La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mutation and evolutionary analyses identify NR2E1-candidate-regulatory mutations in humans with severe cortical malformations

Identifieur interne : 000458 ( Pmc/Corpus ); précédent : 000457; suivant : 000459

Mutation and evolutionary analyses identify NR2E1-candidate-regulatory mutations in humans with severe cortical malformations

Auteurs : R A Kumar ; S. Leach ; R. Bonaguro ; J. Chen ; D W Yokom ; B S Abrahams ; L. Seaver ; C E Schwartz ; W. Dobyns ; A. Brooks-Wilson ; E M Simpson

Source :

RBID : PMC:2040186

Abstract

Nuclear receptor 2E1 (NR2E1) is expressed in human fetal and adult brains; however, its role in human brain–behavior development is unknown. Previously, we have corrected the cortical hypoplasia and behavioral abnormalities in Nr2e1−/− mice using a genomic clone spanning human NR2E1, which bolsters the hypothesis that NR2E1 may similarly play a role in human cortical and behavioral development. To test the hypothesis that humans with abnormal brain–behavior development may have null or hypomorphic NR2E1 mutations, we undertook the first candidate mutation screen of NR2E1 by sequencing its entire coding region, untranslated, splice site, proximal promoter and evolutionarily conserved non-coding regions in 56 unrelated patients with cortical disorders, namely microcephaly. We then genotyped the candidate mutations in 325 unrelated control subjects and 15 relatives. We did not detect any coding region changes in NR2E1; however, we identified seven novel candidate regulatory mutations that were absent from control subjects. We used in silico tools to predict the effects of these candidate mutations on neural transcription factor binding sites (TFBS). Four candidate mutations were predicted to alter TFBS. To facilitate the present and future studies of NR2E1, we also elucidated its molecular evolution, genetic diversity, haplotype structure and linkage disequilibrium by sequencing an additional 94 unaffected humans representing Africa, the Americas, Asia, Europe, the Middle East and Oceania, as well as great apes and monkeys. We detected strong purifying selection, low genetic diversity, 21 novel polymorphisms and five common haplotypes at NR2E1. We conclude that protein-coding changes in NR2E1 do not contribute to cortical and behavioral abnormalities in the patients examined here, but that regulatory mutations may play a role.


Url:
DOI: 10.1111/j.1601-183X.2006.00277.x
PubMed: 17054721
PubMed Central: 2040186

Links to Exploration step

PMC:2040186

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mutation and evolutionary analyses identify
<italic>NR2E1-</italic>
candidate-regulatory mutations in humans with severe cortical malformations</title>
<author>
<name sortKey="Kumar, R A" sort="Kumar, R A" uniqKey="Kumar R" first="R A" last="Kumar">R A Kumar</name>
<affiliation>
<nlm:aff id="au1">
<institution>Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au2">
<institution>Department of Medical Genetics, University of British Columbia</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Leach, S" sort="Leach, S" uniqKey="Leach S" first="S" last="Leach">S. Leach</name>
<affiliation>
<nlm:aff id="au3">
<institution>Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bonaguro, R" sort="Bonaguro, R" uniqKey="Bonaguro R" first="R" last="Bonaguro">R. Bonaguro</name>
<affiliation>
<nlm:aff id="au1">
<institution>Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, J" sort="Chen, J" uniqKey="Chen J" first="J" last="Chen">J. Chen</name>
<affiliation>
<nlm:aff id="au1">
<institution>Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yokom, D W" sort="Yokom, D W" uniqKey="Yokom D" first="D W" last="Yokom">D W Yokom</name>
<affiliation>
<nlm:aff id="au1">
<institution>Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Abrahams, B S" sort="Abrahams, B S" uniqKey="Abrahams B" first="B S" last="Abrahams">B S Abrahams</name>
<affiliation>
<nlm:aff id="au1">
<institution>Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Seaver, L" sort="Seaver, L" uniqKey="Seaver L" first="L" last="Seaver">L. Seaver</name>
<affiliation>
<nlm:aff id="au4">
<institution>Center for Molecular Studies, J.C. Self Research Institute, Greenwood Genetic Center</institution>
<addr-line>Greenwood, SC, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schwartz, C E" sort="Schwartz, C E" uniqKey="Schwartz C" first="C E" last="Schwartz">C E Schwartz</name>
<affiliation>
<nlm:aff id="au4">
<institution>Center for Molecular Studies, J.C. Self Research Institute, Greenwood Genetic Center</institution>
<addr-line>Greenwood, SC, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dobyns, W" sort="Dobyns, W" uniqKey="Dobyns W" first="W" last="Dobyns">W. Dobyns</name>
<affiliation>
<nlm:aff id="au5">
<institution>University of Chicago</institution>
<addr-line>Chicago, IL, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brooks Wilson, A" sort="Brooks Wilson, A" uniqKey="Brooks Wilson A" first="A" last="Brooks-Wilson">A. Brooks-Wilson</name>
<affiliation>
<nlm:aff id="au2">
<institution>Department of Medical Genetics, University of British Columbia</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au3">
<institution>Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Simpson, E M" sort="Simpson, E M" uniqKey="Simpson E" first="E M" last="Simpson">E M Simpson</name>
<affiliation>
<nlm:aff id="au1">
<institution>Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au2">
<institution>Department of Medical Genetics, University of British Columbia</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">17054721</idno>
<idno type="pmc">2040186</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2040186</idno>
<idno type="RBID">PMC:2040186</idno>
<idno type="doi">10.1111/j.1601-183X.2006.00277.x</idno>
<date when="2007">2007</date>
<idno type="wicri:Area/Pmc/Corpus">000458</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000458</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Mutation and evolutionary analyses identify
<italic>NR2E1-</italic>
candidate-regulatory mutations in humans with severe cortical malformations</title>
<author>
<name sortKey="Kumar, R A" sort="Kumar, R A" uniqKey="Kumar R" first="R A" last="Kumar">R A Kumar</name>
<affiliation>
<nlm:aff id="au1">
<institution>Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au2">
<institution>Department of Medical Genetics, University of British Columbia</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Leach, S" sort="Leach, S" uniqKey="Leach S" first="S" last="Leach">S. Leach</name>
<affiliation>
<nlm:aff id="au3">
<institution>Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bonaguro, R" sort="Bonaguro, R" uniqKey="Bonaguro R" first="R" last="Bonaguro">R. Bonaguro</name>
<affiliation>
<nlm:aff id="au1">
<institution>Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, J" sort="Chen, J" uniqKey="Chen J" first="J" last="Chen">J. Chen</name>
<affiliation>
<nlm:aff id="au1">
<institution>Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yokom, D W" sort="Yokom, D W" uniqKey="Yokom D" first="D W" last="Yokom">D W Yokom</name>
<affiliation>
<nlm:aff id="au1">
<institution>Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Abrahams, B S" sort="Abrahams, B S" uniqKey="Abrahams B" first="B S" last="Abrahams">B S Abrahams</name>
<affiliation>
<nlm:aff id="au1">
<institution>Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Seaver, L" sort="Seaver, L" uniqKey="Seaver L" first="L" last="Seaver">L. Seaver</name>
<affiliation>
<nlm:aff id="au4">
<institution>Center for Molecular Studies, J.C. Self Research Institute, Greenwood Genetic Center</institution>
<addr-line>Greenwood, SC, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schwartz, C E" sort="Schwartz, C E" uniqKey="Schwartz C" first="C E" last="Schwartz">C E Schwartz</name>
<affiliation>
<nlm:aff id="au4">
<institution>Center for Molecular Studies, J.C. Self Research Institute, Greenwood Genetic Center</institution>
<addr-line>Greenwood, SC, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dobyns, W" sort="Dobyns, W" uniqKey="Dobyns W" first="W" last="Dobyns">W. Dobyns</name>
<affiliation>
<nlm:aff id="au5">
<institution>University of Chicago</institution>
<addr-line>Chicago, IL, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brooks Wilson, A" sort="Brooks Wilson, A" uniqKey="Brooks Wilson A" first="A" last="Brooks-Wilson">A. Brooks-Wilson</name>
<affiliation>
<nlm:aff id="au2">
<institution>Department of Medical Genetics, University of British Columbia</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au3">
<institution>Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Simpson, E M" sort="Simpson, E M" uniqKey="Simpson E" first="E M" last="Simpson">E M Simpson</name>
<affiliation>
<nlm:aff id="au1">
<institution>Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au2">
<institution>Department of Medical Genetics, University of British Columbia</institution>
<addr-line>Vancouver, Canada</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genes, Brain, and Behavior</title>
<idno type="ISSN">1601-1848</idno>
<idno type="eISSN">1601-183X</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Nuclear receptor 2E1 (
<italic>NR2E1</italic>
) is expressed in human fetal and adult brains; however, its role in human brain–behavior development is unknown. Previously, we have corrected the cortical hypoplasia and behavioral abnormalities in
<italic>Nr2e1
<sup>−/−</sup>
</italic>
mice using a genomic clone spanning human
<italic>NR2E1</italic>
, which bolsters the hypothesis that
<italic>NR2E1</italic>
may similarly play a role in human cortical and behavioral development. To test the hypothesis that humans with abnormal brain–behavior development may have null or hypomorphic
<italic>NR2E1</italic>
mutations, we undertook the first candidate mutation screen of
<italic>NR2E1</italic>
by sequencing its entire coding region, untranslated, splice site, proximal promoter and evolutionarily conserved non-coding regions in 56 unrelated patients with cortical disorders, namely microcephaly. We then genotyped the candidate mutations in 325 unrelated control subjects and 15 relatives. We did not detect any coding region changes in
<italic>NR2E1</italic>
; however, we identified seven novel candidate regulatory mutations that were absent from control subjects. We used
<italic>in silico</italic>
tools to predict the effects of these candidate mutations on neural transcription factor binding sites (TFBS). Four candidate mutations were predicted to alter TFBS. To facilitate the present and future studies of
<italic>NR2E1</italic>
, we also elucidated its molecular evolution, genetic diversity, haplotype structure and linkage disequilibrium by sequencing an additional 94 unaffected humans representing Africa, the Americas, Asia, Europe, the Middle East and Oceania, as well as great apes and monkeys. We detected strong purifying selection, low genetic diversity, 21 novel polymorphisms and five common haplotypes at
<italic>NR2E1</italic>
. We conclude that protein-coding changes in
<italic>NR2E1</italic>
do not contribute to cortical and behavioral abnormalities in the patients examined here, but that regulatory mutations may play a role.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article" xml:lang="EN">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Genes Brain Behav</journal-id>
<journal-id journal-id-type="publisher-id">gbb</journal-id>
<journal-title>Genes, Brain, and Behavior</journal-title>
<issn pub-type="ppub">1601-1848</issn>
<issn pub-type="epub">1601-183X</issn>
<publisher>
<publisher-name>Blackwell Publishing Ltd</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">17054721</article-id>
<article-id pub-id-type="pmc">2040186</article-id>
<article-id pub-id-type="doi">10.1111/j.1601-183X.2006.00277.x</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Mutation and evolutionary analyses identify
<italic>NR2E1-</italic>
candidate-regulatory mutations in humans with severe cortical malformations</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Kumar</surname>
<given-names>R A</given-names>
</name>
<xref ref-type="aff" rid="au1"></xref>
<xref ref-type="aff" rid="au2"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Leach</surname>
<given-names>S</given-names>
</name>
<xref ref-type="aff" rid="au3">§</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bonaguro</surname>
<given-names>R</given-names>
</name>
<xref ref-type="aff" rid="au1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<xref ref-type="aff" rid="au1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yokom</surname>
<given-names>D W</given-names>
</name>
<xref ref-type="aff" rid="au1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Abrahams</surname>
<given-names>B S</given-names>
</name>
<xref ref-type="aff" rid="au1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Seaver</surname>
<given-names>L</given-names>
</name>
<xref ref-type="aff" rid="au4"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schwartz</surname>
<given-names>C E</given-names>
</name>
<xref ref-type="aff" rid="au4"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dobyns</surname>
<given-names>W</given-names>
</name>
<xref ref-type="aff" rid="au5">††</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Brooks-Wilson</surname>
<given-names>A</given-names>
</name>
<xref ref-type="aff" rid="au2"></xref>
<xref ref-type="aff" rid="au3">§</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Simpson</surname>
<given-names>E M</given-names>
</name>
<xref ref-type="corresp" rid="cor1">*</xref>
<xref ref-type="aff" rid="au1"></xref>
<xref ref-type="aff" rid="au2"></xref>
</contrib>
<aff id="au1">
<label></label>
<institution>Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute</institution>
<addr-line>Vancouver, Canada</addr-line>
</aff>
<aff id="au2">
<label></label>
<institution>Department of Medical Genetics, University of British Columbia</institution>
<addr-line>Vancouver, Canada</addr-line>
</aff>
<aff id="au3">
<label>§</label>
<institution>Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency</institution>
<addr-line>Vancouver, Canada</addr-line>
</aff>
<aff id="au4">
<label></label>
<institution>Center for Molecular Studies, J.C. Self Research Institute, Greenwood Genetic Center</institution>
<addr-line>Greenwood, SC, USA</addr-line>
</aff>
<aff id="au5">
<label>††</label>
<institution>University of Chicago</institution>
<addr-line>Chicago, IL, USA</addr-line>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<sup>*</sup>
Corresponding author: Elizabeth M. Simpson, 3020 980 West 28
<sup>th</sup>
Ave, Vancouver, BC, Canada V5Z 4H4. E-mail:
<email>simpson@cmmt.ubc.ca</email>
</corresp>
<fn>
<p>Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>8</month>
<year>2007</year>
</pub-date>
<volume>6</volume>
<issue>6</issue>
<fpage>503</fpage>
<lpage>516</lpage>
<history>
<date date-type="received">
<day>13</day>
<month>7</month>
<year>2006</year>
</date>
<date date-type="rev-recd">
<day>22</day>
<month>8</month>
<year>2006</year>
</date>
<date date-type="accepted">
<day>23</day>
<month>8</month>
<year>2006</year>
</date>
</history>
<copyright-statement>© 2006 The Authors Journal compilation</copyright-statement>
<copyright-year>2006</copyright-year>
<abstract>
<p>Nuclear receptor 2E1 (
<italic>NR2E1</italic>
) is expressed in human fetal and adult brains; however, its role in human brain–behavior development is unknown. Previously, we have corrected the cortical hypoplasia and behavioral abnormalities in
<italic>Nr2e1
<sup>−/−</sup>
</italic>
mice using a genomic clone spanning human
<italic>NR2E1</italic>
, which bolsters the hypothesis that
<italic>NR2E1</italic>
may similarly play a role in human cortical and behavioral development. To test the hypothesis that humans with abnormal brain–behavior development may have null or hypomorphic
<italic>NR2E1</italic>
mutations, we undertook the first candidate mutation screen of
<italic>NR2E1</italic>
by sequencing its entire coding region, untranslated, splice site, proximal promoter and evolutionarily conserved non-coding regions in 56 unrelated patients with cortical disorders, namely microcephaly. We then genotyped the candidate mutations in 325 unrelated control subjects and 15 relatives. We did not detect any coding region changes in
<italic>NR2E1</italic>
; however, we identified seven novel candidate regulatory mutations that were absent from control subjects. We used
<italic>in silico</italic>
tools to predict the effects of these candidate mutations on neural transcription factor binding sites (TFBS). Four candidate mutations were predicted to alter TFBS. To facilitate the present and future studies of
<italic>NR2E1</italic>
, we also elucidated its molecular evolution, genetic diversity, haplotype structure and linkage disequilibrium by sequencing an additional 94 unaffected humans representing Africa, the Americas, Asia, Europe, the Middle East and Oceania, as well as great apes and monkeys. We detected strong purifying selection, low genetic diversity, 21 novel polymorphisms and five common haplotypes at
<italic>NR2E1</italic>
. We conclude that protein-coding changes in
<italic>NR2E1</italic>
do not contribute to cortical and behavioral abnormalities in the patients examined here, but that regulatory mutations may play a role.</p>
</abstract>
<kwd-group>
<kwd>Cortex</kwd>
<kwd>‘fierce’ mice</kwd>
<kwd>mental retardation</kwd>
<kwd>microcephaly</kwd>
<kwd>nuclear receptor</kwd>
<kwd>
<italic>Tlx</italic>
</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<p>Genes with expression patterns and developmental functions consistent with a role in regulating neurogenesis and cortical size are suitable for studying the genetic basis of human brain development and evolution (
<xref ref-type="bibr" rid="b28">Gilbert
<italic>et al.</italic>
2005</xref>
;
<xref ref-type="bibr" rid="b38">Kornack & Rakic 1998</xref>
;
<xref ref-type="bibr" rid="b54">Rakic 1995</xref>
). To date, only a limited number of genes have been identified that are expressed at sites of cortical neurogenesis that are known to regulate neural stem cells, forebrain size and behavior. One such gene is the nuclear receptor 2E1 (
<italic>Nr2e1</italic>
; previously
<italic>Mtll</italic>
,
<italic>Tailless</italic>
,
<italic>Tll</italic>
and
<italic>Tlx</italic>
), for which a clear role in mouse brain–behavior development makes it an excellent candidate for genetic studies of human abnormal brain–behavior development and evolution.</p>
<p>
<italic>NR2E1</italic>
is expressed in human fetal brain (
<xref ref-type="bibr" rid="b63">Strausberg
<italic>et al.</italic>
2002</xref>
) and in mouse embryonic forebrain (
<xref ref-type="bibr" rid="b50">Monaghan
<italic>et al.</italic>
1995</xref>
) and is also detected in the adult forebrains of humans and mice (
<xref ref-type="bibr" rid="b36">Jackson
<italic>et al.</italic>
1998</xref>
;
<xref ref-type="bibr" rid="b58">Shi
<italic>et al.</italic>
2004</xref>
).
