
</td>
<td align="left" valign="bottom">23.0 ± 6.8
<hr></hr>
</td>
<td align="left" valign="bottom">25.1 ± 8.3
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Body weight (g) (pre-treat)
<hr></hr>
</td>
<td align="left" valign="bottom">169.3 ± 4.6
<hr></hr>
</td>
<td align="left" valign="bottom">123.3 ± 7.2**
<hr></hr>
</td>
<td align="left" valign="bottom">135.2 ± 8.2**
<hr></hr>
</td>
<td align="left" valign="bottom">116.9 ± 6.4**
<hr></hr>
</td>
<td align="left" valign="bottom">112.7 ± 5.3**
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Body weight (g) (post-treat)
<hr></hr>
</td>
<td align="left" valign="bottom">269.3 ± 6.7#
<hr></hr>
</td>
<td align="left" valign="bottom">200.2 ± 13.4**#
<hr></hr>
</td>
<td align="left" valign="bottom">219.4 ± 13.5*#
<hr></hr>
</td>
<td align="left" valign="bottom">175.4 ± 12.5**#
<hr></hr>
</td>
<td align="left" valign="bottom">179.6 ± 12.0**#
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Rearing activity (post-treat) (beam breaks - 5 min)
<hr></hr>
</td>
<td align="left" valign="bottom">100 ± 12
<hr></hr>
</td>
<td align="left" valign="bottom">67 ± 12
<hr></hr>
</td>
<td align="left" valign="bottom">96 ± 8
<hr></hr>
</td>
<td align="left" valign="bottom">78 ± 16
<hr></hr>
</td>
<td align="left" valign="bottom">82 ± 16
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Ambulatory activity (post-treat) (beam breaks - 5 min)
<hr></hr>
</td>
<td align="left" valign="bottom">466 ± 35
<hr></hr>
</td>
<td align="left" valign="bottom">334 ± 31*#
<hr></hr>
</td>
<td align="left" valign="bottom">548 ± 54#
<hr></hr>
</td>
<td align="left" valign="bottom">461 ± 39#
<hr></hr>
</td>
<td align="left" valign="bottom">396 ± 53#
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Total activity (post-treat) (beam breaks - 5 min)
<hr></hr>
</td>
<td align="left" valign="bottom">618 ± 41
<hr></hr>
</td>
<td align="left" valign="bottom">459 ± 38*#
<hr></hr>
</td>
<td align="left" valign="bottom">713 ± 54#
<hr></hr>
</td>
<td align="left" valign="bottom">637 ± 41#
<hr></hr>
</td>
<td align="left" valign="bottom">558 ± 53#
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Endurance of rotarod (cont. speed, post-treat) (sec)
<hr></hr>
</td>
<td align="left" valign="bottom">33 ± 8
<hr></hr>
</td>
<td align="left" valign="bottom">32 ± 10
<hr></hr>
</td>
<td align="left" valign="bottom">37 ± 7
<hr></hr>
</td>
<td align="left" valign="bottom">66 ± 15#
<hr></hr>
</td>
<td align="left" valign="bottom">38 ± 11
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Endurance of rotarod (accelerating speed, post-treat) (sec)
<hr></hr>
</td>
<td align="left" valign="bottom">57 ± 15
<hr></hr>
</td>
<td align="left" valign="bottom">56 ± 11#
<hr></hr>
</td>
<td align="left" valign="bottom">73 ± 14#
<hr></hr>
</td>
<td align="left" valign="bottom">65 ± 13#
<hr></hr>
</td>
<td align="left" valign="bottom">71 ± 13#
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Morris water maze test (post-treat, 3 trials mean) (sec)
<hr></hr>
</td>
<td align="left" valign="bottom">7.67 ± 0.85#
<hr></hr>
</td>
<td align="left" valign="bottom">6.98 ± 1.10#
<hr></hr>
</td>
<td align="left" valign="bottom">5.89 ± 0.61#
<hr></hr>
</td>
<td align="left" valign="bottom">5.15 ± 0.41*#
<hr></hr>
</td>
<td align="left" valign="bottom">4.46 ± 0.46**#
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Swim time 150 cm (post-treat) (sec)
<hr></hr>
</td>
<td align="left" valign="bottom">24.3 ± 6.7
<hr></hr>
</td>
<td align="left" valign="bottom">13.4 ± 2.0
<hr></hr>
</td>
<td align="left" valign="bottom">20.9 ± 3.4
<hr></hr>
</td>
<td align="left" valign="bottom">18.0 ± 3.4#
<hr></hr>
</td>
<td align="left" valign="bottom">17.0 ± 3.1
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Lateral corpus callosum thickness (μm)
<hr></hr>
</td>
<td align="left" valign="bottom">315 ± 16
<hr></hr>
</td>
<td align="left" valign="bottom">208 ± 14**
<hr></hr>
</td>
<td align="left" valign="bottom">220 ± 20**
<hr></hr>
</td>
<td align="left" valign="bottom">220 ± 18**
<hr></hr>
</td>
<td align="left" valign="bottom">208 ± 13**
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">GFAP content (ELISA) frontal cerebrum (mg GFAP/g protein)
<hr></hr>
</td>
<td align="left" valign="bottom">0.68 ± 0.16
<hr></hr>
</td>
<td align="left" valign="bottom">1.08 ± 0.19
<hr></hr>
</td>
<td align="left" valign="bottom">1.29 ± 0.24
<hr></hr>
</td>
<td align="left" valign="bottom">1.11 ± 0.16
<hr></hr>
</td>
<td align="left" valign="bottom">1.10 ± 0.25
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">MBP content (ELISA) frontal cerebrum (mg MBP/g protein)
<hr></hr>
</td>
<td align="left" valign="bottom">2.30 ± 0.26
<hr></hr>
</td>
<td align="left" valign="bottom">2.42 ± 0.28
<hr></hr>
</td>
<td align="left" valign="bottom">2.91 ± 0.28
<hr></hr>
</td>
<td align="left" valign="bottom">2.70 ± 0.35
<hr></hr>
</td>
<td align="left" valign="bottom">2.30 ± 0.16
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">MDA level (TBARS) parietal cerebrum (μM MDA/g wet tissue)
<hr></hr>
</td>
<td align="left" valign="bottom">111.98 ± 10.57
<hr></hr>
</td>
<td align="left" valign="bottom">145.32 ± 8.94*
<hr></hr>
</td>
<td align="left" valign="bottom">138.99 ± 9.41
<hr></hr>
</td>
<td align="left" valign="bottom">146.89 ± 9.67*
<hr></hr>
</td>
<td align="left" valign="bottom">141.35 ± 8.45*
<hr></hr>
</td>
</tr>
<tr>
<td align="left">ABTS + content (antioxidant capacity) hippocampus (mM)</td>
<td align="left">0.580 ± 0.029</td>
<td align="left">0.582 ± 0.025</td>
<td align="left">0.467 ± 0.062</td>
<td align="left">0.589 ± 0.019</td>
<td align="left">0.574 ± 0.026</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>All data are presented as mean ± SEM.</p>
<p>†The low and high dose antioxidant combinations were made up in 0.45% saline with 30% canola oil.</p>
<p>*
<italic>p <</italic>
 0.05 control rats vs. hydrocephalic groups, Student’s
<italic>t</italic>
-tests or ANOVA with Bonferroni-Dunn post hoc tests for intergroup comparisons.</p>
<p>**
<italic>p <</italic>
 0.005 control rats vs. hydrocephalic groups, Student’s
<italic>t</italic>
-tests or ANOVA with Bonferroni-Dunn post hoc tests for intergroup comparisons.</p>
<p>#
<italic>p <</italic>
 0.05 before (pre-treat) vs. after (post-treat) treatment, Student’s
<italic>t</italic>
-tests.</p>
</table-wrap-foot>
</table-wrap>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>Bar graph showing the lateral ventricles to frontal cerebrum brain area ratios (%) from the MR images for the nonhydrocephalic control rats compared to the four hydrocephalic treatment groups before and after antioxidant therapy.</bold>
All hydrocephalic groups had significantly enlarged ventricles compared to the nonhydrocephalic rats before and after treatment. * - Indicates significant increases in lateral ventricles to brain area ratios after treatment compared to before at
<italic>p</italic>
 < 0.05.</p>
</caption>
<graphic xlink:href="2045-8118-11-23-2"></graphic>
</fig>
</sec>
<sec>
<title>Behavioral assessments</title>
<p>Hydrocephalic rats gained less weight than nonhydrocephalic rats. They had hunched posture and unsteady gait on open field observations (as previously reported), although the quantitative measures of motor behavior only inconsistently showed deficits, the most obvious being reduced rearing activity (Table 
<xref ref-type="table" rid="T2">2</xref>
). In trial 1, there were no differences in the behavioral outcomes of hydrocephalic rats following 2 weeks of low or high dose antioxidant therapy compared to dextrose controls (Table 
<xref ref-type="table" rid="T1">1</xref>
). Post-hoc analyses showed that the high dose antioxidant treatment group displayed higher ambulatory movement compared to sham-treated rats after therapy that was approaching significance (
<italic>p</italic>
 = 0.0575, Bonferroni test).</p>