<italic>Nr2e1</italic>
is required for normal temporal regulation of cortical neurogenesis during embryonic development and regulates proliferation and differentiation of neural progenitor cells in the embryonic and adult mouse cortex (
<xref ref-type="bibr" rid="b56">Roy
<italic>et al.</italic>
2002</xref>
,
<xref ref-type="bibr" rid="b55">Roy, 2004</xref>
;
<xref ref-type="bibr" rid="b58">Shi
<italic>et al.</italic>
2004</xref>
). Mice deleted for both copies of
<italic>Nr2e1</italic>
(
<italic>Nr2e1
<sup>−/−</sup>
</italic>
) show cortical hypoplasia, limbic system abnormalities, cognitive impairment, short stature, vision problems and abnormal social behaviors that include pathological violence (
<xref ref-type="bibr" rid="b15">Christie
<italic>et al.</italic>
2006</xref>
;
<xref ref-type="bibr" rid="b41">Kumar et al. 2004b</xref>
;
<xref ref-type="bibr" rid="b44">Land & Monaghan 2003</xref>
;
<xref ref-type="bibr" rid="b48">Miyawaki
<italic>et al.</italic>
2004</xref>
;
<xref ref-type="bibr" rid="b56">Roy
<italic>et al.</italic>
2002</xref>
;
<xref ref-type="bibr" rid="b69">Young
<italic>et al.</italic>
2002</xref>
).</p>
<p>Multiple additional lines of evidence support a role for
<italic>NR2E1</italic>
in human brain development. First, we have recently corrected the cortical and behavioral abnormalities of
<italic>Nr2e1
<sup>−/−</sup>
</italic>
mice using a genomic clone spanning the human
<italic>NR2E1</italic>
locus (
<xref ref-type="bibr" rid="b2">Abrahams
<italic>et al.</italic>
2005</xref>
), providing robust evidence that human and mouse
<italic>NR2E1</italic>
are functionally equivalent in mice. Second, members of the nuclear receptor superfamily have been implicated in disorders of human brain and behavior, including
<italic>NR4A2</italic>
(
<xref ref-type="bibr" rid="b9">Buervenich
<italic>et al.</italic>
2000</xref>
;
<xref ref-type="bibr" rid="b13">Chen
<italic>et al.</italic>
2001</xref>
;
<xref ref-type="bibr" rid="b33">Hering
<italic>et al.</italic>
2004</xref>
;
<xref ref-type="bibr" rid="b35">Iwayama-Shigeno
<italic>et al.</italic>
2003</xref>
;
<xref ref-type="bibr" rid="b45">Le
<italic>et al.</italic>
2003</xref>
;
<xref ref-type="bibr" rid="b60">Smith
<italic>et al.</italic>
2005</xref>
) and the estrogen receptor (
<xref ref-type="bibr" rid="b65">Westberg
<italic>et al.</italic>
2003</xref>
). Importantly, mutations in human and mouse
<italic>NR2E3,</italic>
a gene closely related to
<italic>NR2E1</italic>
, produce similar eye developmental abnormalities (
<xref ref-type="bibr" rid="b3">Akhmedov
<italic>et al.</italic>
2000</xref>
;
<xref ref-type="bibr" rid="b31">Haider
<italic>et al.</italic>
2000</xref>
), suggesting that human and mouse
<italic>NR2E1</italic>
mutations might also cause the same phenotype. Third, some individuals with cortical abnormalities have
<italic>de novo</italic>
interstitial deletions encompassing the
<italic>NR2E1</italic>
locus at 6q21.
<xref ref-type="bibr" rid="b14">Chery
<italic>et al.</italic>
(1989)</xref>
report a
<italic>de novo</italic>
interstitial deletion of 6q21 in a male with moderate microcephaly, facial dysmorphism and psychomotor retardation (
<xref ref-type="bibr" rid="b14">Chery
<italic>et al.</italic>
1989</xref>
). In addition, patient 2 reported by
<xref ref-type="bibr" rid="b34">Hopkin
<italic>et al.</italic>
(1997)</xref>
has an interstitial deletion that includes 6q21 and presents with severe intrauterine growth retardation and severe congenital microcephaly (
<xref ref-type="bibr" rid="b34">Hopkin
<italic>et al.</italic>
1997</xref>
).</p>
<p>
<italic>NR2E1</italic>
hypomorphic mutations could underlie human cortical malformations. Mice deleted for a single copy of
<italic>Nr2e1</italic>
(
<italic>Nr2e1
<sup>+/−</sup>
</italic>
) show premature neurogenesis during early corticogenesis that results in reduced neuron numbers that are intermediate to that produced in
<italic>Nr2e1
<sup>+/+</sup>
</italic>
and
<italic>Nr2e1
<sup>−/−</sup>
</italic>
mice (
<xref ref-type="bibr" rid="b55">Roy
<italic>et al.</italic>
2004</xref>
), providing strong support for dosage sensitivity for
<italic>Nr2e1</italic>
during cortical development. Support for a hypomorphic mechanism is also provided by studies in mice that are double heterozygotes for
<italic>Nr2e1</italic>
and
<italic>Pax6</italic>
, which result in altered regionalization of the cerebral cortex (
<xref ref-type="bibr" rid="b61">Stenman
<italic>et al.</italic>
2003</xref>
). Mice heterozygous for either
<italic>Nr2e1</italic>
or
<italic>Pax6</italic>
alone do not show alterations in cortical gene expression at the pallial–subpallial boundary, indicating that normal cortical regionalization at this boundary involve a genetic interaction between
<italic>Pax6</italic>
and
<italic>Nr2e1</italic>
(
<xref ref-type="bibr" rid="b61">Stenman
<italic>et al.</italic>
2003</xref>
). Importantly, human cortical malformations are known to result from
<italic>PAX6</italic>
haploinsufficiency (
<xref ref-type="bibr" rid="b59">Sisodiya
<italic>et al.</italic>
2001</xref>
). In addition,
<xref ref-type="bibr" rid="b29">Glaser et al. (1994)</xref>
describe a newborn boy with homozygous mutations of
<italic>PAX6</italic>
that results in severe congenital microcephaly and polymicrogyria (
<xref ref-type="bibr" rid="b29">Glaser
<italic>et al.</italic>
1994</xref>
). Taken together, mouse and human genetic studies support the proposal that some human cortical disorders may involve a single- or a multigene mechanism involving
<italic>NR2E1</italic>
null or hypomorphic mutations.</p>
<p>In this study, we report the first genetic analyses of
<italic>NR2E1</italic>
in patients. To test the hypothesis that humans with abnormal cortical development and mental retardation may have null or hypomorphic mutations in
<italic>NR2E1</italic>
, we searched for candidate mutations by sequencing the complete coding region, 5′- and 3′-untranslated (UTR), splice site, proximal promoter and evolutionarily conserved non-coding regions in 56 unrelated patients with unexplained congenital microcephaly, a neurodevelopmental disorder characterized by marked reduction in cortical size that may result from failure of neurogenesis (
<xref ref-type="bibr" rid="b16">Dobyns 2002</xref>
;
<xref ref-type="bibr" rid="b49">Mochida & Walsh 2001</xref>
). We genotyped candidate mutations in ethnically matched control subjects that included 137 Africans and 188 Europeans. To guide the present and future studies of
<italic>NR2E1</italic>
, we also elucidated its molecular evolution, genetic diversity, haplotype structure and linkage disequilibrium by sequencing an additional 94 unaffected humans representing Africa, the Americas, Asia, Europe, the Middle East and Oceania, as well as chimpanzee, gorilla, orangutan and macaque.</p>
<sec sec-type="materials|methods">
<title>Materials and methods</title>
<sec>
<title>Human and non-human primate samples</title>
<p>Approval for this study was obtained from The University of British Columbia (Certificate of Approval # C99-0524), Child & Family Research Institute of British Columbia (Certificate of Approval # W00-0005) and the Department of Medical Genetics (Certificate of Approval #6-3-20). The research followed the Canada’s Tri-Council Statement on ‘Ethical Conduct for Research Involving Humans’ (sections 2.5–2.7). We studied 56 unrelated patients with congenital microcephaly (with or without simplified gyral patterns) and additional features resembling
<italic>Nr2e1
<sup>−/−</sup>
</italic>
mice, including short stature, vision problems, cognitive impairment and abnormal social behaviors. Patient demographic and clinical data are reported in
<xref ref-type="table" rid="tbl1">Table 1</xref>
. For a subset of patients, unaffected and affected family members that included 14 parents and four siblings were also studied. The following control subjects without severe cortical malformations or known behavioral problems were studied: (1) 110 individuals of African descent obtained from the Coriell Cell Repository (
<ext-link ext-link-type="uri" xlink:href="http://coriell.umdnj.edu/">http://coriell.umdnj.edu/</ext-link>
); (2) 27 individuals of African descent obtained from Dr M. R. Hayden (University of British Columbia, Vancouver, Canada); (3) 94 Caucasians obtained from the Coriell Cell Repository (
<ext-link ext-link-type="uri" xlink:href="http://coriell.umdnj.edu/">http://coriell.umdnj.edu/</ext-link>
); and (4) 94 Caucasian patients diagnosed with Gilbert syndrome. For genetic diversity and molecular evolutionary studies, we examined an additional 94 ethnically diverse unaffected humans, who included African (African-American, Mbuti, Biaka), American (Cheyenne, Mayan, Quechua, Karitiana), Asian (Indo-Pakistani, Chinese, Japanese), European (Russian, Italian, Northern European, Icelandic), Middle Eastern (Ashkenazi Jewish, Druze Arab) and Oceanic people (Pacific and Melanesian). Ethnically diverse DNA samples were obtained from the Coriell Cell Repository (
<ext-link ext-link-type="uri" xlink:href="http://coriell.umdnj.edu/">http://coriell.umdnj.edu/</ext-link>
) and do not overlap with any of the Coriell ethnically matched control subjects described above. Great ape tissues were obtained from Dr E. Eichler (University of Washington, Seattle, USA). DNAs (three chimpanzees, three gorillas, three orangutans) were isolated from either lymphoblasts or fibroblasts using the Gentra Puregene kit (Minneapolis, MN, USA). Macaque DNAs (two rhesus macaques, two Japanese macaques) were obtained from Oregon Regional Primate Research Center (Beaverton, OR, USA).</p>
<table-wrap id="tbl1" position="float">
<label>Table 1:</label>
<caption>
<p>Demographic and clinical information on patients with cortical malformations</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Patient ID</th>
<th align="center" rowspan="1" colspan="1">Ethnicity</th>
<th align="center" rowspan="1" colspan="1">Sex</th>
<th align="center" rowspan="1" colspan="1">Brain abnormality</th>
<th align="center" rowspan="1" colspan="1">MR</th>
<th align="center" rowspan="1" colspan="1">Seizures</th>
<th align="center" rowspan="1" colspan="1">Psychosis</th>
<th align="center" rowspan="1" colspan="1">Stature</th>
<th align="center" rowspan="1" colspan="1">Vision problems</th>
<th align="center" rowspan="1" colspan="1">Other</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">CMS 3226</td>
<td align="center" rowspan="1" colspan="1">b</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Short</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CMS 5041</td>
<td align="center" rowspan="1" colspan="1">b</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Normal</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CMS 5811</td>
<td align="center" rowspan="1" colspan="1">b</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Short</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CMS 5162</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Short</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CMS 4775</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Short</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CMS 5207</td>
<td align="center" rowspan="1" colspan="1">b</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Normal</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CMS 5315</td>
<td align="center" rowspan="1" colspan="1">b</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Short</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CMS 7456</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CMS 5538</td>
<td align="center" rowspan="1" colspan="1">b</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Normal</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CMS 5838</td>
<td align="center" rowspan="1" colspan="1">b</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Normal</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CMS 5151</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Normal</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">12856</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Normal</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">17763</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Normal</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">8348</td>
<td align="center" rowspan="1" colspan="1">b</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">11362</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Normal</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">29494</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Short</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LP95-042a2</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Early death</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LP97-105</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg xax</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LP98-038a1</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">Moderate</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LP98-052</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg pmg</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Early death</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LP98-095</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">Mild</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LP99-035</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Jejunal</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LP99-0100a1</td>
<td align="center" rowspan="1" colspan="1">w-me</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LP99-156</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg bch</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Early death</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR00-025</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR00-144</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Early death</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR00-182a1</td>
<td align="center" rowspan="1" colspan="1">w-ash j</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Normal</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR00-188</td>