<p>In the second trial, the four hydrocephalic treatment groups all weighed significantly less than nonhydrocephalic rats from 24 days of age to when they were sacrificed at 49 days of age (all
<italic>p</italic>
 < 0.01,
<italic>t</italic>
-tests; ANOVA; Table 
<xref ref-type="table" rid="T2">2</xref>
). Despite the fact that the dextrose fed hydrocephalic controls had more severe ventricle enlargement, they tended to show greater weight gain. Only rearing behavior was significantly reduced as a consequence of hydrocephalus before treatment compared to nonhydrocephalic controls (
<italic>p</italic>
 = 0.004, ANOVA). There was no consistent evidence for normalization of behavior abnormalities (ambulation, water maze, ladder test) associated with hydrocephalus following any of the treatments (Table 
<xref ref-type="table" rid="T2">2</xref>
).</p>
</sec>
<sec>
<title>Structural and biochemical changes in brain</title>
<p>Histological examination corresponded to the MR imaging. There was appreciable thinning and fragmentation of periventricular white matter regions in all hydrocephalic animals. Corpus callosum thickness was significantly reduced overall in the hydrocephalic rats compared to control animals (
<italic>p</italic>
 = 0.005, ANOVA). The lateral corpus callosum had more pronounced (32%) decrease in thickness (Table 
<xref ref-type="table" rid="T2">2</xref>
) than the medial corpus callosum (22%), and it was significantly reduced in all treatment groups compared to nonhydrocephalic controls (all
<italic>p</italic>
 < 0.005,
<italic>t</italic>
-tests). Cortical and subcortical neuronal populations were not obviously damaged in the hydrocephalic rats compared to controls, unless the adjacent white matter was completely obliterated. Antioxidant therapy had no effect on corpus callosum thickness. Although the corpus callosum was thinned, overall the cerebral MBP content (relative to total protein) was not reduced as a consequence of hydrocephalus suggesting that surviving axons remained myelinated. The antioxidant treatment had no effect on MBP content (Tables 
<xref ref-type="table" rid="T1">1</xref>
and
<xref ref-type="table" rid="T2">2</xref>
).</p>
<p>In the frontal cortex at the level of the anterior horns of the lateral ventricles, sham and antioxidant-treated hydrocephalic rats displayed GFAP immunostaining of astrocytes in the perivascular and periventricular regions. There were no appreciable differences in GFAP 2expression between the hydrocephalic groups. In comparison to nonhydrocephalic controls, all had hypertrophic reactive astrocytes in the periventricular white matter and deep cortical regions. GFAP content, measured by ELISA, was increased in comparison to nonhydrocephalic controls, but there was no evidence that antioxidant therapy reduced the astroglial reaction (Tables 
<xref ref-type="table" rid="T1">1</xref>
and
<xref ref-type="table" rid="T2">2</xref>
). In the hindbrain surrounding the site of injection, there were no obvious inflammatory or reactive changes visible, such as macrophages, except in the most severe hydrocephalic rats that had to be sacrificed before the end of the antioxidant treatment (data not shown).</p>
<p>Lipid peroxidation in the parietal cerebrum, measured with the TBARS assay, was higher in hydrocephalic rats than in nonhydrocephalic controls. Comparing the four hydrocephalic treatment groups separately, all except the dextrose-treated group (
<italic>p</italic>
 = 0.074) displayed significantly higher levels of oxidative stress (all
<italic>p</italic>
 < 0.05) than nonhydrocephalic controls (Table 
<xref ref-type="table" rid="T2">2</xref>
). However, they were not significantly different from each other (
<italic>p</italic>
 = 0.926, ANOVA;
<italic>t</italic>
-tests) suggesting that the oral antioxidant therapy had no beneficial effect.</p>
<p>Total antioxidant capacity of the hippocampal tissue, detected indirectly through the ABTS
<sup>+</sup>
radical cation, displayed no appreciable differences between nonhydrocephalic controls compared to hydrocephalic rats. There were no significant differences in antioxidant levels between the four hydrocephalic treatment groups (
<italic>p</italic>
 = 0.079, ANOVA); the dextrose-treated group exhibited the lowest values, but it was not significantly lower than the vehicle-treated group (
<italic>p</italic>
 = 0.090,
<italic>t</italic>
-test) or nonhydrocephalic controls (
<italic>p</italic>
 = 0.150,
<italic>t</italic>
-test) (Table 
<xref ref-type="table" rid="T2">2</xref>
).</p>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>Hydrocephalus was induced in three-week old rats, and oral antioxidant therapy was introduced two weeks later for a period of two weeks. Because oxidative stress occurs in hydrocephalus [
<xref ref-type="bibr" rid="B3">3</xref>
,
<xref ref-type="bibr" rid="B9">9</xref>
-
<xref ref-type="bibr" rid="B13">13</xref>
], it was hoped that antioxidants might have therapeutic benefits for treating hydrocephalus. The main positive outcome (in trial 2) was normalization of antioxidant capacity in brain tissue when hydrocephalic rats were administered canola oil with or without the antioxidant combination in comparison to the hydrocephalic rats that received dextrose. Canola oil components are known to have potent antioxidative capacity [
<xref ref-type="bibr" rid="B42">42</xref>
]. The dextrose treated rats had the greatest ventricular enlargement. Overall, however, there was no other behavioral, histological, or biochemical evidence to support the hypothesis that oral antioxidant therapy protects the hydrocephalic brain.</p>
<p>Progressive ventricular expansion has been a consistent finding in the pharmacological studies conducted in our lab using the kaolin induction model in rats [
<xref ref-type="bibr" rid="B19">19</xref>
,
<xref ref-type="bibr" rid="B20">20</xref>
,
<xref ref-type="bibr" rid="B43">43</xref>
-
<xref ref-type="bibr" rid="B45">45</xref>
]. We hoped the antioxidant therapy would display beneficial outcomes in stabilizing ventricular expansion or reducing associated brain damage and reactive changes like the results from Botfield
<italic>et al</italic>
. [
<xref ref-type="bibr" rid="B21">21</xref>
] using decorin treatment in juvenile hydrocephalic rats, but consistent findings were not observed in the two trials. In the first trial, the high dose antioxidant group exhibited the largest expansion of lateral ventricles overall, but this was due primarily to 1–2 outliers with severe ventriculomegaly. The second trial suggests that canola oil alone might have shown a benefit in reducing or stabilizing ventricular enlargement if the treatment period had been longer and the ventricles were allowed to reach a larger size. However, corpus callosum thickness was significantly reduced in the hydrocephalic rats, suggesting that further ventricular expansion would likely lead to increased destruction of this important white matter structure. Regardless, corpus callosum reduction was not ameliorated by antioxidant therapy, as opposed to prior drug trials from this lab showing that magnesium sulfate and nimodipine treatment of hydrocephalic rats reduces corpus callosum damage [
<xref ref-type="bibr" rid="B19">19</xref>
,
<xref ref-type="bibr" rid="B20">20</xref>
]. Minocycline-treated hydrocephalic rats are reported to have significantly increased cerebral cortex thickness in some brain regions compared to untreated rats [
<xref ref-type="bibr" rid="B46">46</xref>
]. Antioxidant therapy was also not associated with reduced GFAP immunoreactivity or content when compared to sham-treated hydrocephalic rats. However, magnesium sulfate, decorin, and minocycline have shown capacity to reduce reactive astrogliosis in hydrocephalic rats [
<xref ref-type="bibr" rid="B20">20</xref>
,
<xref ref-type="bibr" rid="B21">21</xref>
,
<xref ref-type="bibr" rid="B46">46</xref>
]. In addition, decorin has been shown to decrease activated microglia, macrophages, and other inflammatory cells accumulation, along with ventriculomegaly in hydrocephalic rats [
<xref ref-type="bibr" rid="B21">21</xref>
]. Astrocytic and microglial reactivity have also been reduced in rats with cerebral ischemia using the antioxidants α-lipoic acid and vitamin E [
<xref ref-type="bibr" rid="B32">32</xref>
], so it is uncertain why these agents, which possess synergistic effects, were unsuccessful at decreasing the reactive astrogliosis in our hydrocephalic rats. Memantine, a non-competitive NMDA receptor antagonist, administered for 2 weeks by intraperitoneal injection was shown to partially protect hippocampal neurons in 3-week old rats with kaolin-induced hydrocephalus, although no behavioral or ventricle size data were reported [
<xref ref-type="bibr" rid="B47">47</xref>
].</p>
<p>As expected, the current study showed increased oxidative stress in the hydrocephalic rats using the TBARS assay of lipid peroxidation [
<xref ref-type="bibr" rid="B41">41</xref>
,
<xref ref-type="bibr" rid="B48">48</xref>
]. Although the TBARS assay has been known to display other TBA reactive substances, previous studies using experimentally-induced or inherited hydrocephalus in rats have also shown increased oxidative stress when measuring lipid peroxidation, oxygen free radicals, and/or nitric oxide (NO) production [
<xref ref-type="bibr" rid="B3">3</xref>
,
<xref ref-type="bibr" rid="B9">9</xref>
-
<xref ref-type="bibr" rid="B13">13</xref>
]. Two studies showed that antioxidant treatment with intraperitoneal N-acetylcysteine [
<xref ref-type="bibr" rid="B10">10</xref>
] or epigallocatechin gallate [
<xref ref-type="bibr" rid="B11">11</xref>
] were potentially neuroprotective by reducing lipid peroxidation levels in cerebral and periventricular white matter regions, respectively. While the findings of these studies are promising, it is important to note that their scope is limited because lipid peroxidation was the only outcome parameter measured. In addition, no means were employed to confirm induction of hydrocephalus before antioxidant treatment began. This all must be taken into consideration when moving to human clinical trials as these drugs have shown only marginal success in rodent models of disease. It is of particular importance when considering the recommendations for success in treating neurological diseases, such as stroke or ischemic change in a clinical setting [
<xref ref-type="bibr" rid="B49">49</xref>
,
<xref ref-type="bibr" rid="B50">50</xref>
].</p>
<p>One potential shortcoming of our experiment was drug combination chosen. As described in the Introduction, all of the chosen agents have been effective orally in some experimental settings. Oral therapy offers longer periods of exposure, but peak levels are lower than those that follow parenteral administration. Furthermore, the extent to which the agents crossed the blood–brain barrier (BBB) is not clear. This is important because the BBB is generally intact in hydrocephalus [
<xref ref-type="bibr" rid="B51">51</xref>
]. Although all agents used in our antioxidant combination have been suggested to be orally efficacious in treating mitochondrial and neurodegenerative disorders, there are conflicting data concerning their ability to enter brain tissue. Glutathione is known to cross the BBB [
<xref ref-type="bibr" rid="B36">36</xref>
,
<xref ref-type="bibr" rid="B52">52</xref>
]. Zhang et al. [
<xref ref-type="bibr" rid="B53">53</xref>
] indicated that α-tocopherol is not restricted from the brain, while Gonzalez-Perez et al. [
<xref ref-type="bibr" rid="B32">32</xref>
] suggested that vitamin E and lipoic acid treatment for cerebral ischemia in rats may have only produced partial neuroprotective effects because of insufficient levels of these antioxidants in brain tissue. Oral administration of CoQ10 has been shown to elevate its levels in rat cerebral cortex mitochondria in one study [
<xref ref-type="bibr" rid="B54">54</xref>
], whereas others reported restricted uptake [
<xref ref-type="bibr" rid="B31">31</xref>
,
<xref ref-type="bibr" rid="B53">53</xref>
,
<xref ref-type="bibr" rid="B55">55</xref>
]. CoQ10 treatment via intraperitoneal injection also failed to show neuroprotective effects when administered to rats with induced focal and global ischemia [
<xref ref-type="bibr" rid="B56">56</xref>
]. More convincing evidence of the pharmacokinetics of CoQ10 was found by Sikorska et al. [
<xref ref-type="bibr" rid="B57">57</xref>
], who showed a complex of CoQ10 and an α-tocopherol derivative is neuroprotective in cerebral ischemia.</p>
<p>As noted above, 30% canola oil vehicle alone seemed to offer some benefit over dextrose therapy. Canola oil concentration was the same for both low and high dose antioxidant combinations. This potentially therapeutic effect could be related to the fact that canola oil augments entry of dietary vitamins C and E into brain tissue [
<xref ref-type="bibr" rid="B58">58</xref>
], or due to the potent scavenger 4-vinyl-2,6-dimethoxyphenol (canolol), which is the most active component in canola oil [
<xref ref-type="bibr" rid="B42">42</xref>
]. It scavenges both alkylperoxyl radicals (ROO ·) and peroxynitrite [
<xref ref-type="bibr" rid="B59">59</xref>
]. Peroxynitrite is a potent oxidizing and nitrating agent, and overproduction of it may be related to inflammation and neurodegenerative diseases [
<xref ref-type="bibr" rid="B60">60</xref>
,
<xref ref-type="bibr" rid="B61">61</xref>
]. Nitrite concentration is significantly increased in hydrocephalic brains [
<xref ref-type="bibr" rid="B3">3</xref>
], and nitric oxide can nitrate aromatic amino acids possibly through generation of peroxynitrite [
<xref ref-type="bibr" rid="B62">62</xref>
]. Thus, canolol in canola oil plays both antinitrosylating and antioxidative roles, which is more potent than α-tocopherol and vitamin C [
<xref ref-type="bibr" rid="B42">42</xref>
] that were used in our antioxidant combination. If confirmed in gyrencephalic species with larger brains, canola therapy would be simpler to use and less expensive than the drug combination tested here.</p>
<p>It should also be mentioned that in these experiments, the rats did not exhibit extreme ventriculomegaly overall. Consequently, the behavioral deficits were small and in some cases, there were no differences between control and hydrocephalic animals whether or not they received any antioxidant treatment. The behavioral results showed differences between trials for some of the tasks; this is likely related to the different rat strain and slightly different methods used to obtain the data. Despite this, with the rotating cylinder and the water maze tasks, there were no differences among the treatment conditions for both trials, which all showed improved performance after treatment. Reduced rearing activity was the only decrement observed in the hydrocephalic rats, with the exception of the dextrose-treated group, which paradoxically had the most severe ventriculomegaly. Perhaps only more severe damage (e.g. longer duration or greater ventriculomegaly) is associated with measurable behavioral deficits that might be amenable to pharmacologic intervention. The MBP content measured by ELISA showed discrepancy between trials. Possible explanations include the different rat strains used, slight differences in the age at time of sacrifice, and slight differences in the dissection of the dorsal brain sample, which was done by separate individuals in the two trials. Regardless, neither trial showed significant differences between the sham and treatment groups for MBP content.</p>
</sec>
<sec sec-type="conclusions">
<title>Conclusions</title>