<td align="center" rowspan="1" colspan="1">w-me</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR00-196</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg acc</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Jejunal</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR00-204</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Jejunal</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR01-068</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR01-099</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg bch xax acc</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Optic atrophy</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR01-148</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg bch xax</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR01-171</td>
<td align="center" rowspan="1" colspan="1">w-me</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">Mild</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Normal</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR01-194</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg bch acc</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR01-224</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg xax</td>
<td align="center" rowspan="1" colspan="1">Moderate</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">Normal</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR01-265</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR01-271</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg acc</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR01-314</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Normal</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR01-338</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR01-356</td>
<td align="center" rowspan="1" colspan="1">w-me</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg bch</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR02-005</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg xax</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR02-016a3</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">mic msg bch</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR02-046</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg acc</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR02-080</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR02-085</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">Mod-severe</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Amblyopia</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR02-112</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg xax</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR02-153</td>
<td align="center" rowspan="1" colspan="1">w-me</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg bch</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR02-154a1</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg xax</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Sclerocornea</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR02-171</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg acc</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">micr scl</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR02-304</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR02-421</td>
<td align="center" rowspan="1" colspan="1">w</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg</td>
<td align="center" rowspan="1" colspan="1">dd</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR03-059</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">f</td>
<td align="center" rowspan="1" colspan="1">mic msg xax</td>
<td align="center" rowspan="1" colspan="1">dd</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR03-184a1</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg bch</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR03-277</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic msg xax</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">gEMS594</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">m</td>
<td align="center" rowspan="1" colspan="1">mic</td>
<td align="center" rowspan="1" colspan="1">Severe</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">u</td>
<td align="center" rowspan="1" colspan="1">Short</td>
<td align="center" rowspan="1" colspan="1">Micropthalmia</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>
<italic>Ethnicity:</italic>
b, black; w, white; w-me, white-Middle Eastern; w-ash j, white Ashkenazi jewish; u, unknown.</p>
</fn>
<fn>
<p>
<italic>Sex:</italic>
f, female; m, male.</p>
</fn>
<fn>
<p>
<italic>Brain abnormality:</italic>
acc, agenesis of the corpus callosum; bch, brainstem-cerebellar hypoplasia; mic, microcephaly; msg, microcephaly with simplified gyral pattern; pmg, polymicrogyria, xax, enlarged extra-axial space.</p>
</fn>
<fn>
<p>
<italic>MR:</italic>
MR, mental retardation; note that for some patients, MR was scored as being present (i.e. ’yes‘) whereas for other patients the severity of MR was noted (i.e. mild, moderate, moderate-severe (Mod-severe), or severe); dd, developmental delay.</p>
</fn>
<fn>
<p>
<italic>Vision problems:</italic>
micr scl, micropthalmia and sclerocornea.</p>
</fn>
<fn>
<p>
<italic>Other:</italic>
jejunal, jejunal atresia;−, no other phenotypes noted.</p>
</fn>
<fn>
<p>u, unknown.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>DNA amplification and sequencing</title>
<p>We sequenced
<italic>NR2E1</italic>
using DNA amplicons generated from 20 polymerase chain reaction (PCR) assays that covered the coding region (1146 bp), complete 5′- and 3′-UTRs (1973 bp) and exon-flanking regions including consensus splice sites (1719 bp). In addition, we sequenced six evolutionarily conserved non-coding regions including proximal promoter (1528 bp) as previously described (
<xref ref-type="bibr" rid="b1">Abrahams
<italic>et al.</italic>
2002</xref>
). Human genomic
<italic>NR2E1</italic>
sequence AL078596 (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/">http://www.ncbi.nlm.nih.gov/</ext-link>
) was used as the reference sequence. Polymerase chain reactions were performed in a 96-well microtitre plate thermal cycler. Polymerase chain reactions were prepared in a total volume of 20 μl using 10 ng of genomic template and the following reagents from Invitrogen (Burlington, Ontario, Canada): 1× buffer, 1 m
<sc>m</sc>
MgSO
<sub>4</sub>
, 0.2 m
<sc>m</sc>
dNTPs, 0.5 m
<sc>m</sc>
primer [each of forward and reverse (
<xref ref-type="table" rid="tbl2">Table 2</xref>
)] and 0.0125 units
<italic>Pfx</italic>
polymerase. Thermal cycling was performed as follows: 30 cycles, 94°C for 2 min, annealing T (58–63°C) for 30 seconds, 68°C for 1 min. Polymerase chain reaction products were purified using magnetic beads from Agencourt Bioscience Corporation (Beverly, MA, USA) as per manufacturer’s instructions. Non-human primate sequencing reactions used 10–20 ng of DNA under similar conditions. Sequencing reactions performed in 384-well plates were as follows: BD Ready Rxn Mix V3 (0.54 μl), 5× Reaction Buffer (0.43 μl), 5 μ
<sc>m</sc>
Primer (0.26 μl;
<xref ref-type="table" rid="tbl2">Table 2</xref>
), 0.2 μ
<sc>m</sc>
18 MΩ ddH20 (0.77 μl) and DNA (5–100 ng). Sequences were visually inspected and scored by at least two individuals using either Consed (
<xref ref-type="bibr" rid="b30">Gordon
<italic>et al.</italic>
1998</xref>
) or Sequencher (Gene Codes, Ann Arbor, MI, USA). Every human variant that was identified only once (i.e. singletons) was confirmed by repeating the PCR and sequencing process. The CA-repeat assay (D6S1594; GenBank Accession Z52880) was prepared in a total volume of 15 μl using 10–50 ng of genomic template and the following reagents from Invitrogen: 1× buffer, 2.5 m
<sc>m</sc>
MgSO
<sub>4</sub>
, 0.25 m
<sc>m</sc>
dNTPs and 0.04 units
<italic>Pfx</italic>
polymerase. Primers (0.5 m
<sc>m</sc>
) were fluorescently labeled with FAM (ABI, Foster City, CA, USA). Post-PCR products were diluted 1:30 with ddH
<sub>2</sub>
O and 1 μl was combined with a 9.5 μl mix of formamide and Gene Scan™ 400HD ROX as per manufacturer’s instructions (ABI). Samples were denatured at 95°C for 5 min and placed on ice until loaded onto the ABI 3100 Genetic Analyzer (ABI). Polymerase chain reaction fragments were analyzed using Gene Mapper 3.0 (ABI).</p>
<table-wrap id="tbl2" position="float">
<label>Table 2:</label>
<caption>
<p>Polymerase chain reaction primers used to amplify
<italic>NR2E1</italic>
sequences</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="left" colspan="2" rowspan="1">Forward
<xref ref-type="table-fn" rid="tf2-1">*</xref>
</th>
<th align="left" colspan="2" rowspan="1">Reverse
<xref ref-type="table-fn" rid="tf2-2"></xref>
</th>
</tr>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="left" colspan="2" rowspan="1">
<hr></hr>
</th>
<th align="left" colspan="2" rowspan="1">
<hr></hr>
</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1">Assay</th>
<th align="left" rowspan="1" colspan="1">Name</th>
<th align="left" rowspan="1" colspan="1">Sequence</th>
<th align="left" rowspan="1" colspan="1">Name</th>
<th align="left" rowspan="1" colspan="1">Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">CE11A</td>
<td align="center" rowspan="1" colspan="1">oEMS1988</td>
<td align="center" rowspan="1" colspan="1">5′-TACGCCTTAAATCCGAGGTC-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS1989</td>
<td align="center" rowspan="1" colspan="1">5′-CGATCAAGCATGGTGTCAAG-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CE12A</td>
<td align="center" rowspan="1" colspan="1">oEMS1990</td>
<td align="center" rowspan="1" colspan="1">5′-TGACACCGAGTCTGGAGAAA-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS2031</td>
<td align="center" rowspan="1" colspan="1">5′-GTCGCCTCCATTATCTGCAC-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CE13A</td>
<td align="center" rowspan="1" colspan="1">oEMS1994</td>
<td align="center" rowspan="1" colspan="1">5′-CAGCTCTGCTTGGGGGAAG-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS1995</td>
<td align="center" rowspan="1" colspan="1">5′-AAAACGCTTTTCCCCCTCT-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CE14A</td>
<td align="center" rowspan="1" colspan="1">oEMS1998</td>
<td align="center" rowspan="1" colspan="1">5′-TCCTTCTTGCCGTGAAATATAC-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS2032</td>
<td align="center" rowspan="1" colspan="1">5′-GGAAAACTAGATTGCTGGGAAAT-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">5′-UTRa</td>
<td align="center" rowspan="1" colspan="1">oEMS2033</td>
<td align="center" rowspan="1" colspan="1">5′-CCAGGGACGCCCTATTCC-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS2034</td>
<td align="center" rowspan="1" colspan="1">5′-GAGGAAGAAGGAAGAACAGCA-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">5′-UTRb</td>
<td align="center" rowspan="1" colspan="1">oEMS2035</td>
<td align="center" rowspan="1" colspan="1">5′-CCCACACTCTGCATGCCTAT-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS2036</td>
<td align="center" rowspan="1" colspan="1">5′-GACAGGTGGGTGTCAGTCG-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Exon1</td>
<td align="center" rowspan="1" colspan="1">oEMS2037</td>
<td align="center" rowspan="1" colspan="1">5′-TGTGTCCATATCAAGCAGCA-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS2038</td>
<td align="center" rowspan="1" colspan="1">5′-CTCCACGAAATGCTCCAACT-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CE17B</td>
<td align="center" rowspan="1" colspan="1">oEMS2011</td>
<td align="center" rowspan="1" colspan="1">5′-GGAGAGCAGAGCGATGTCAC-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS2012</td>
<td align="center" rowspan="1" colspan="1">5′-TCACGAGACAAGCTGGTTGA-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CE19B</td>
<td align="center" rowspan="1" colspan="1">oEMS2013</td>
<td align="center" rowspan="1" colspan="1">5′-CCTCCCACAGCACAATCTC-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS2016</td>
<td align="center" rowspan="1" colspan="1">5′-GTCCCAGACTCGTCTCAGGT-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Exon2</td>
<td align="center" rowspan="1" colspan="1">oEMS1966</td>
<td align="center" rowspan="1" colspan="1">5′-TTCGGTGCTAATCCCTTCAG-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS1967</td>
<td align="center" rowspan="1" colspan="1">5′-AGAGGAAGGGAGAGGTCAGG-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Exon3</td>
<td align="center" rowspan="1" colspan="1">oEMS1968</td>
<td align="center" rowspan="1" colspan="1">5′-GGACTGGCCCTCTTGAAGTA-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS1969</td>
<td align="center" rowspan="1" colspan="1">5′-TCCCAGCATCTGGAAAGAAG-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Exon4</td>
<td align="center" rowspan="1" colspan="1">oEMS1970</td>
<td align="center" rowspan="1" colspan="1">5′-CTCCCTCAGATTCCCTCTCC-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS2039</td>
<td align="center" rowspan="1" colspan="1">5′-AACTGGGTGCGTCCCTCT-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Exon5</td>
<td align="center" rowspan="1" colspan="1">oEMS1972</td>
<td align="center" rowspan="1" colspan="1">5′-TACCCACCAATGTCAACTGC-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS1973</td>
<td align="center" rowspan="1" colspan="1">5′-AACCCACAGGAAGAAGCAAG-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Exon6</td>
<td align="center" rowspan="1" colspan="1">oEMS1974</td>
<td align="center" rowspan="1" colspan="1">5′-TGGGAAAATAAGGGAAAGCTAGA-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS1975</td>
<td align="center" rowspan="1" colspan="1">5′-ATTTAAATAACAATGCAAGCAGTCA-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Exon7</td>
<td align="center" rowspan="1" colspan="1">oEMS1976</td>
<td align="center" rowspan="1" colspan="1">5′-CTTTCATACAATATAGCCGGTTTACA-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS1977</td>
<td align="center" rowspan="1" colspan="1">5′-AACATGCAGGTTCCCATAGC-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Exon8</td>
<td align="center" rowspan="1" colspan="1">oEMS1978</td>
<td align="center" rowspan="1" colspan="1">5′-GATTACAGACACATGCCACCAT-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS1979</td>
<td align="center" rowspan="1" colspan="1">5′-CACCCACCCTGAGAGATAGG-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Exon9</td>