<p>In summary, we did not find any behavioral, morphological, or biochemical evidence that oral antioxidant combination therapy provided appreciable therapeutic benefit to juvenile rats with kaolin-induced hydrocephalus. Potential explanations are the limited entry of the drugs into brain or the possibility that oxidative changes in hydrocephalic brains represent an end point marker of damage rather than the cause of the axonal damage. It should be noted that the canola oil vehicle alone did seem to normalize brain tissue antioxidant capacity and reduce the rate of ventricle enlargement in comparison to dextrose treatment. This safe and simple intervention should be confirmed.</p>
</sec>
<sec>
<title>Abbreviations</title>
<p>4-HNE: 4-hydroxy-2-nonenal; ABTS: 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid); BBB: Blood–brain barrier; CoQ10: Coenzyme Q10; CSF: Cerebrospinal fluid; DAB: Diaminobenzidine; ELISA: Enzyme linked immunosorbent assay; GFAP: Glial fibrillary acidic protein; H&E: Hematoxylin and eosin; MBP: Myelin basic protein; MDA: Malondialdehyde; MR: Magnetic resonance; NRC: National Research Council; PBS: Phosphate-buffered saline; ROS: Reactive oxygen species; SEM: Standard error of the mean; SOD: Superoxide dismutase; TBARS: Thiobarbituric acid reaction substances; TE: echo time; TMP: 1′1′3′3 tetramethoxypropane; TR: recovery time.</p>
</sec>
<sec>
<title>Competing interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
<sec>
<title>Authors’ contributions</title>
<p>DDC carried out the drug administration, behavioral work, dissections and histology, tissue homogenization and ELISAs, TBARS and Total Antioxidant assays, statistical analyses, and drafted the manuscript. DDC also participated in the induction of hydrocephalus and MR imaging. ETB participated in the tissue homogenization and ELISAs, TBARS and Total Antioxidant assays, and data collection. MDB conceived of the study including its design and coordination, carried out the hydrocephalus induction, and helped to draft the manuscript. All authors read and approved the final manuscript.</p>
</sec>
</body>
<back>
<sec>
<title>Acknowledgements</title>
<p>The authors thank Terry Enno and Richard Buist for their technical assistance. This work was funded by grants from the Canadian Institutes of Health Research and the Manitoba Health Research Council. Dr. Del Bigio holds the Canada Research Chair in Developmental Neuropathology. Mr. Di Curzio holds a Graduate Studentship from the Manitoba Health Research Council.</p>
</sec>
<ref-list>
<ref id="B1">
<mixed-citation publication-type="journal">
<name>
<surname>Del Bigio</surname>
<given-names>M</given-names>
</name>
<article-title>Neuropathology and structural changes in hydrocephalus</article-title>
<source>Develop Disabil Res Rev</source>
<year>2010</year>
<volume>16</volume>
<fpage>16</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="doi">10.1002/ddrr.94</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<name>
<surname>McAllister</surname>
<given-names>J</given-names>
<suffix>II</suffix>
</name>
<article-title>Pathophysiology of congenital and neonatal hydrocephalus</article-title>
<source>Sem Fet Neonat Med</source>
<year>2012</year>
<volume>17</volume>
<fpage>285</fpage>
<lpage>294</lpage>
<pub-id pub-id-type="doi">10.1016/j.siny.2012.06.004</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<name>
<surname>Del Bigio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>OH</given-names>
</name>
<name>
<surname>da Silva Lopes</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Packiasamy</surname>
<given-names>ARJ</given-names>
</name>
<article-title>Cerebral white matter oxidation and nitrosylation in young rodents with kaolin-induced hydrocephalus</article-title>
<source>J Neuropathol Exp Neurol</source>
<year>2012</year>
<volume>71</volume>
<issue>4</issue>
<fpage>274</fpage>
<lpage>288</lpage>
<pub-id pub-id-type="doi">10.1097/NEN.0b013e31824c1b44</pub-id>
<pub-id pub-id-type="pmid">22437339</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<name>
<surname>Butterfield</surname>
<given-names>D</given-names>
</name>
<article-title>Oxidative stress in neurodegenerative disorders</article-title>
<source>Antioxid Redox Signal</source>
<year>2006</year>
<volume>8</volume>
<issue>11–12</issue>
<fpage>1971</fpage>
<lpage>1973</lpage>
<pub-id pub-id-type="pmid">17034342</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<name>
<surname>Emerit</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Edeas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bricaire</surname>
<given-names>F</given-names>
</name>
<article-title>Neurodegenerative diseases and oxidative stress</article-title>
<source>Biomed Pharmacother</source>
<year>2004</year>
<volume>58</volume>
<issue>1</issue>
<fpage>39</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2003.11.004</pub-id>
<pub-id pub-id-type="pmid">14739060</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<name>
<surname>Simonian</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Coyle</surname>
<given-names>JT</given-names>
</name>
<article-title>Oxidative stress in neurodegenerative diseases</article-title>
<source>Annu Rev Pharmacol Toxicol</source>
<year>1996</year>
<volume>36</volume>
<fpage>83</fpage>
<lpage>106</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.pa.36.040196.000503</pub-id>
<pub-id pub-id-type="pmid">8725383</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<name>
<surname>Sun</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YM</given-names>
</name>
<article-title>Oxidative stress and neurodegenerative disorders</article-title>
<source>J Biomed Sci</source>
<year>1998</year>
<volume>5</volume>
<fpage>401</fpage>
<lpage>414</lpage>
<pub-id pub-id-type="doi">10.1007/BF02255928</pub-id>
<pub-id pub-id-type="pmid">9845843</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<name>
<surname>Uttara</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Zamboni</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mahajan</surname>
<given-names>RT</given-names>
</name>
<article-title>Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options</article-title>
<source>Curr Neuropharm</source>
<year>2009</year>
<volume>7</volume>
<fpage>65</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.2174/157015909787602823</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<name>
<surname>Caner</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Atasever</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kilinç</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Durgun</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Peker</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ozcan</surname>
<given-names>OE</given-names>
</name>
<article-title>Lipid peroxide level increase in experimental hydrocephalus</article-title>
<source>Acta Neurochir (Wien)</source>
<year>1993</year>
<volume>121</volume>
<issue>1–2</issue>
<fpage>68</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="pmid">8475810</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<name>
<surname>Etus</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Gazioglu</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Belce</surname>
<given-names>A</given-names>
</name>
<article-title>N-acetylcystein reduces cerebral lipid peroxidation in a rat model of infantile hydrocephalus</article-title>
<source>J Neurol Sci (Turkish)</source>
<year>2001</year>
<volume>18</volume>
<issue>1</issue>
<fpage>#2</fpage>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<name>
<surname>Etus</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Altug</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Belce</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ceylan</surname>
<given-names>S</given-names>
</name>
<article-title>Green tea polyphenol (-)-epigallocatechin gallate prevents oxidative damage on periventricular white matter of infantile rats with hydrocephalus</article-title>
<source>Tohoku J Exp Med</source>
<year>2003</year>
<volume>200</volume>
<issue>4</issue>
<fpage>203</fpage>
<lpage>209</lpage>
<pub-id pub-id-type="doi">10.1620/tjem.200.203</pub-id>