<td align="center" rowspan="1" colspan="1">oEMS2040</td>
<td align="center" rowspan="1" colspan="1">5′-TTCAAGTGTAAGACGTTAGTTTCCA-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS2041</td>
<td align="center" rowspan="1" colspan="1">5′-CTGTGGCAACCCCCAGTT-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3′-UTRa</td>
<td align="center" rowspan="1" colspan="1">oEMS2042</td>
<td align="center" rowspan="1" colspan="1">5′-AAAGCATTCCAGTAGCTATGACC-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS2043</td>
<td align="center" rowspan="1" colspan="1">5′-GTTGCCTGGCCTATGGTATT-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3′-UTRb</td>
<td align="center" rowspan="1" colspan="1">oEMS2044</td>
<td align="center" rowspan="1" colspan="1">5′-CATTATTAAGTGGCCTTCAGAACT-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS2045</td>
<td align="center" rowspan="1" colspan="1">5′-CAGTTTTCGGAAAGGCATTG-3′</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3′-UTRc</td>
<td align="center" rowspan="1" colspan="1">oEMS2046</td>
<td align="center" rowspan="1" colspan="1">5′-CCAGACAGGAAACGAATATGG-3′</td>
<td align="center" rowspan="1" colspan="1">oEMS2047</td>
<td align="center" rowspan="1" colspan="1">5′-CCTTGTTTCTGGTGGGTGAG-3′</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tf2-1">
<label>*</label>
<p>5′-TGTAAAACGACGGCCAGT-3′ sequence (-21M13F) was added to the 5′ end of each forward primer to facilitate sequencing.</p>
</fn>
<fn id="tf2-2">
<label></label>
<p>5′-CAGGAAACAGCTATGAC-3′ sequence (M13R) was added to the 5′ end of each reverse primer to facilitate sequencing.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Transcription factor binding site (TFBS) analyses</title>
<p>To predict whether genetic variants at
<italic>NR2E1</italic>
(i.e. candidate mutations, polymorphisms and human-specific nucleotides) alter experimentally validated consensus-binding sequences for neural transcription factors, we performed TFBS analyses using MatInspector (
<xref ref-type="bibr" rid="b53">Quandt
<italic>et al.</italic>
1995</xref>
). We analyzed the minor and major alleles at each variant site together with 50 bp of surrounding sequence using the Optimized Matrix Similarity thresholds. We focused specifically on transcription factors with brain-relevant roles that include cortical patterning, neural cell proliferation and differentiation, neuronal apoptosis, neuronal survival and synaptic plasticity.</p>
</sec>
<sec>
<title>Evolutionary, nucleotide diversity and genetic differentiation analyses</title>
<p>The following standard measures of genetic diversity were calculated using DnaSP version 3.0 (
<xref ref-type="bibr" rid="b57">Rozas & Rozas 1999</xref>
):
<italic>S</italic>
(the number of segregating sites); and θ
<sub>W</sub>
and π (nucleotide diversity). The following statistical tests of selection were performed using DnaSP version 3.0 (
<xref ref-type="bibr" rid="b57">Rozas & Rozas 1999</xref>
): Tajima’s
<italic>D</italic>
-test (which compares the number of nucleotide polymorphisms (θ
<sub>W</sub>
) with the mean pairwise difference between sequences (π); Fu and Li’s
<italic>D</italic>
<sup>*</sup>
(which compares the number of derived nucleotide variants observed only once in a sample with the total number of derived nucleotide variants); Fu and Li’s
<italic>F</italic>
<sup>*</sup>
(which compares the number of derived nucleotide variants observed only once in a sample with the mean pairwise differences between sequences) and Fay and Wu’s
<italic>H</italic>
(which compares the number of derived nucleotide variants observed only once in a sample with the mean pairwise differences between sequences). Non-human primate outgroups were used to infer the ancestral and derived states of human variants. The
<italic>P</italic>
values for Tajima’s
<italic>D</italic>
and Fay and Wu’s
<italic>H</italic>
were estimated from 10 000 coalescent simulations of an infinite site locus that conditioned on the sample size. Human and non-human primate sequence data were aligned using MEGA version 3.0 (
<xref ref-type="bibr" rid="b43">Kumar
<italic>et al.</italic>
2004c</xref>
) and human-specific variants were identified visually and confirmed by at least two individuals.</p>
</sec>
<sec>
<title>Haplotype and linkage disequilibrium reconstruction</title>
<p>We reconstructed haplotypes and estimated their frequencies by implementing PHASE (V. 2.0). We calculated haplotype diversity for each population as 2
<italic>n</italic>
(1−Σ
<italic>x
<sub>i</sub>
</italic>
<sup>2</sup>
)/(2
<italic>n</italic>
−1), where
<italic>x
<sub>i</sub>
</italic>
is the frequency of haplotype
<italic>i</italic>
and
<italic>n</italic>
is the sample number. Pairwise linkage disequilibrium (LD) between each common SNP was computed as |
<italic>D’</italic>
| and
<italic>r
<sup>2</sup>
</italic>
using DnaSP version 3.0 (
<xref ref-type="bibr" rid="b57">Rozas & Rozas 1999</xref>
). We did not analyze the indels because gaps are excluded from the LD analyses (
<xref ref-type="bibr" rid="b57">Rozas & Rozas 1999</xref>
). Significance of LD was tested using Fisher’s exact test after Bonferroni adjustment for multiple tests.</p>
</sec>
</sec>
<sec>
<title>Results</title>
<sec>
<title>Candidate NR2E1 mutations identified in patients with cortical abnormalities</title>
<p>In total, we generated approximately 368 220 bp of
<italic>NR2E1</italic>
sequence data. We did not detect any synonymous or non-synonymous coding variants. Nine out of the 56 patients (16%) were homozygous across all sites sequenced, which spanned 25.5 kb. We identified 11 patients harboring 15 novel non-coding variants (i.e. variants that have not been previously reported (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/projects/SNP/">http://www.ncbi.nlm.nih.gov/projects/SNP/</ext-link>
; Build 124) (
<xref ref-type="table" rid="tbl3">Table 3</xref>
). Each of these variants (herein referred to as ‘patient variants’) was present in the heterozygote state. Thirty-three percent of the patient variants resided within the proximal promoter, 33% within a UTR and 33% within intronic sequence. Transitions and transversions accounted for 47% and 53% of all variants, respectively.</p>
<table-wrap id="tbl3" position="float">
<label>Table 3:</label>
<caption>
<p>Characterization of 15
<italic>NR2E1</italic>
patient variants in families and control subjects</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th rowspan="1" colspan="1"></th>
<th rowspan="1" colspan="1"></th>
<th align="left" colspan="4" rowspan="1">Genotype
<xref ref-type="table-fn" rid="tf3-4">§</xref>
</th>
<th rowspan="1" colspan="1"></th>
</tr>
<tr>
<th rowspan="1" colspan="1"></th>
<th rowspan="1" colspan="1"></th>
<th rowspan="1" colspan="1"></th>
<th align="left" colspan="4" rowspan="1">
<hr></hr>
</th>
<th rowspan="1" colspan="1">Frequency of patient variant in control chromosomes
<xref ref-type="table-fn" rid="tf3-5"></xref>
</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1">Patient ID
<xref ref-type="table-fn" rid="tf3-1">*</xref>
</th>
<th align="left" rowspan="1" colspan="1">Location
<xref ref-type="table-fn" rid="tf3-2"></xref>
</th>
<th align="left" rowspan="1" colspan="1">Nucleotide variant
<xref ref-type="table-fn" rid="tf3-3"></xref>
</th>
<th align="left" rowspan="1" colspan="1">Patient</th>
<th align="left" rowspan="1" colspan="1">Unaffected father</th>
<th align="left" rowspan="1" colspan="1">Unaffected mother</th>
<th align="left" rowspan="1" colspan="1">Sibling</th>
<th rowspan="1" colspan="1"></th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">LR00-144</td>
<td align="center" rowspan="1" colspan="1">CE11A</td>
<td align="center" rowspan="1" colspan="1">g.-2945A>G</td>
<td align="center" rowspan="1" colspan="1">A/G</td>
<td align="center" rowspan="1" colspan="1">A/A</td>
<td align="center" rowspan="1" colspan="1">A/G</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">0/330 (0%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR00-144</td>
<td align="center" rowspan="1" colspan="1">PPR</td>
<td align="center" rowspan="1" colspan="1">g.-1767G>T</td>
<td align="center" rowspan="1" colspan="1">G/T</td>
<td align="center" rowspan="1" colspan="1">G/G</td>
<td align="center" rowspan="1" colspan="1">G/T</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">0/518 (0%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR00-144</td>
<td align="center" rowspan="1" colspan="1">3′-UTR</td>
<td align="center" rowspan="1" colspan="1">g.21502TG>C</td>
<td align="center" rowspan="1" colspan="1">T/C</td>
<td align="center" rowspan="1" colspan="1">T/C</td>
<td align="center" rowspan="1" colspan="1">T/T</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">0/344 (%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR03-184a1</td>
<td align="center" rowspan="1" colspan="1">PPR</td>
<td align="center" rowspan="1" colspan="1">g.-1431C>A</td>
<td align="center" rowspan="1" colspan="1">C/A</td>
<td align="center" rowspan="1" colspan="1">C/C</td>
<td align="center" rowspan="1" colspan="1">C/A</td>
<td align="center" rowspan="1" colspan="1">C/C</td>
<td align="center" rowspan="1" colspan="1">6/528 (1.1%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR03-184a1</td>
<td align="center" rowspan="1" colspan="1">Intron 1</td>
<td align="center" rowspan="1" colspan="1">g.151T>A</td>
<td align="center" rowspan="1" colspan="1">T/A</td>
<td align="center" rowspan="1" colspan="1">T/T</td>
<td align="center" rowspan="1" colspan="1">T/A</td>
<td align="center" rowspan="1" colspan="1">T/T</td>
<td align="center" rowspan="1" colspan="1">6/350 (1.7%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR00-204</td>
<td align="center" rowspan="1" colspan="1">PPR</td>
<td align="center" rowspan="1" colspan="1">g.-1453C>G</td>
<td align="center" rowspan="1" colspan="1">C/G</td>
<td align="center" rowspan="1" colspan="1">C/C</td>
<td align="center" rowspan="1" colspan="1">C/G</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">1/528 (0.2%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR00-204</td>
<td align="center" rowspan="1" colspan="1">Intron 5</td>
<td align="center" rowspan="1" colspan="1">g.11559C>T</td>
<td align="center" rowspan="1" colspan="1">C/T</td>
<td align="center" rowspan="1" colspan="1">C/T</td>
<td align="center" rowspan="1" colspan="1">C/C</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">2/550 (0.4%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR03-277</td>
<td align="center" rowspan="1" colspan="1">3′-UTR</td>
<td align="center" rowspan="1" colspan="1">g.21762C>A</td>
<td align="center" rowspan="1" colspan="1">C/A</td>
<td align="center" rowspan="1" colspan="1">C/A</td>
<td align="center" rowspan="1" colspan="1">C/C</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">1/352 (0.3%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR03-277</td>
<td align="center" rowspan="1" colspan="1">3′-UTR</td>
<td align="center" rowspan="1" colspan="1">g.21796G>A</td>
<td align="center" rowspan="1" colspan="1">G/A</td>
<td align="center" rowspan="1" colspan="1">G/G</td>
<td align="center" rowspan="1" colspan="1">G/A</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">1/352 (0.3%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR02-304</td>
<td align="center" rowspan="1" colspan="1">CE12A</td>
<td align="center" rowspan="1" colspan="1">g.-1726C>A</td>
<td align="center" rowspan="1" colspan="1">C/A</td>
<td align="center" rowspan="1" colspan="1">C/A</td>
<td align="center" rowspan="1" colspan="1">C/C</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">0/528 (0%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LP98-052</td>
<td align="center" rowspan="1" colspan="1">PPR</td>
<td align="center" rowspan="1" colspan="1">g.-1453C>G</td>
<td align="center" rowspan="1" colspan="1">C/G</td>
<td align="center" rowspan="1" colspan="1">C/G</td>
<td align="center" rowspan="1" colspan="1">C/C</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">1/528 (0.2%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CMS5151</td>
<td align="center" rowspan="1" colspan="1">5′-UTR</td>
<td align="center" rowspan="1" colspan="1">g.-555C>T</td>
<td align="center" rowspan="1" colspan="1">C/T</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">2/540 (0.4%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">8348</td>
<td align="center" rowspan="1" colspan="1">Intron 3</td>
<td align="center" rowspan="1" colspan="1">g.8213T>C</td>
<td align="center" rowspan="1" colspan="1">T/C</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">0/146 (0%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">12856 XS</td>
<td align="center" rowspan="1" colspan="1">Intron 7</td>
<td align="center" rowspan="1" colspan="1">g.14617A>C</td>
<td align="center" rowspan="1" colspan="1">A/C</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">1/558 (0.2%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR01-194</td>
<td align="center" rowspan="1" colspan="1">Intron 7</td>
<td align="center" rowspan="1" colspan="1">g.14718C>T</td>
<td align="center" rowspan="1" colspan="1">C/T</td>
<td align="center" rowspan="1" colspan="1">C/C</td>
<td align="center" rowspan="1" colspan="1">C/T</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">1/558(0%)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LR01-148</td>
<td align="center" rowspan="1" colspan="1">3′-UTR</td>
<td align="center" rowspan="1" colspan="1">g.20765C>A</td>
<td align="center" rowspan="1" colspan="1">C/A</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">0/362 (0%)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tf3-1">
<label>*</label>
<p>Note that patients LP98-052 and LR00-204 both harboured identical variants (i.e. g.-1453C>G). Thus, a total of 15 novel variants were identified.</p>
</fn>
<fn id="tf3-2">
<label></label>
<p>PPR, proximal promoter region (defined as a 2.0-kb region upstream of the initiator Met codon); CE, evolutionary conserved element within PPR (as described in Abrahams
<italic>et al.</italic>
2002); UTR, untranslated region.</p>
</fn>
<fn id="tf3-3">
<label></label>
<p>g, genomic; numbering based on
<xref ref-type="bibr" rid="b4">Antonarakis and the Nomenclature Working Group [1998]</xref>
, where A of the initiator Met codon in exon 1 is denoted nucleotide +1. Human genomic
<italic>NR2E1</italic>
sequence: NCBI AL078596.</p>
</fn>
<fn id="tf3-4">
<label>§</label>
<p>Sibling of LR03-184a1 is affected with microcephaly with simplified gyral pattern.</p>
</fn>
<fn id="tf3-5">
<label></label>
<p>numbers represent the total number of successfully sequenced chromosomes and not the total number of chromosomes screened.</p>
</fn>
<fn>
<p>n/a, not available.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>Four patients harbored multiple patient variants, including patients LR00-44, LR03-184a1, LR00-204 and LR03-277, in whom we identified three, two, two and two patient variants, respectively. Patients LR00-204 and LP98-052 both harbored the g.-1453C>G substitution.</p>
<p>We amplified and sequenced the regions corresponding to the 15 novel patient variants in 15 additional family members (
<xref ref-type="table" rid="tbl3">Table 3</xref>
). Fourteen parents were available for typing for 12 of the 15 novel patient variants, including both parents for the two unrelated patients having the identical g.-1453C>G patient variant. In all 12 cases, at least one unaffected parent harbored the patient variant, indicating that none of these variants were
<italic>de novo</italic>
. For four patient variants, parents were unavailable for typing; therefore, we cannot exclude the possibility that these variants are
<italic>de novo</italic>
. An affected sibling was studied for both patient variants identified in patient LR03-184a1; neither of the two variants was identified in the sibling, suggesting that the two patient variants do not predict the cortical phenotypes in these siblings.</p>
<p>We amplified and sequenced the regions corresponding to the 15 novel patient variants in ethnically matched controls of African (274 chromosomes) and European (376 chromosomes) descent. If the ethnicity of the patient was unknown, the patient variants were genotyped in chromosomes of African and European descent (650 chromosomes). None of the control subjects were reported to have cortical malformations. Of the 15 novel variants identified in the patients, seven (g.-2945A>G, g.-1767G>T, g.-1726C>A, g.8213T>C, g.14718C>T, g.20765C>A and g.21502T>C) were not detected in any control subject (
<xref ref-type="table" rid="tbl3">Table 3</xref>
). These seven patient variants will now be referred to as ‘candidate mutations’. Three of the seven candidate mutations (g.-2945A>G, g.-1767G>T and g.21502T>C) were identified in patient LR00-144: two of these (g.-2945A>G and -1767G>T) were maternal and one (g.21502T>C) was paternal. Consequently, patient LR00-144 is a compound heterozygote for
<italic>NR2E1</italic>
mutations. Importantly, both g.-2945A>G and g.-1767G>T reside within the proximal promoter (PPR) and g.21502T>C resides within the 3′-UTR, which makes each of these variants reasonable candidates for putatively regulatory hypomorphic mutations. The four remaining candidate mutations were identified individually in unrelated patients. Two of these reside within putative regulatory regions (g.-1726C>A in a 100-bp element in the PPR that is conserved between mouse and human; and g. 20765C>A that resides in the 3′-UTR); the remaining two candidate mutations were identified in intronic regions outside the consensus splice site.</p>
<p>Two additional patients were compound heterozygotes for patient variants of
<italic>NR2E1</italic>
. Patient LR00-204 harbored g.-1453C>G (maternal) and g.11559C>T (paternal), each present in the general population at 0.2% and 0.4%, respectively. Patient LR03-277 harbored g.21762C>A (paternal) and g.21796G>A (maternal), both present in the general population at 0.3%. We did not identify a single control subject bearing either g.-1453C>G / g.11559C>T or g.21762C>A / g.21796G>A allelic pairs. We therefore consider these variants as candidates for rare functional polymorphisms.</p>
</sec>
<sec>
<title>Predicted alterations of consensus transcription factor binding sites by NR2E1 candidate mutations</title>
<p>To predict the impact of the seven candidate mutations on transcription factor binding, we performed
<italic>in silico</italic>
analyses on experimentally-validated consensus sequences for TFBS. We restricted our analyses to transcription factors expressed in the brain. Of the seven candidate mutations, four (g.-1767G>T, g.-1726C>A, g.8213T>C, g.14718C>T) were predicted to create or abolish binding of transcription factors known to have roles in neuronal proliferation and survival, cortical patterning, neuronal differentiation and synaptic plasticity (
<xref ref-type="table" rid="tbl4">Table 4</xref>
). Of the four functional polymorphisms, one (g.-1453C>G) was predicted to create binding of two neural transcription factors (
<xref ref-type="table" rid="tbl4">Table 4</xref>
).</p>
<table-wrap id="tbl4" position="float">
<label>Table 4:</label>
<caption>
<p>
<italic>NR2E1</italic>
patient variants predicted to alter neural transcription factor consensus-binding sites</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Variant type</th>
<th align="center" rowspan="1" colspan="1">Nucleotide variant</th>
<th align="center" rowspan="1" colspan="1">Location</th>
<th align="center" rowspan="1" colspan="1">Transcription factor binding site</th>
<th align="center" rowspan="1" colspan="1">Transcription factor (s)</th>
<th align="center" rowspan="1" colspan="1">Role in brain</th>
<th align="center" colspan="5" rowspan="1">Orthologous major allele in other species
<xref ref-type="table-fn" rid="tf4-1">*</xref>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" colspan="6" rowspan="1"></td>
<td align="center" rowspan="1" colspan="1">Human</td>
<td align="center" rowspan="1" colspan="1">Apes</td>
<td align="center" rowspan="1" colspan="1">Macaque</td>
<td align="center" rowspan="1" colspan="1">Mouse</td>
<td align="center" rowspan="1" colspan="1">Fugu</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Candidate mutation</td>
<td align="center" rowspan="1" colspan="1">g.-1767G>T</td>
<td align="center" rowspan="1" colspan="1">PPR</td>
<td align="center" rowspan="1" colspan="1">Created</td>
<td align="center" rowspan="1" colspan="1">
<italic>lA-1</italic>
</td>
<td align="center" rowspan="1" colspan="1">Regulator of neuronal development</td>
<td align="center" rowspan="1" colspan="1">G</td>
<td align="center" rowspan="1" colspan="1">G</td>
<td align="center" rowspan="1" colspan="1">G</td>
<td align="center" rowspan="1" colspan="1">na</td>
<td align="center" rowspan="1" colspan="1">na</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1"></td>
<td align="center" rowspan="1" colspan="1">Created</td>
<td align="center" rowspan="1" colspan="1">
<italic>NRSE</italic>
</td>
<td align="center" rowspan="1" colspan="1">Repressor of multiple neuronal genes</td>
<td align="left" colspan="5" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Candidate mutation</td>
<td align="center" rowspan="1" colspan="1">g.-1726C>A</td>
<td align="center" rowspan="1" colspan="1">CE12A</td>
<td align="center" rowspan="1" colspan="1">Abolished</td>
<td align="center" rowspan="1" colspan="1">
<italic>SP1</italic>
</td>
<td align="center" rowspan="1" colspan="1">Regulator of neuronal survival</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Candidate mutation</td>
<td align="center" rowspan="1" colspan="1">g.8213T>C</td>
<td align="center" rowspan="1" colspan="1">Intron 3</td>
<td align="center" rowspan="1" colspan="1">Abolished</td>
<td align="center" rowspan="1" colspan="1">
<italic>OCT-1</italic>
</td>
<td align="center" rowspan="1" colspan="1">Regulator of neuronal differentiation</td>
<td align="center" rowspan="1" colspan="1">T</td>
<td align="center" rowspan="1" colspan="1">T</td>
<td align="center" rowspan="1" colspan="1">T</td>
<td align="center" rowspan="1" colspan="1">T</td>
<td align="center" rowspan="1" colspan="1">T</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1"></td>
<td align="center" rowspan="1" colspan="1">Created</td>
<td align="center" rowspan="1" colspan="1">
<italic>BRN-5</italic>
</td>
<td align="center" rowspan="1" colspan="1">Regulator of neuronal differentiation</td>
<td align="left" colspan="5" rowspan="1"></td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1"></td>
<td align="center" rowspan="1" colspan="1">Created</td>
<td align="center" rowspan="1" colspan="1">
<italic>PAX-6</italic>
</td>
<td align="center" rowspan="1" colspan="1">Regulator of neuronal Proliferation and fate</td>
<td align="left" colspan="5" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Candidate mutation</td>
<td align="center" rowspan="1" colspan="1">g.14718C>T</td>
<td align="center" rowspan="1" colspan="1">Intron 7</td>
<td align="center" rowspan="1" colspan="1">Created</td>
<td align="center" rowspan="1" colspan="1">
<italic>TBX5</italic>
</td>
<td align="center" rowspan="1" colspan="1">Regulator of eye morphogenesis</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">N</td>
<td align="center" rowspan="1" colspan="1">na</td>
<td align="center" rowspan="1" colspan="1">na</td>
<td align="center" rowspan="1" colspan="1">na</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Candidate mutation</td>
<td align="center" rowspan="1" colspan="1">g.2945A>G</td>
<td align="center" rowspan="1" colspan="1">CE11A</td>
<td align="center" rowspan="1" colspan="1">No effect</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">A</td>
<td align="center" rowspan="1" colspan="1">A</td>
<td align="center" rowspan="1" colspan="1">A</td>
<td align="center" rowspan="1" colspan="1">A</td>
<td align="center" rowspan="1" colspan="1">na</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Candidate mutation</td>
<td align="center" rowspan="1" colspan="1">g.20765C>A</td>
<td align="center" rowspan="1" colspan="1">3′-UTR</td>
<td align="center" rowspan="1" colspan="1">No effect</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">na</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Candidate mutation</td>
<td align="center" rowspan="1" colspan="1">g.21502T>C</td>
<td align="center" rowspan="1" colspan="1">3′-UTR</td>
<td align="center" rowspan="1" colspan="1">No effect</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">T</td>
<td align="center" rowspan="1" colspan="1">T</td>
<td align="center" rowspan="1" colspan="1">T</td>
<td align="center" rowspan="1" colspan="1">na</td>
<td align="center" rowspan="1" colspan="1">na</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Functional polymorphism</td>
<td align="center" rowspan="1" colspan="1">g.-1453C>G</td>
<td align="center" rowspan="1" colspan="1">PPR</td>
<td align="center" rowspan="1" colspan="1">Created</td>
<td align="center" rowspan="1" colspan="1">
<italic>EGR3</italic>
</td>
<td align="center" rowspan="1" colspan="1">Regulator of synaptic plasticity</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">na</td>
<td align="center" rowspan="1" colspan="1">na</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1"></td>
<td align="center" rowspan="1" colspan="1">Created</td>
<td align="center" rowspan="1" colspan="1">
<italic>NUDR</italic>
</td>
<td align="center" rowspan="1" colspan="1">Regulator of 5-HT1A receptor in neurons</td>
<td align="left" colspan="5" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Functional polymorphism</td>
<td align="center" rowspan="1" colspan="1">g.11559C>T</td>
<td align="center" rowspan="1" colspan="1">Intron 5</td>
<td align="center" rowspan="1" colspan="1">No effect</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">na</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Functional polymorphism</td>
<td align="center" rowspan="1" colspan="1">g.21762C>A</td>
<td align="center" rowspan="1" colspan="1">3′-UTR</td>
<td align="center" rowspan="1" colspan="1">No effect</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">na</td>
<td align="center" rowspan="1" colspan="1">na</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Functional polymorphism</td>
<td align="center" rowspan="1" colspan="1">g.21796G>A</td>
<td align="center" rowspan="1" colspan="1">3′-UTR</td>
<td align="center" rowspan="1" colspan="1">No effect</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">n/a</td>
<td align="center" rowspan="1" colspan="1">G</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">A</td>
<td align="center" rowspan="1" colspan="1">na</td>
<td align="center" rowspan="1" colspan="1">na</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>See
<xref ref-type="table" rid="tbl3">Table 3</xref>
for definitions.</p>
</fn>
<fn>
<p>
<italic>EGR3</italic>
, Early growth response gene 3 product.</p>
</fn>
<fn>
<p>n/a, not applicable.</p>
</fn>
<fn id="tf4-1">
<label>*</label>
<p>apes include chimpanzee, gorilla, and orangutan. na, ortholgous region does not align with human sequence (in the case of ‘Macaque’, this region was sequenced but does not align; N, refers to nucleotide variability among apes; −, sequence data not available.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>To determine whether functional constraint may exist at the sites corresponding to the seven candidate mutations, we determined the orthologous major allele at each of the sites in chimpanzee, gorilla, orangutan, macaque, mouse and
<italic>Fugu</italic>
. Notably, in two instances (g.-1726C>A and g.8213T>C), the major human nucleotide was conserved to
<italic>Fugu</italic>
(
<xref ref-type="table" rid="tbl4">Table 4</xref>
). The absence of nucleotide variability at these two non-coding sites between human and
<italic>Fugu</italic>
, which are separated by 900 million years (
<xref ref-type="bibr" rid="b42">Kumar & Hedges 1998</xref>
), suggests strong functional constraint and supports the proposal that these sites may represent putative regulatory regions.</p>
<p>To determine whether the
<italic>NR2E1</italic>
candidate mutations may reside within
<italic>cis</italic>
-acting UTR motifs that are known to be critical for many aspects of gene expression and regulation (
<xref ref-type="bibr" rid="b46">Mignone
<italic>et al.</italic>
2002</xref>
), we searched for the presence of experimentally validated functional motifs in the 5′- and 3′-UTR of
<italic>NR2E1</italic>
using UTRscan (
<xref ref-type="bibr" rid="b47">Mignone