<pub-id pub-id-type="pmid">14580151</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<name>
<surname>Socci</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bjugstad</surname>
<given-names>KB</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Pattisapu</surname>
<given-names>JV</given-names>
</name>
<name>
<surname>Arendash</surname>
<given-names>GW</given-names>
</name>
<article-title>Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model</article-title>
<source>Exp Neurol</source>
<year>1999</year>
<volume>155</volume>
<issue>1</issue>
<fpage>109</fpage>
<lpage>117</lpage>
<pub-id pub-id-type="doi">10.1006/exnr.1998.6969</pub-id>
<pub-id pub-id-type="pmid">9918710</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<name>
<surname>Mori</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Miyake</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kurisaka</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sakamoto</surname>
<given-names>T</given-names>
</name>
<article-title>Immunohistochemical localization of superoxide dismutase in congenital hydrocephalic rat brain</article-title>
<source>Childs Nerv Syst</source>
<year>1993</year>
<volume>9</volume>
<fpage>136</fpage>
<lpage>141</lpage>
<pub-id pub-id-type="pmid">8374918</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<name>
<surname>Pudenz</surname>
<given-names>R</given-names>
</name>
<article-title>The surgical treatment of hydrocephalus: an historical review</article-title>
<source>Surg Neurol</source>
<year>1981</year>
<volume>15</volume>
<issue>1</issue>
<fpage>15</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="doi">10.1016/S0090-3019(81)80084-5</pub-id>
<pub-id pub-id-type="pmid">7256520</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<name>
<surname>Del Bigio</surname>
<given-names>M</given-names>
</name>
<article-title>Cellular damage and prevention in childhood hydrocephalus</article-title>
<source>Brain Pathol</source>
<year>2004</year>
<volume>14</volume>
<issue>3</issue>
<fpage>317</fpage>
<lpage>324</lpage>
<pub-id pub-id-type="pmid">15446588</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<name>
<surname>Eskandari</surname>
<given-names>R</given-names>
</name>
<name>
<surname>McAllister</surname>
<given-names>JP</given-names>
<suffix>II</suffix>
</name>
<name>
<surname>Miller</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ham</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Shearer</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Way</surname>
<given-names>JS</given-names>
</name>
<article-title>Effects of hydrocephalus and ventriculoperitoneal shunt therapy on afferent and efferent connections in the feline sensorimotor cortex</article-title>
<source>J Neurosurg</source>
<year>2004</year>
<volume>101</volume>
<issue>2 Suppl</issue>
<fpage>196</fpage>
<lpage>210</lpage>
<pub-id pub-id-type="pmid">15835108</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<name>
<surname>Epstein</surname>
<given-names>F</given-names>
</name>
<article-title>How to keep shunts functioning, or “the impossible dream”</article-title>
<source>Clin Neurosurg</source>
<year>1985</year>
<volume>32</volume>
<fpage>608</fpage>
<lpage>631</lpage>
<pub-id pub-id-type="pmid">3905155</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<name>
<surname>Riva</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Milani</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Giorgi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pantaleoni</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zorzi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Devoti</surname>
<given-names>M</given-names>
</name>
<article-title>Intelligence outcome in children with shunted hydrocephalus of different etiology</article-title>
<source>Childs Nerv Syst</source>
<year>1994</year>
<volume>10</volume>
<issue>1</issue>
<fpage>70</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1007/BF00313588</pub-id>
<pub-id pub-id-type="pmid">8194066</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<name>
<surname>Del Bigio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Massicotte</surname>
<given-names>EM</given-names>
</name>
<article-title>Protective effect of nimodipine on behavior and white matter of rats with hydrocephalus</article-title>
<source>J Neurosurg</source>
<year>2001</year>
<volume>94</volume>
<issue>5</issue>
<fpage>788</fpage>
<lpage>794</lpage>
<pub-id pub-id-type="doi">10.3171/jns.2001.94.5.0788</pub-id>
<pub-id pub-id-type="pmid">11354411</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<name>
<surname>Khan</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Enno</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Del Bigio</surname>
<given-names>MR</given-names>
</name>
<article-title>Magnesium sulfate therapy is of mild benefit to young rats with kaolin-induced hydrocephalus</article-title>
<source>Pediatr Res</source>
<year>2003</year>
<volume>53</volume>
<issue>6</issue>
<fpage>970</fpage>
<lpage>976</lpage>
<pub-id pub-id-type="doi">10.1203/01.PDR.0000061561.42921.5B</pub-id>
<pub-id pub-id-type="pmid">12621098</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<name>
<surname>Botfield</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Gonzalez</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Abdullah</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Skjolding</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Berry</surname>
<given-names>M</given-names>
</name>
<name>
<surname>McAllister</surname>
<given-names>JP</given-names>
<suffix>II</suffix>
</name>
<name>
<surname>Logan</surname>
<given-names>A</given-names>
</name>
<article-title>Decorin prevents the development of juvenile communication hydrocephalus</article-title>
<source>Brain</source>
<year>2013</year>
<volume>136</volume>
<fpage>2842</fpage>
<lpage>2858</lpage>
<pub-id pub-id-type="doi">10.1093/brain/awt203</pub-id>
<pub-id pub-id-type="pmid">23983032</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<name>
<surname>Del Bigio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Crook</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Buist</surname>
<given-names>R</given-names>
</name>
<article-title>Magnetic resonance imaging and behavioral analysis of immature rats with kaolin-induced hydrocephalus: pre- and postshunting observations</article-title>
<source>Exp Neurol</source>
<year>1997</year>
<volume>148</volume>
<fpage>256</fpage>
<lpage>264</lpage>
<pub-id pub-id-type="doi">10.1006/exnr.1997.6644</pub-id>
<pub-id pub-id-type="pmid">9398467</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<name>
<surname>Del Bigio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kanfer</surname>
<given-names>JN</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>YW</given-names>
</name>
<article-title>Myelination delay in the cerebral white matter of immature rats with kaolin-induced hydrocephalus is reversible</article-title>
<source>J Neuropathol Exp Neurol</source>
<year>1997</year>
<volume>56</volume>
<issue>9</issue>
<fpage>1053</fpage>
<lpage>1066</lpage>
<pub-id pub-id-type="doi">10.1097/00005072-199709000-00010</pub-id>
<pub-id pub-id-type="pmid">9291946</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<name>
<surname>Del Bigio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>YW</given-names>
</name>
<article-title>Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus</article-title>
<source>Exp Neurol</source>
<year>1998</year>
<volume>154</volume>
<fpage>157</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="doi">10.1006/exnr.1998.6922</pub-id>
<pub-id pub-id-type="pmid">9875277</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<name>
<surname>Romijn</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hofman</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Gramsbergen</surname>
<given-names>A</given-names>
</name>
<article-title>At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby?</article-title>
<source>Early Human Dev</source>
<year>1991</year>
<volume>26</volume>
<fpage>61</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="doi">10.1016/0378-3782(91)90044-4</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<name>
<surname>Tuor</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Del Bigio</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Chumas</surname>
<given-names>PD</given-names>
</name>
<article-title>Brain damage due to cerebral hypoxia/ischemia in the neonate: pathology and pharmacological modification</article-title>
<source>Cerebrovasc Brain Metab Rev</source>
<year>1996</year>
<volume>8</volume>
<fpage>159</fpage>
<lpage>193</lpage>
<pub-id pub-id-type="pmid">8727185</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<name>
<surname>Clancy</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Darlington</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Finlay</surname>
<given-names>BL</given-names>
</name>
<article-title>Translating developmental time across mammalian species</article-title>
<source>Neuroscience</source>
<year>2001</year>
<volume>105</volume>
<issue>1</issue>
<fpage>7</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="doi">10.1016/S0306-4522(01)00171-3</pub-id>
<pub-id pub-id-type="pmid">11483296</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<name>
<surname>Littarru</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Tiano</surname>
<given-names>L</given-names>
</name>
<article-title>Bioenergetic and antioxidant properties of coenzyme Q10: recent developments</article-title>
<source>Mol Biotechnol</source>
<year>2007</year>
<volume>37</volume>
<issue>1</issue>
<fpage>31</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1007/s12033-007-0052-y</pub-id>
<pub-id pub-id-type="pmid">17914161</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<name>
<surname>Young</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Steffens</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Doraiswamy</surname>
<given-names>PM</given-names>
</name>
<article-title>Coenzyme Q10: a review of its promise as a neuroprotectant</article-title>
<source>CNS Spectr</source>
<year>2007</year>
<volume>12</volume>
<issue>1</issue>
<fpage>62</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="pmid">17192765</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sakanaka</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hata</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Maeda</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Mitsuda</surname>
<given-names>N</given-names>
</name>
<article-title>Protective effect of vitamin E against focal brain ischemia and neuronal death through induction of target genes of hypoxia-inducible factor-1</article-title>
<source>Neuroscience</source>
<year>2004</year>
<volume>126</volume>
<fpage>433</fpage>
<lpage>440</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroscience.2004.03.057</pub-id>
<pub-id pub-id-type="pmid">15207361</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<name>
<surname>Ibrahim</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Bhagavan</surname>
<given-names>HN</given-names>
</name>
<name>
<surname>Chopra</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Chow</surname>
<given-names>CK</given-names>
</name>
<article-title>Dietary coenzyme Q10 and vitamin E alter the status of these compounds in rat tissues and mitochondria</article-title>
<source>J Nutr</source>
<year>2000</year>
<volume>130</volume>
<fpage>2343</fpage>
<lpage>2348</lpage>
<pub-id pub-id-type="pmid">10958833</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<name>
<surname>Gonzalez-Perez</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Gonzalez-Castaneda</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Huerta</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Luquin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gomez-Pinedo</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Sanchez-Almaraz</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Navarro-Ruiz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Garcia-Estrada</surname>
<given-names>J</given-names>
</name>
<article-title>Beneficial effects of α-lipoic acid plus vitamin E on neurological deficit, reactive gliosis and neuronal remodeling in the penumbra of the ischemic rat brain</article-title>
<source>Neurosci Let</source>
<year>2002</year>
<volume>321</volume>
<fpage>100</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="doi">10.1016/S0304-3940(02)00056-3</pub-id>
<pub-id pub-id-type="pmid">11872266</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<name>
<surname>Marriage</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Clandinin</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Glerum</surname>
<given-names>DM</given-names>
</name>
<article-title>Nutritional cofactor treatment in mitochondrial disorders</article-title>
<source>J Am Diet Assoc</source>
<year>2003</year>
<volume>103</volume>
<fpage>1029</fpage>
<lpage>1038</lpage>
<pub-id pub-id-type="doi">10.1016/S0002-8223(03)00476-0</pub-id>
<pub-id pub-id-type="pmid">12891154</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<name>
<surname>Faria</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Abilio</surname>
<given-names>VC</given-names>
</name>
<name>
<surname>Grassl</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chinen</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Negrao</surname>
<given-names>LT</given-names>
</name>
<name>
<surname>de Castro</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Fukushiro</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>Rodrigues</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Gomes</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Registro</surname>
<given-names>S</given-names>
</name>
<name>
<surname>de Carvalho Rde</surname>
<given-names>C</given-names>
</name>
<name>
<surname>D’Almeida</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Ribeiro Rde</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Frussa-Filho</surname>
<given-names>R</given-names>
</name>
<article-title>Beneficial effects of vitamin C and vitamin E on reserpine-induced oral dyskinesia in rats: Critical role of striatal catalase activity</article-title>
<source>Neuropharmacology</source>
<year>2005</year>
<volume>48</volume>
<issue>7</issue>
<fpage>993</fpage>
<lpage>1001</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuropharm.2005.01.014</pub-id>
<pub-id pub-id-type="pmid">15857626</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<name>
<surname>Vatassery</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>DeMaster</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>WE</given-names>
</name>
<name>
<surname>Quach</surname>
<given-names>HT</given-names>
</name>
<article-title>Oxidation of vitamin E and vitamin C and inhibition of brain mitochondrial oxidative phosphorylation by peroxynitrite</article-title>
<source>J Neurosci Res</source>
<year>2004</year>
<volume>75</volume>
<issue>6</issue>
<fpage>845</fpage>
<lpage>853</lpage>
<pub-id pub-id-type="doi">10.1002/jnr.20027</pub-id>
<pub-id pub-id-type="pmid">14994345</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<name>
<surname>Sharma</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ahmad Shah</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Islam</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>KP</given-names>
</name>
<article-title>Role of combined administration of Tiron and glutathione against aluminum-induced oxidative stress in rat brain</article-title>
<source>J Trace Elem Med Biol</source>
<year>2007</year>
<volume>21</volume>
<issue>1</issue>
<fpage>63</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1016/j.jtemb.2006.12.001</pub-id>
<pub-id pub-id-type="pmid">17317527</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<name>