<italic>et al.</italic>
2005</xref>
). We identified three motifs in the 5′-UTR (15-LOX-DICE, IRES, Brd-Box) and two in the 3′-UTR (IRES, Brd-Box); however, none of these motifs included a candidate mutation. To determine whether any of the candidate mutations may alter 3′-UTR binding for microRNAs (miRNA), which are known to regulate genes (
<xref ref-type="bibr" rid="b6">Bartel 2004</xref>
), we aligned the 3′-UTR of
<italic>NR2E1</italic>
against known miRNA motifs (
<xref ref-type="bibr" rid="b68">Xie
<italic>et al.</italic>
2005</xref>
). We detected two motifs; however, neither included a candidate mutation.</p>
</sec>
<sec>
<title>Strong purifying selection and low nucleotide diversity at NR2E1 in ethnically diverse humans</title>
<p>Genetic diversity and molecular evolutionary studies of neural genes in humans and non-human primates represent powerful tools for understanding cortical development (
<xref ref-type="bibr" rid="b20">Enard & Paabo 2004</xref>
;
<xref ref-type="bibr" rid="b28">Gilbert
<italic>et al.</italic>
2005</xref>
). We therefore sought to gain additional insight into the extent and patterns of genetic variation at
<italic>NR2E1</italic>
by systematically resequencing the same coding and non-coding regions as described above in 94 unaffected, ethnically diverse humans representing Africa, the Americas, Asia, Europe, the Middle East and Oceania; none of these humans was studied as part of the data set used as controls in our previous analyses. In addition, we studied
<italic>NR2E1</italic>
in chimpanzee, gorilla, orangutan, Japanese macaque and rhesus macaque. The human sample size chosen was sufficient to detect alleles with minor allele frequencies of 10% or greater with 90% power.</p>
<p>We did not detect a single non-synonymous or synonymous change in the coding region of any human sample. We also did not detect a single non-synonymous change in any non-human primate sample (2–3 individuals from five species). The complete lack of synonymous variation among humans and the complete absence of non-synonymous variation between humans and non-human primates suggests that
<italic>NR2E1</italic>
has experienced strong functional constraint (i.e. purifying selection).</p>
<p>In this ethnically diverse sample, we observed a total of 25 non-coding variants (
<xref ref-type="fig" rid="fig01">Fig. 1a</xref>
; variants 1–25). Twenty-three of the 95 subjects (24%) were homozygous across all sequenced sites. Twenty of the 25 variants were novel (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/projects/SNP/">http://www.ncbi.nlm.nih.gov/projects/SNP/</ext-link>
; dbSNP Build 124) (
<xref ref-type="fig" rid="fig01">Fig. 1b</xref>
). None of the seven candidate mutations identified in patients were detected in this unaffected ethnically diverse human panel. Consequently, if we include control subjects of mixed ethnic origin into our analyses of candidate mutations, the total number of unaffected chromosomes not harboring candidate mutations is as follows: g.-2945A>G (518 chromosomes), g.-1767G>T (706 chromosomes), g.-1726C>A (716 chromosomes), g.8213T>C (334 chromosomes), g.14718C>T (746 chromosomes), g.20765C>A (550 chromosomes) and g.21502T>C (532 chromosomes).</p>
<fig id="fig01" position="float">
<label>Figure 1:</label>
<caption>
<p>
<bold>A few common and many rare
<italic>NR2E1</italic>
variants detected in human populations representative for global diversity.</bold>
(a) Functional and putatively functional regions of
<italic>NR2E1</italic>
were resequenced, including coding (dark purple boxes), 5′- and 3′-untranslated (light purple boxes), and human non-coding regions that are conserved (
<xref ref-type="bibr" rid="b1">Abrahams
<italic>et al.</italic>
2002</xref>
) in mouse (CE-A; red boxes) and mouse and
<italic>Fugu</italic>
(CE-B; yellow boxes). (b) A total of 26 variants was identified (variants 1–25 and CA-repeat, see
<xref ref-type="fig" rid="fig02">Fig. 2</xref>
). The nucleotide in the first position represents the human major (i.e. consensus) allele. Numbering based on Antonarakis and the Nomenclature Working Group (
<xref ref-type="bibr" rid="b4">Antonarakis 1998</xref>
), where A of the initiator Met codon in exon 1 is denoted nucleotide +1. Human genomic
<italic>NR2E1</italic>
sequence: AL078596 (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/">http://www.ncbi.nlm.nih.gov/</ext-link>
). Variants catalogued in dbSNP (‘Y’) are distinguished from those that are newly discovered here (‘N’). The DNA context of each variant is shown. (c) The number of chromosomes surveyed (
<italic>n</italic>
) and minor allele frequencies for each variable site are indicated for 18 world populations. (d) The corresponding chimpanzee, gorilla, orangutan, rhesus macaque, and Japanese macaque alleles are indicated. ‘x’ indicates that no sequence was obtained due to failed PCR or sequencing reaction. ‘−’ indicates that no corresponding nucleotide was present at that position in the non-human primate.</p>
</caption>
<graphic xlink:href="gbb0006-0503-f1"></graphic>
</fig>
<fig id="fig02" position="float">
<label>Figure 2:</label>
<caption>
<p>
<bold>Five common SNP-based
<italic>NR2E1</italic>
haplotypes account for the majority of chromosomes examined for global diversity.</bold>
(a) The SNP-based haplotypes for both chromosomes of every individual are illustrated. Each row represents one chromosome. Each column represents one variable site, the number of which is indicated above each column (see
<xref ref-type="fig" rid="fig01">Fig. 1b</xref>
). Black boxes indicate the major allele; white boxes represent the minor allele. Coriell Cell Repositories ID codes are indicated. ‘SNP’ refers to single nucleotide polymorphism (i.e. single nucleotide substitutions with minor allele frequencies ≥1%). ‘Prob’ is the probability of haplotype assignment, where 1.00 = 100% probable (i.e. individual is either homozygous at all sites or a heterozyote for only one site). MB, Mbuti; BK, Biaka; AA, African-American; CH, Cheyenne; MA, Mayan; QU, Quechua; KA, Karitiana; IP, Indo-Pakistani; CN, Chinese; JA, Japanese; IT, Italian; RU, Russian; NE, Northern European; IC, Icelandic; AJ, Ashkenazi Jewish; DA, Druze Arab; PA, Pacific Islanders; ME, Melanesian. (b) Estimated population haplotype frequencies of the 13 most frequent SNP-based
<italic>NR2E1</italic>
haplotypes. ‘−’ indicates that the haplotype is absent from the population. ‘1’ and ‘0’ represent present and absence of TC indel, respectively. (c) The frequency (
<italic>y</italic>
-axis) of the CA-repeat allele (
<italic>x</italic>
-axis) with the five most common
<italic>NR2E1</italic>
haplotypes (
<italic>z</italic>
-axis) is plotted for the global diversity population.</p>
</caption>
<graphic xlink:href="gbb0006-0503-f2"></graphic>
</fig>
<p>We determined the frequencies of all 25 variants in each ethnic group. Only six of the 25 variants (numbers 2, 7, 8, 14, 17 and 21) were common (i.e. minor allele frequency (MAF) ≥5%) (
<xref ref-type="fig" rid="fig01">Fig. 1c</xref>
). For each human variant, we also inferred the ancestral and derived states by comparing it to the orthologous non-human primate sequence (
<xref ref-type="fig" rid="fig01">Fig. 1d</xref>
). Interestingly, chimpanzee, gorilla and orangutan were all polymorphic for the same G > A transition (variant 8) observed in humans. This is the first report of a human polymorphic site that is also polymorphic for the same alleles across these three great apes.</p>
<p>We estimated the levels of human nucleotide diversity by computing θ
<sub>W</sub>
, which is based on the proportion of segregating sites (
<italic>S</italic>
) in a population and π, which is based on the average number of nucleotide differences per site between two sequences randomly drawn from the population (
<xref ref-type="bibr" rid="b32">Hartl 1997</xref>
) (
<xref ref-type="table" rid="tbl5">Table 5</xref>
). The total human estimates for θ
<sub>W</sub>
(5.7 × 10
<sup>−4</sup>
± 0.17 × 10
<sup>−4</sup>
) and π (2.6 × 10
<sup>−4</sup>
± 0. 20 × 10
<sup>−4</sup>
) for
<italic>NR2E1</italic>
fall at the lower 20% and 30% of previous studies, respectively (
<xref ref-type="bibr" rid="b51">Przeworski
<italic>et al.</italic>
2000</xref>
).</p>
<table-wrap id="tbl5" position="float">
<label>Table 5:</label>
<caption>
<p>Human nucleotide diversity and Tajima’s
<italic>D</italic>
at
<italic>NR2E1</italic>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Population</th>
<th align="center" rowspan="1" colspan="1">
<italic>n</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>S</italic>
</th>
<th align="center" rowspan="1" colspan="1">θ
<sub>W</sub>
(±SD)</th>
<th align="center" rowspan="1" colspan="1">π (±SD)</th>
<th align="center" rowspan="1" colspan="1">
<italic>η</italic>
<sub>S</sub>
</th>
<th align="center" rowspan="1" colspan="1">Tajima’s
<italic>D</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Africa</td>
<td align="center" rowspan="1" colspan="1">36</td>
<td align="center" rowspan="1" colspan="1">12</td>
<td align="center" rowspan="1" colspan="1">0.00045</td>
<td align="center" rowspan="1" colspan="1">0.00024</td>
<td align="center" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1">−1.45</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1"></td>
<td align="center" rowspan="1" colspan="1">(0.00018)</td>
<td align="center" rowspan="1" colspan="1">(0.00004)</td>
<td align="left" colspan="2" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Americas</td>
<td align="center" rowspan="1" colspan="1">28</td>
<td align="center" rowspan="1" colspan="1">6</td>
<td align="center" rowspan="1" colspan="1">0.00024</td>
<td align="center" rowspan="1" colspan="1">0.00029</td>
<td align="center" rowspan="1" colspan="1">0</td>
<td align="center" rowspan="1" colspan="1">0.61</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1"></td>
<td align="center" rowspan="1" colspan="1">(0.00012)</td>
<td align="center" rowspan="1" colspan="1">(0.00005)</td>
<td align="left" colspan="2" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Asia</td>
<td align="center" rowspan="1" colspan="1">18</td>
<td align="center" rowspan="1" colspan="1">6</td>
<td align="center" rowspan="1" colspan="1">0.00027</td>
<td align="center" rowspan="1" colspan="1">0.00027</td>
<td align="center" rowspan="1" colspan="1">0</td>
<td align="center" rowspan="1" colspan="1">−0.36</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1"></td>
<td align="center" rowspan="1" colspan="1">(0.00014)</td>
<td align="center" rowspan="1" colspan="1">(0.00006)</td>
<td align="left" colspan="2" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Europe (C)</td>
<td align="center" rowspan="1" colspan="1">24</td>
<td align="center" rowspan="1" colspan="1">3</td>
<td align="center" rowspan="1" colspan="1">0.00013</td>
<td align="center" rowspan="1" colspan="1">0.00017</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">0.83</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1"></td>
<td align="center" rowspan="1" colspan="1">(0.00008)</td>
<td align="center" rowspan="1" colspan="1">(0.00002)</td>
<td align="left" colspan="2" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Europe (N)</td>
<td align="center" rowspan="1" colspan="1">34</td>
<td align="center" rowspan="1" colspan="1">7</td>
<td align="center" rowspan="1" colspan="1">0.00027</td>
<td align="center" rowspan="1" colspan="1">0.00027</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">−0.04</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1"></td>
<td align="center" rowspan="1" colspan="1">(0.00013)</td>
<td align="center" rowspan="1" colspan="1">(0.00004)</td>
<td align="left" colspan="2" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Middle-East</td>
<td align="center" rowspan="1" colspan="1">26</td>
<td align="center" rowspan="1" colspan="1">7</td>
<td align="center" rowspan="1" colspan="1">0.00029</td>
<td align="center" rowspan="1" colspan="1">0.00022</td>
<td align="center" rowspan="1" colspan="1">5</td>
<td align="center" rowspan="1" colspan="1">−0.75</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1"></td>
<td align="center" rowspan="1" colspan="1">(0.00014)</td>
<td align="center" rowspan="1" colspan="1">(0.00003)</td>
<td align="left" colspan="2" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Oceania</td>
<td align="center" rowspan="1" colspan="1">22</td>
<td align="center" rowspan="1" colspan="1">5</td>
<td align="center" rowspan="1" colspan="1">0.00022</td>
<td align="center" rowspan="1" colspan="1">0.00020</td>
<td align="center" rowspan="1" colspan="1">0</td>
<td align="center" rowspan="1" colspan="1">−0.18</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1"></td>
<td align="center" rowspan="1" colspan="1">(0.00004)</td>
<td align="center" rowspan="1" colspan="1">(0.00004)</td>
<td align="left" colspan="2" rowspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Total human</td>
<td align="center" rowspan="1" colspan="1">188</td>
<td align="center" rowspan="1" colspan="1">21</td>
<td align="center" rowspan="1" colspan="1">0.00057</td>
<td align="center" rowspan="1" colspan="1">0.00026</td>
<td align="center" rowspan="1" colspan="1">11</td>
<td align="center" rowspan="1" colspan="1">−1.50</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1"></td>
<td align="center" rowspan="1" colspan="1">(0.00017)</td>
<td align="center" rowspan="1" colspan="1">(0.00002)</td>
<td align="left" colspan="2" rowspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>
<italic>n</italic>
, number of alleles;
<italic>η</italic>
<sub>S</sub>
, number of singleton mutations;
<italic>S</italic>
, number of segregating sites.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Evidence of non-neutral evolution at NR2E1</title>
<p>Genes that have been implicated in severe cortical malformations, including
<italic>ASPM</italic>
(
<xref ref-type="bibr" rid="b22">Evans et al. 2004b</xref>
) and
<italic>Microcephalin</italic>
(
<xref ref-type="bibr" rid="b21">Evans et al. 2004a</xref>
), show robust molecular signatures of positive Darwinian selection; consequently, the identification of signatures of selection in candidate neural genes such as
<italic>NR2E1</italic>