<surname>Garcia-Estrada</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gonzalez-Perez</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Gonzalez-Castaneda</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Martinez-Contreras</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Luquin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>de la Mora</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Navarro-Ruiz</surname>
<given-names>A</given-names>
</name>
<article-title>An alpha-lipoic acid-vitamin E mixture reduces post-embolism lipid peroxidation, cerebral infarction, and neurological deficit in rats</article-title>
<source>Neurosci Res</source>
<year>2003</year>
<volume>47</volume>
<issue>2</issue>
<fpage>219</fpage>
<lpage>224</lpage>
<pub-id pub-id-type="doi">10.1016/S0168-0102(03)00200-1</pub-id>
<pub-id pub-id-type="pmid">14512146</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<name>
<surname>Metz</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Whishaw</surname>
<given-names>IQ</given-names>
</name>
<article-title>The ladder rung walking task: a scoring system and its practical application</article-title>
<source>J Vis Exp</source>
<year>2009</year>
<volume>28</volume>
<fpage>e1204</fpage>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<name>
<surname>Di Curzio</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Buist</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Del Bigio</surname>
<given-names>MR</given-names>
</name>
<article-title>Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus</article-title>
<source>Exp Neurol</source>
<year>2013</year>
<volume>248</volume>
<fpage>112</fpage>
<lpage>128</lpage>
<pub-id pub-id-type="pmid">23769908</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<name>
<surname>Khan</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Enno</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Del Bigio</surname>
<given-names>MR</given-names>
</name>
<article-title>Brain damage in neonatal rats following kaolin induction of hydrocephalus</article-title>
<source>Exp Neurol</source>
<year>2006</year>
<volume>200</volume>
<issue>2</issue>
<fpage>311</fpage>
<lpage>320</lpage>
<pub-id pub-id-type="doi">10.1016/j.expneurol.2006.02.113</pub-id>
<pub-id pub-id-type="pmid">16624304</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<name>
<surname>Ohkawa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ohishi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yagi</surname>
<given-names>K</given-names>
</name>
<article-title>Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction</article-title>
<source>Anal Biochem</source>
<year>1979</year>
<volume>95</volume>
<issue>2</issue>
<fpage>351</fpage>
<lpage>358</lpage>
<pub-id pub-id-type="doi">10.1016/0003-2697(79)90738-3</pub-id>
<pub-id pub-id-type="pmid">36810</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<name>
<surname>Wakamatsu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Morimura</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kida</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nakal</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Maeda</surname>
<given-names>H</given-names>
</name>
<article-title>Isolation, identification, and structure of a potent alkyl-peroxyl radical scavenger in crude canola oil, canolol</article-title>
<source>Biosci Biotechnol Biochem</source>
<year>2005</year>
<volume>69</volume>
<issue>8</issue>
<fpage>1568</fpage>
<lpage>1574</lpage>
<pub-id pub-id-type="doi">10.1271/bbb.69.1568</pub-id>
<pub-id pub-id-type="pmid">16116287</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<name>
<surname>Del Bigio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>MJ</given-names>
</name>
<article-title>Sodium channel-blocking agents are not of benefit to rats with kaolin-induced hydrocephalus</article-title>
<source>Neurosurgery</source>
<year>2002</year>
<volume>51</volume>
<fpage>460</fpage>
<lpage>466</lpage>
<pub-id pub-id-type="pmid">12182785</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<name>
<surname>Khan</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Enno</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Del Bigio</surname>
<given-names>MR</given-names>
</name>
<article-title>Tacrolimus and cyclosporine A are of no benefit to young rats with kaolin-induced hydrocephalus</article-title>
<source>Pediatr Neurosurg</source>
<year>2003</year>
<volume>39</volume>
<fpage>309</fpage>
<lpage>313</lpage>
<pub-id pub-id-type="doi">10.1159/000075259</pub-id>
<pub-id pub-id-type="pmid">14734865</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<name>
<surname>Khan</surname>
<given-names>O</given-names>
</name>
<name>
<surname>McPhee</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Moddemann</surname>
<given-names>LN</given-names>
</name>
<name>
<surname>Del Bigio</surname>
<given-names>MR</given-names>
</name>
<article-title>Calcium antagonism in neonatal rats with kaolin-induced hydrocephalus</article-title>
<source>J Child Neurol</source>
<year>2007</year>
<volume>22</volume>
<issue>10</issue>
<fpage>1161</fpage>
<lpage>1166</lpage>
<pub-id pub-id-type="doi">10.1177/0883073807306259</pub-id>
<pub-id pub-id-type="pmid">17940241</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<name>
<surname>McAllister</surname>
<given-names>J</given-names>
<suffix>II</suffix>
</name>
<name>
<surname>Miller</surname>
<given-names>JM</given-names>
</name>
<article-title>Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus</article-title>
<source>Cerebrospinal Fluid Res</source>
<year>2010</year>
<volume>7</volume>
<issue>1</issue>
<fpage>7</fpage>
<pub-id pub-id-type="doi">10.1186/1743-8454-7-7</pub-id>
<pub-id pub-id-type="pmid">20507614</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<name>
<surname>Cabuk</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Etus</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Bozkurt</surname>
<given-names>SU</given-names>
</name>
<name>
<surname>Sav</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ceylan</surname>
<given-names>S</given-names>
</name>
<article-title>Neuroprotective effect of memantine on hippocampal neurons in infantile rat hydrocephalus</article-title>
<source>Turk Neurosurg</source>
<year>2011</year>
<volume>21</volume>
<issue>3</issue>
<fpage>352</fpage>
<lpage>358</lpage>
<pub-id pub-id-type="pmid">21845571</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<name>
<surname>Botsoglou</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Fletouris</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Papageorgiou</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Vassilopoulos</surname>
<given-names>VN</given-names>
</name>
<name>
<surname>Mantis</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Trakatellis</surname>
<given-names>AG</given-names>
</name>
<article-title>Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples</article-title>
<source>J Agric Food Chem</source>
<year>1994</year>
<volume>42</volume>
<fpage>1931</fpage>
<lpage>1937</lpage>
<pub-id pub-id-type="doi">10.1021/jf00045a019</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<name>
<surname>Fisher</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Feuerstein</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Howells</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Hurn</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Kent</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Savitz</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Lo</surname>
<given-names>EH</given-names>
</name>
<collab>STAIR Group</collab>
<article-title>Update of the stroke therapy academic industry roundtable preclinical recommendations</article-title>
<source>Stroke</source>
<year>2009</year>
<volume>40</volume>
<issue>6</issue>
<fpage>2244</fpage>
<lpage>2250</lpage>
<pub-id pub-id-type="doi">10.1161/STROKEAHA.108.541128</pub-id>
<pub-id pub-id-type="pmid">19246690</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<collab>(STAIR) STAIR Group</collab>
<article-title>Recommendations for standards regarding preclinical neuroprotective and restorative drug development</article-title>
<source>Stroke</source>
<year>1999</year>
<volume>30</volume>
<fpage>2752</fpage>
<lpage>2758</lpage>
<pub-id pub-id-type="pmid">10583007</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<name>
<surname>Del Bigio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Slobodian</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Schellenberg</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Buist</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Kemp-Buors</surname>
<given-names>TL</given-names>
</name>
<article-title>Magnetic resonance imaging indicators of blood–brain barrier and brain water changes in young rats with kaolin-induced hydrocephalus</article-title>
<source>Fluids Barriers CNS</source>
<year>2011</year>
<volume>8</volume>
<fpage>22</fpage>
<pub-id pub-id-type="doi">10.1186/2045-8118-8-22</pub-id>
<pub-id pub-id-type="pmid">21834998</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<name>
<surname>Kannan</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kuhlenkamp</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Jeandidier</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Trinh</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ookhtens</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kaplowitz</surname>
<given-names>N</given-names>
</name>
<article-title>Evidence for carrier-mediated transport of glutathione across the blood–brain barrier in the rat</article-title>
<source>J Clin Invest</source>
<year>1990</year>
<volume>85</volume>
<fpage>2009</fpage>
<lpage>2013</lpage>
<pub-id pub-id-type="doi">10.1172/JCI114666</pub-id>
<pub-id pub-id-type="pmid">1971830</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Turunen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Appelkvist</surname>
<given-names>EL</given-names>
</name>
<article-title>Restricted uptake of coenzyme Q is in contrast to unrestricted uptake of α-tocopherol into rat organs and cells</article-title>
<source>J Nutr</source>
<year>1996</year>
<volume>126</volume>
<fpage>2089</fpage>
<lpage>2097</lpage>
<pub-id pub-id-type="pmid">8814196</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<name>
<surname>Matthews</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Browne</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Balk</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Beal</surname>
<given-names>F</given-names>
</name>
<article-title>Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>1998</year>
<volume>95</volume>
<fpage>8892</fpage>
<lpage>8897</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.95.15.8892</pub-id>
<pub-id pub-id-type="pmid">9671775</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Aberg</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Appelkvist</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Dallner</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ernster</surname>
<given-names>L</given-names>
</name>
<article-title>Uptake of dietary coenzyme Q supplement is limited in rats</article-title>
<source>J Nutr</source>
<year>1995</year>
<volume>125</volume>
<fpage>446</fpage>
<lpage>453</lpage>
<pub-id pub-id-type="pmid">7876919</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Buchan</surname>
<given-names>AM</given-names>
</name>
<article-title>CoQ10 fails to protect brain against focal and global ischemia in rats</article-title>
<source>Brain Res</source>
<year>2000</year>
<volume>877</volume>
<fpage>7</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1016/S0006-8993(00)02609-3</pub-id>
<pub-id pub-id-type="pmid">10980237</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<name>
<surname>Sikorska</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Borowy-Borowski</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zurakowski</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>PR</given-names>
</name>
<article-title>Derivatised α-tocopherol as a CoQ10 carrier in a novel water-soluble formulation</article-title>
<source>BioFactors</source>
<year>2003</year>
<volume>18</volume>
<fpage>173</fpage>
<lpage>183</lpage>
<pub-id pub-id-type="doi">10.1002/biof.5520180220</pub-id>
<pub-id pub-id-type="pmid">14695933</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<name>
<surname>Sánchez-Moreno</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dorfman</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Lichtenstein</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Martín</surname>
<given-names>A</given-names>
</name>
<article-title>Dietary fat type affects vitamins C and E and biomarkers of oxidative status in peripheral and brain tissues of golden Syrian hamsters</article-title>
<source>J Nutr</source>
<year>2004</year>
<volume>134</volume>
<issue>3</issue>
<fpage>655</fpage>
<pub-id pub-id-type="pmid">14988463</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<name>
<surname>Kuwahara</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kanazawa</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wakamatsu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Morimura</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kida</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Akaike</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Maeda</surname>
<given-names>H</given-names>
</name>
<article-title>Antioxidative and antimutagenic activities of 4-vinyl-2,6-dimethoxyphenol (canolol) isolated from canola oil</article-title>
<source>J Agric Food Chem</source>
<year>2004</year>
<volume>52</volume>
<fpage>4380</fpage>
<lpage>4387</lpage>
<pub-id pub-id-type="doi">10.1021/jf040045+</pub-id>
<pub-id pub-id-type="pmid">15237940</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<name>
<surname>Torreilles</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Salman-Tabcheh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Guerin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Torreilles</surname>
<given-names>J</given-names>
</name>
<article-title>Neurodegenerative disorders: The role of peroxynitrite</article-title>
<source>Brain Res Brain Res Rev</source>
<year>1999</year>
<volume>30</volume>
<fpage>153</fpage>
<lpage>163</lpage>
<pub-id pub-id-type="doi">10.1016/S0165-0173(99)00014-4</pub-id>
<pub-id pub-id-type="pmid">10525172</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<name>
<surname>Szabo</surname>
<given-names>C</given-names>
</name>
<article-title>The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury</article-title>
<source>Shock</source>
<year>1996</year>
<volume>6</volume>
<fpage>79</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="pmid">8856840</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<name>
<surname>Quijano</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Romero</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Radi</surname>
<given-names>R</given-names>
</name>
<article-title>Tyrosine nitration by superoxide and nitric oxide fluxes in biological systems: modeling the impact of superoxide dismutase and nitric oxide diffusion</article-title>
<source>Free Rad Biol Med</source>
<year>2005</year>
<volume>39</volume>
<fpage>728</fpage>
<lpage>741</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2005.04.014</pub-id>
<pub-id pub-id-type="pmid">16109303</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000497 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000497 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4199774
   |texte=   Oral antioxidant therapy for juvenile rats with kaolin-induced hydrocephalus
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25324960" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022