may strengthen their proposed role in human cortical disorders. To elucidate the human molecular evolution of
<italic>NR2E1</italic>
, we first used the nucleotide diversity measures θ
<sub>W</sub>
and π to calculate Tajima’s
<italic>D</italic>
(
<xref ref-type="bibr" rid="b64">Tajima 1989</xref>
) (
<xref ref-type="table" rid="tbl5">Table 5</xref>
). Positive and negative values of this test correspond to departures from the neutral expectations of molecular evolution. We obtained a negative value for Tajima’s
<italic>D</italic>
in the ethnically diverse population, which is consistent with another report that obtained a negative Tajima’s
<italic>D</italic>
at
<italic>NR2E1</italic>
(
<xref ref-type="bibr" rid="b62">Stephens
<italic>et al.</italic>
2001</xref>
).</p>
<p>To further evaluate the role of natural selection at
<italic>NR2E1</italic>
, we used the ancestral and derived states of each variant from the ethnically diverse population to perform three additional tests of molecular neutrality: Fu and Li’s
<italic>D*</italic>
(
<xref ref-type="bibr" rid="b27">Fu & Li 1993</xref>
), Fu and Li’s
<italic>F*</italic>
(
<xref ref-type="bibr" rid="b27">Fu & Li 1993</xref>
) and Fay and Wu’s
<italic>H</italic>
(
<xref ref-type="bibr" rid="b23">Fay & Wu 2000</xref>
). We obtained statistically significant negative values for Fu and Li’s
<italic>D*</italic>
and
<italic>F*</italic>
(
<xref ref-type="table" rid="tbl6">Table 6</xref>
), which may indicate genetic hitchhiking or background selection. However, based on these tests alone, we cannot exclude the possibility that demographic factors such as population bottlenecks may also explain deviations from neutrality observed at
<italic>NR2E1</italic>
(
<xref ref-type="bibr" rid="b26">Fu 1997</xref>
;
<xref ref-type="bibr" rid="b39">Kreitman 2000</xref>
).</p>
<table-wrap id="tbl6" position="float">
<label>Table 6:</label>
<caption>
<p>Neutrality tests using chimpanzee as outgroup</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Population</th>
<th align="center" rowspan="1" colspan="1">Fu and Li’s
<italic>D</italic>
<sup>*</sup>
</th>
<th align="center" rowspan="1" colspan="1">Fu and Li’s
<italic>F</italic>
<sup>*</sup>
</th>
<th align="center" rowspan="1" colspan="1">Fay and Wu’s
<italic>H</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Africa</td>
<td align="center" rowspan="1" colspan="1">−2.77
<xref ref-type="table-fn" rid="tf6-1"></xref>
</td>
<td align="center" rowspan="1" colspan="1">−2.79
<xref ref-type="table-fn" rid="tf6-2"></xref>
</td>
<td align="center" rowspan="1" colspan="1">0.89</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Americas</td>
<td align="center" rowspan="1" colspan="1">1.27</td>
<td align="center" rowspan="1" colspan="1">1.26</td>
<td align="center" rowspan="1" colspan="1">1.14</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Asia</td>
<td align="center" rowspan="1" colspan="1">1.33</td>
<td align="center" rowspan="1" colspan="1">1.11</td>
<td align="center" rowspan="1" colspan="1">0.86</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Europe (C)</td>
<td align="center" rowspan="1" colspan="1">−0.24</td>
<td align="center" rowspan="1" colspan="1">0.07</td>
<td align="center" rowspan="1" colspan="1">0.31</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Europe (N)</td>
<td align="center" rowspan="1" colspan="1">1.24</td>
<td align="center" rowspan="1" colspan="1">1.13</td>
<td align="center" rowspan="1" colspan="1">0.77</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Middle East</td>
<td align="center" rowspan="1" colspan="1">−1.97</td>
<td align="center" rowspan="1" colspan="1">−1.81</td>
<td align="center" rowspan="1" colspan="1">0.69</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Oceania</td>
<td align="center" rowspan="1" colspan="1">1.22</td>
<td align="center" rowspan="1" colspan="1">0.96</td>
<td align="center" rowspan="1" colspan="1">0.19</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Total human</td>
<td align="center" rowspan="1" colspan="1">−3.08
<xref ref-type="table-fn" rid="tf6-1"></xref>
</td>
<td align="center" rowspan="1" colspan="1">−2.63
<xref ref-type="table-fn" rid="tf6-2"></xref>
</td>
<td align="center" rowspan="1" colspan="1">0.98</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tf6-1">
<label></label>
<p>
<italic>P</italic>
< 0.02.</p>
</fn>
<fn id="tf6-2">
<label></label>
<p>
<italic>P</italic>
< 0.05.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Human-specific NR2E1 sites identified</title>
<p>Insight into the evolution of human-specific traits, such as enlarged cerebral cortex, may be gained by the identification of human-specific sites (i.e. nucleotides that are fixed among all humans but absent from non-human species) (
<xref ref-type="bibr" rid="b20">Enard & Paabo 2004</xref>
). To identify such sites, we aligned 6137 bp of human and non-human primate coding and non-coding sequences. We identified 26 human-specific (divergent) sites (data not shown). Of these 26, five resided within functional (i.e. exons) or putatively functional (i.e. evolutionarily conserved non-coding) regions of
<italic>NR2E1</italic>
: one synonymous coding variant and four putative regulatory variants (
<xref ref-type="table" rid="tbl7">Table 7</xref>
). We extended our analysis to mouse and determined that four divergent sites still remained (the 3′-UTRs between human and mouse
<italic>NR2E1</italic>
could not be aligned) (
<xref ref-type="table" rid="tbl7">Table 7</xref>
). To determine whether these four variants may disrupt or create TFBS, we performed
<italic>in silico</italic>
TFBS analyses. We did not detect any alterations of TFBS for transcription factors expressed in the brain.</p>
<table-wrap id="tbl7" position="float">
<label>Table 7:</label>
<caption>
<p>
<italic>NR2E1</italic>
sites that are fixed among all humans but differ in non-human species</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Region</th>
<th align="center" rowspan="1" colspan="1">Location
<xref ref-type="table-fn" rid="tf7-1">*</xref>
(bp)</th>
<th align="center" rowspan="1" colspan="1">Humans
<xref ref-type="table-fn" rid="tf7-2"></xref>
</th>
<th align="center" rowspan="1" colspan="1">Great apes
<xref ref-type="table-fn" rid="tf7-3"></xref>
</th>
<th align="center" rowspan="1" colspan="1">Old world monkeys
<xref ref-type="table-fn" rid="tf7-4">§</xref>
</th>
<th align="center" rowspan="1" colspan="1">Mouse
<xref ref-type="table-fn" rid="tf7-5"></xref>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">CE11A</td>
<td align="center" rowspan="1" colspan="1">−2994</td>
<td align="center" rowspan="1" colspan="1">G</td>
<td align="center" rowspan="1" colspan="1">A</td>
<td align="center" rowspan="1" colspan="1">A</td>
<td align="center" rowspan="1" colspan="1">A</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">5′-UTR</td>
<td align="center" rowspan="1" colspan="1">−542</td>
<td align="center" rowspan="1" colspan="1">T</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">C</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">5′-UTR</td>
<td align="center" rowspan="1" colspan="1">−498</td>
<td align="center" rowspan="1" colspan="1">A</td>
<td align="center" rowspan="1" colspan="1">T</td>
<td align="center" rowspan="1" colspan="1">T</td>
<td align="center" rowspan="1" colspan="1">T</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Exon 4
<xref ref-type="table-fn" rid="tf7-6">††</xref>
</td>
<td align="center" rowspan="1" colspan="1">9843</td>
<td align="center" rowspan="1" colspan="1">A</td>
<td align="center" rowspan="1" colspan="1">T</td>
<td align="center" rowspan="1" colspan="1">T</td>
<td align="center" rowspan="1" colspan="1">T</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3′-UTR</td>
<td align="center" rowspan="1" colspan="1">21090</td>
<td align="center" rowspan="1" colspan="1">C</td>
<td align="center" rowspan="1" colspan="1">T</td>
<td align="center" rowspan="1" colspan="1">T</td>
<td align="center" rowspan="1" colspan="1">na</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tf7-1">
<label>*</label>
<p>Numbering adopted from
<xref ref-type="bibr" rid="b4">Antonarakis
<italic>et al</italic>
. (1998)</xref>
, where A of the initiator Met codon in exon 1 is denoted nucleotide +1. Human genomic
<italic>NR2E1</italic>
sequence: NCBI AL078596.</p>
</fn>
<fn id="tf7-2">
<label></label>
<p>includes all humans examined (African, Asia, Americas, Europe, Middle East, Oceania).</p>
</fn>
<fn id="tf7-3">
<label></label>
<p>includes all chimpanzees, gorillas, orangutans examined.</p>
</fn>
<fn id="tf7-4">
<label>§</label>
<p>includes all rhesus and Japanese macaques examined.</p>
</fn>
<fn id="tf7-5">
<label></label>
<p>na, orthologous region does not align with human sequence.</p>
</fn>
<fn id="tf7-6">
<label>††</label>
<p>CCA_(Pro) to CCT_(Pro).</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>NR2E1 haplotype and LD structure provide effective tools for disease-mapping studies</title>
<p>To inform future association and linkage-based studies of
<italic>NR2E1</italic>
in disorders of brain and behavior, we elucidated haplotype structure and LD using a subset of the 21 novel variants identified in our analyses of ethnically diverse and unaffected humans. To characterize the haplotype structure of human
<italic>NR2E1</italic>
, we inferred haplotypes using bi-allelic variants whose MAFs were 5% or greater. Genotypes of all markers were in Hardy–Weinberg equilibrium (data not shown). For each individual, we inferred haplotypes (
<xref ref-type="fig" rid="fig02">Fig. 2a</xref>
) and estimated the population haplotype frequencies for all seven human populations (
<xref ref-type="fig" rid="fig02">Fig. 2b</xref>
). We also typed a 12-allele CA-repeat in the 3′-UTR (dinucleotide repeat range 17–31; data not shown). We then re-constructed haplotypes using the CA-repeat data and the five most common haplotypes (
<xref ref-type="fig" rid="fig02">Fig. 2c</xref>
). Our characterization of haplotype structure in
<italic>NR2E1</italic>
identified five haplotypes and CA-repeat alleles that would be useful for disease-mapping studies.</p>
<p>To empirically estimate the degree of non-random association between
<italic>NR2E1</italic>
variants, we calculated LD using two statistics: Lewontin’s coefficient |
<italic>D’</italic>
| and Pearson’s correlation
<italic>r
<sup>2</sup>
</italic>
(
<xref ref-type="bibr" rid="b5">Ardlie
<italic>et al.</italic>
2002</xref>
). We used all the variants with MAFs equal to or greater than 5% except indel variant 17 for technical reasons (see
<italic>Materials and methods</italic>
). Despite our markers being only a few kilobases apart, in most cases we observed weak LD in this region (data not shown); however, we note that small sample sizes may underestimate the extent of significant LD. The only substantial LD in
<italic>NR2E1</italic>
was between variants 2 and 7 (|
<italic>D’</italic>
|= 0.894;
<italic>r
<sup>2</sup>
</italic>
= 0.880; Fisher
<italic>P</italic>
< 0.001, significant using the conservative Bonferroni correction). We also examined the relationship between LD and distance using both |
<italic>D’</italic>
| and
<italic>r
<sup>2</sup>
</italic>
, which indicated a general decrease in the level of LD with increasing distance (data not shown).</p>
</sec>
</sec>
<sec>
<title>Discussion</title>
<p>The present study represents the first genetic report of
<italic>NR2E1</italic>
in clinical samples. In addition, it provides the most comprehensive evolutionary study of
<italic>NR2E1</italic>
reported to date. Our studies of
<italic>NR2E1</italic>
are noteworthy in several respects. First, we used a direct resequencing approach, which is the most reliable, complete and impartial means of mutation and polymorphism discovery; however, one limitation of using this approach alone is its inability to distinguish between homozygosity across loci vs. large deletions. Second, our experiments were designed to identify candidate mutations and polymorphisms in both coding and key non-coding regions, such as evolutionarily conserved sequences that may harbor functionally important and disease-causing variants (
<xref ref-type="bibr" rid="b18">Drake
<italic>et al.</italic>
2006</xref>
). Third, we studied a diverse collection of human genomic DNAs representing the world’s major continental populations as a means to thoroughly assess the natural genetic variation at this locus.</p>
<p>Our candidate mutation screen demonstrated that protein-coding mutations in
<italic>NR2E1</italic>
do not contribute to cortical and behavioral abnormalities in the patients examined here. In addition, we detected individuals homozygous across the
<italic>NR2E1</italic>
locus, but given the overall lack of variability at the locus and the fact that these cases were not enriched in the patient sample, this data does not argue for the presence of large deletions. We did identify and characterize seven candidate non-coding mutations and four candidate functional polymorphisms. Of particular interest is patient LR00-144, who is a compound heterozygote for candidate
<italic>NR2E1</italic>
mutations, which is consistent with the recessive inheritance of the cortical phenotype in
<italic>Nr2e1
<sup>−/−</sup>
</italic>
mice. Strikingly, patient LR00-144 harbored three of the seven candidate mutations. The chances of observing three candidate mutations in a single patient are extremely rare [(7 candidate mutations/56 patients)
<sup>3</sup>
= 1.9 × 10
<sup>−3</sup>
]. The g.-1767G>T candidate mutation identified in this patient is predicted to create two transcription factor binding sites (TFBS). One of these is for the zinc finger protein insulinoma-associated 1 (
<italic>IA-1</italic>
), which is present in fetal brain tissue and functions as a transcriptional repressor during neuronal development (
<xref ref-type="bibr" rid="b8">Breslin
<italic>et al.</italic>
2002</xref>
).
<italic>IA-1</italic>
binding sites have been identified in the 5′-flanking regions of several genes including
<italic>Pax6</italic>
and
<italic>NeuroD/β2</italic>
(
<xref ref-type="bibr" rid="b8">Breslin
<italic>et al.</italic>
2002</xref>
). The g.-1767G>T substitution is also predicted to create a neural-restrictive-silencer element (
<italic>NRSE</italic>
).
<italic>NRSE</italic>
motifs are known to bind the neural-restrictive silencer factor (
<italic>NRSF</italic>
) that functions as a transcriptional repressor of multiple neuronal genes such as
<italic>NR2B</italic>
, which contains five
<italic>NRSE</italic>
motifs in its 5′-flanking region (
<xref ref-type="bibr" rid="b52">Qiang
<italic>et al.</italic>
2005</xref>
). The highest expression of
<italic>NRSF</italic>
is observed in the mouse embryonic cortex at E14, but is also detected in the adult mouse brain as well as in cultured cortical neurons (
<xref ref-type="bibr" rid="b52">Qiang
<italic>et al.</italic>
2005</xref>
). Taken together, the creation of at least two transcriptional repressor binding sites in the proximal promoter of
<italic>NR2E1</italic>
in patient LR00-144 supports the proposal that the g.-1767G>T candidate mutation could contribute to the cortical phenotype and severe mental retardation observed in this patient.</p>
<p>Patients LR00-204 and LR03-277 also represent compound heterozygotes for patient variants of
<italic>NR2E1</italic>
. Interestingly, LR00-204, who had microcephaly, was also diagnosed with optic nerve hypoplasia, a phenotype observed in
<italic>Nr2e1
<sup>−/−</sup>
</italic>
mice (
<xref ref-type="bibr" rid="b69">Young
<italic>et al.</italic>
2002</xref>
;
<xref ref-type="bibr" rid="b70">Yu
<italic>et al.</italic>
2000</xref>
). The specific pair of candidate functional polymorphisms observed in each patient was absent in all controls examined; thus, these particular combinations of alleles were specific to cortical disorders. Each of these variants may act through a hypomorphic mechanism that involves reduced levels of
<italic>NR2E1</italic>
transcription. Such a mechanism is supported by the demonstration that
<italic>Nr2e1
<sup>+/−</sup>
</italic>
mice show altered neurogenesis early during cortical development (
<xref ref-type="bibr" rid="b55">Roy
<italic>et al.</italic>
2004</xref>
), which indicates dosage sensitivity for
<italic>Nr2e1</italic>
.</p>
<p>Patients 8348 and LR01-148 harbored candidate mutations g.8213T>C and g.20765C>A, respectively. Parents of both these patients were unavailable to study; consequently, we cannot exclude the possibility that both these variants may represent
<italic>de novo</italic>
mutations. The candidate mutation g.8213T>C identified in intron 3 in patient 8348 is predicted to abolish a binding site for
<italic>OCT1</italic>
, a regulator of neuronal differentiation and is also predicted to create binding sites for
<italic>BRN5</italic>
, another regulator of neuronal differentiation and
<italic>PAX6</italic>
, a regulator of neuronal proliferation and fate. The major allele T at this site is conserved between human and
<italic>Fugu</italic>
, which strengthens the proposal that a nucleotide substitution at this site may be pathogenic.</p>
<p>Finally, the two candidate mutations g.-1726C>A and g.14718C>T identified in patients LR02-304 and LR01-194, respectively, may also underlie cortical disorders. However, as each was also present in a parent, we propose a multigenic mechanism underlying the cortical phenotypes in each case. Such a proposal receives support from mice that are double heterozygotes for mutations at
<italic>Nr2e1</italic>
and
<italic>Pax6</italic>
, which interact genetically to alter normal forebrain development (
<xref ref-type="bibr" rid="b61">Stenman
<italic>et al.</italic>
2003</xref>
). Both candidate mutations are predicted to alter neural TFBS and one of these (g.-1726C>A) resides in the promoter region, which together strengthens their candidacy for disease.</p>
<p>Our genetic diversity and evolutionary analyses of
<italic>NR2E1</italic>
in ethnically diverse humans and non-human primates will inform future
<italic>NR2E1</italic>
studies of human brain–behavior disorders. Our data indicate strong evolutionary constraint (i.e. purifying selection) in the coding region of
<italic>NR2E1</italic>
that is higher in comparison to many other genes examined for genetic diversity (
<xref ref-type="bibr" rid="b11">Cargill
<italic>et al.</italic>
1999</xref>
;
<xref ref-type="bibr" rid="b17">Dorus
<italic>et al.</italic>
2004</xref>
;
<xref ref-type="bibr" rid="b25">Freudenberg-Hua
<italic>et al.</italic>
2003</xref>
) (
<ext-link ext-link-type="uri" xlink:href="http://genebank.nibio.go.jp/gbank/qfbase/index.html">http://genebank.nibio.go.jp/gbank/qfbase/index.html</ext-link>
). Studying additional non-human primates would serve to further strengthen this conclusion. The implication of strong functional constraint is that any future identification of an
<italic>NR2E1</italic>
coding variant in a patient with a brain–behaviour phenotype is likely to be related to the disorder. Importantly, the striking absence of synonymous changes, which are typically considered to be selectively neutral (
<xref ref-type="bibr" rid="b20">Enard & Paabo 2004</xref>
), may suggest a functional constraint that operates at the RNA level to maintain its secondary structure or stability, as described for other genes (
<xref ref-type="bibr" rid="b10">Capon
<italic>et al.</italic>
2004</xref>
;
<xref ref-type="bibr" rid="b12">Chamary & Hurst 2005</xref>
;
<xref ref-type="bibr" rid="b19">Duan
<italic>et al.</italic>
2003</xref>
).</p>
<p>We provide evidence of adaptive evolution at
<italic>NR2E1</italic>
that may act on regulatory sites, which constitute an important class of non-coding sequences that are potential targets of Darwinian selection (
<xref ref-type="bibr" rid="b67">Wray
<italic>et al.</italic>
2003</xref>
). We observed an excess of rare, derived
<italic>NR2E1</italic>
variants, as indicated by the significantly negative Fu and Li’s
<italic>D*</italic>
and
<italic>F*</italic>
values, which could be evidence of a ‘selective sweep’ (i.e. the rare variants have ‘hitch-hiked’ along with a variant on which positive selection has occurred) (
<xref ref-type="bibr" rid="b23">Fay & Wu 2000</xref>
). In this regard, it is conceivable that one or more of the human-specific
<italic>NR2E1</italic>
sites identified in the present study may have been fixed by positive selection in a manner similar to that proposed for
<italic>ASPM</italic>
, which is mutated in some patients with microcephaly (
<xref ref-type="bibr" rid="b7">Bond
<italic>et al.</italic>
2003</xref>
;
<xref ref-type="bibr" rid="b40">Kumar
<italic>et al</italic>
. 2004</xref>
;
<xref ref-type="bibr" rid="b66">Woods
<italic>et al.</italic>
2005</xref>
).</p>
<p>The knowledge of the genetic architecture of
<italic>NR2E1</italic>
generated in this study in ethnically diverse humans and non-human primates provides additional tools for future disease-mapping studies of brain–behavior disorders. Our results expand those of one other study that examined normal genetic architecture at
<italic>NR2E1</italic>
(
<xref ref-type="bibr" rid="b62">Stephens
<italic>et al.</italic>
2001</xref>
); however, our analyses employed over twice as much sequence data (including evolutionarily conserved regions not previously examined) from a more diverse set of humans and non-human primate species. The identification and characterization of common SNPs, microsatellites, and haplotypes in multiple ethnic groups will benefit future association analyses of brain–behavior disorders by helping to reduce or eliminate false-positive and negative associations that can arise as a result of population stratification, which is a well established confound in human disease-mapping efforts (
<xref ref-type="bibr" rid="b24">Freedman
<italic>et al.</italic>
2004</xref>
;
<xref ref-type="bibr" rid="b37">Kang
<italic>et al.</italic>
1999</xref>
). We also provide the first example of a human polymorphic site that is also polymorphic for the same alleles in chimpanzee, gorilla and orangutan. Therefore, we strongly recommend that multiple non-human primate species be used to robustly infer ancestral states of human polymorphisms.</p>
<p>In conclusion, our analysis of human
<italic>NR2E1</italic>
has identified candidate regulatory mutations and rare putative functional polymorphisms. Future work will involve testing these alleles for abnormal function using whole-animal assessment as proposed by
<xref ref-type="bibr" rid="b2">Abrahams
<italic>et al.</italic>
(2005)</xref>
. In this study, we selected patients enriched for features resembling
<italic>Nr2e1
<sup>−/−</sup>
</italic>
mice in addition to microcephaly (e.g. four patients with agenesis of the corpus callosum, one patient with optic atrophy). Future research may benefit by focusing on other region-specific malformations present in the
<italic>Nr2e1
<sup>−/−</sup>
</italic>
mice, such as preferential reduction of superficial cortical layers II and III, in an effort to enhance detection of
<italic>NR2E1</italic>
mutations. Our genetic diversity and evolutionary analyses provide the foundation to facilitate future examination of the role of
<italic>NR2E1</italic>
in additional human disorders of brain and behavior.</p>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="b1">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abrahams</surname>
<given-names>BS</given-names>
</name>
</person-group>
<article-title>Novel vertebrate genes and putative regulatory elements identified at
<italic>kidney disease</italic>
and
<italic>NR2E1/fierce</italic>
loci</article-title>
<source>Genomics</source>
<year>2002</year>
<volume>80</volume>
<fpage>45</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">12079282</pub-id>
</citation>
</ref>
<ref id="b2">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abrahams</surname>
<given-names>BS</given-names>
</name>
</person-group>
<article-title>Pathological aggression in ‘fierce’ mice corrected by human nuclear receptor 2E1</article-title>
<source>J Neurosci</source>
<year>2005</year>
<volume>25</volume>
<fpage>6263</fpage>
<lpage>6270</lpage>
<pub-id pub-id-type="pmid">16000615</pub-id>
</citation>
</ref>
<ref id="b3">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akhmedov</surname>
<given-names>NB</given-names>
</name>
</person-group>
<article-title>A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2000</year>
<volume>97</volume>
<fpage>5551</fpage>
<lpage>5556</lpage>
<pub-id pub-id-type="pmid">10805811</pub-id>
</citation>
</ref>
<ref id="b4">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Antonarakis</surname>
<given-names>SE</given-names>
</name>
</person-group>
<article-title>Recommendations for a nomenclature system for human gene mutations. Nomenclature Working Group</article-title>
<source>Hum Mutat</source>
<year>1998</year>
<volume>11</volume>
<fpage>1</fpage>
<lpage>3</lpage>
<pub-id pub-id-type="pmid">9450896</pub-id>
</citation>
</ref>
<ref id="b5">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ardlie</surname>
<given-names>KG</given-names>
</name>
</person-group>
<article-title>Patterns of linkage disequilibrium in the human genome</article-title>
<source>Nat Rev Genet</source>
<year>2002</year>
<volume>3</volume>
<fpage>299</fpage>
<lpage>309</lpage>
<pub-id pub-id-type="pmid">11967554</pub-id>
</citation>
</ref>
<ref id="b6">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
</person-group>
<article-title>MicroRNAs: genomics, biogenesis, mechanism, and function</article-title>
<source>Cell</source>
<year>2004</year>
<volume>116</volume>
<fpage>281</fpage>
<lpage>297</lpage>
<pub-id pub-id-type="pmid">14744438</pub-id>
</citation>
</ref>
<ref id="b7">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bond</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Protein-truncating mutations in ASPM cause variable reduction in brain size</article-title>
<source>Am J Hum Genet</source>
<year>2003</year>
<volume>73</volume>
<fpage>1170</fpage>
<lpage>1177</lpage>
<pub-id pub-id-type="pmid">14574646</pub-id>
</citation>
</ref>
<ref id="b8">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Breslin</surname>
<given-names>MB</given-names>
</name>
</person-group>
<article-title>Neuroendocrine differentiation factor, IA-1, is a transcriptional repressor and contains a specific DNA-binding domain: identification of consensus IA-1 binding sequence</article-title>
<source>Nucleic Acids Res</source>
<year>2002</year>
<volume>30</volume>
<fpage>1038</fpage>
<lpage>1045</lpage>
<pub-id pub-id-type="pmid">11842116</pub-id>
</citation>
</ref>
<ref id="b9">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buervenich</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>NURR1 mutations in cases of schizophrenia and manic-depressive disorder</article-title>
<source>Am J Med Genet</source>
<year>2000</year>
<volume>96</volume>
<fpage>808</fpage>
<lpage>813</lpage>
<pub-id pub-id-type="pmid">11121187</pub-id>
</citation>
</ref>
<ref id="b10">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Capon</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups</article-title>
<source>Hum Mol Genet</source>
<year>2004</year>
<volume>13</volume>
<fpage>2361</fpage>
<lpage>2368</lpage>
<pub-id pub-id-type="pmid">15333584</pub-id>
</citation>
</ref>
<ref id="b11">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cargill</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Characterization of single-nucleotide polymorphisms in coding regions of human genes</article-title>
<source>Nat Genet</source>
<year>1999</year>
<volume>22</volume>
<fpage>231</fpage>
<lpage>238</lpage>
<pub-id pub-id-type="pmid">10391209</pub-id>
</citation>
</ref>
<ref id="b12">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chamary</surname>
<given-names>JV</given-names>
</name>
</person-group>
<article-title>Evidence for selection on synonymous mutations affecting stability of mRNA secondary structure in mammals</article-title>
<source>Genome Biol</source>
<year>2005</year>
<volume>6</volume>
<fpage>R75.1</fpage>
<lpage>R75.12</lpage>
<pub-id pub-id-type="pmid">16168082</pub-id>
</citation>
</ref>
<ref id="b13">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>YH</given-names>
</name>
</person-group>
<article-title>Mutation analysis of the human NR4A2 gene, an essential gene for midbrain dopaminergic neurogenesis, in schizophrenic patients</article-title>
<source>Am J Med Genet</source>
<year>2001</year>
<volume>105</volume>
<fpage>753</fpage>
<lpage>757</lpage>
<pub-id pub-id-type="pmid">11803525</pub-id>
</citation>
</ref>
<ref id="b14">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chery</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Interstitial deletion of the long arm of chromosome 6</article-title>
<source>Ann Genet</source>
<year>1989</year>
<volume>32</volume>
<fpage>82</fpage>
<lpage>86</lpage>
<pub-id pub-id-type="pmid">2757364</pub-id>
</citation>
</ref>
<ref id="b15">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Christie</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>Deletion of the nuclear receptor Nr2e1 impairs synaptic plasticity and dendritic structure in the mouse dentate gyrus</article-title>
<source>Neuroscience</source>
<year>2006</year>
<volume>137</volume>
<fpage>1031</fpage>
<lpage>1037</lpage>
<pub-id pub-id-type="pmid">16289828</pub-id>
</citation>
</ref>
<ref id="b16">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dobyns</surname>
<given-names>WB</given-names>
</name>
</person-group>
<article-title>Primary microcephaly: new approaches for an old disorder</article-title>
<source>Am J Med Genet</source>
<year>2002</year>
<volume>112</volume>
<fpage>315</fpage>
<lpage>317</lpage>
<pub-id pub-id-type="pmid">12376930</pub-id>
</citation>
</ref>
<ref id="b17">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dorus</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Accelerated evolution of nervous system genes in the origin of Homo sapiens</article-title>
<source>Cell</source>
<year>2004</year>
<volume>119</volume>
<fpage>1027</fpage>
<lpage>1040</lpage>
<pub-id pub-id-type="pmid">15620360</pub-id>
</citation>
</ref>
<ref id="b18">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drake</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Conserved noncoding sequences are selectively constrained and not mutation cold spots</article-title>
<source>Nat Genet</source>
<year>2006</year>
<volume>38</volume>
<fpage>223</fpage>
<lpage>227</lpage>
<pub-id pub-id-type="pmid">16380714</pub-id>
</citation>
</ref>
<ref id="b19">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duan</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor</article-title>
<source>Hum Mol Genet</source>
<year>2003</year>
<volume>12</volume>
<fpage>205</fpage>
<lpage>216</lpage>
<pub-id pub-id-type="pmid">12554675</pub-id>
</citation>
</ref>
<ref id="b20">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Enard</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Comparative primate genomics</article-title>
<source>Annu Rev Genomics Hum Genet</source>
<year>2004</year>
<volume>5</volume>
<fpage>351</fpage>
<lpage>378</lpage>
<pub-id pub-id-type="pmid">15485353</pub-id>
</citation>
</ref>
<ref id="b21">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Evans</surname>
<given-names>PD</given-names>
</name>
</person-group>
<article-title>Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size</article-title>
<source>Hum Mol Genet</source>
<year>2004a</year>
<volume>13</volume>
<fpage>1139</fpage>
<lpage>1145</lpage>
<pub-id pub-id-type="pmid">15056607</pub-id>
</citation>
</ref>
<ref id="b22">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Evans</surname>
<given-names>PD</given-names>
</name>
</person-group>
<article-title>Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans</article-title>
<source>Hum Mol Genet</source>
<year>2004b</year>
<volume>13</volume>
<fpage>489</fpage>
<lpage>494</lpage>
<pub-id pub-id-type="pmid">14722158</pub-id>
</citation>
</ref>
<ref id="b23">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fay</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Hitchhiking under positive Darwinian selection</article-title>
<source>Genetics</source>
<year>2000</year>
<volume>155</volume>
<fpage>1405</fpage>
<lpage>1413</lpage>
<pub-id pub-id-type="pmid">10880498</pub-id>
</citation>
</ref>
<ref id="b24">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freedman</surname>
<given-names>ML</given-names>
</name>
</person-group>
<article-title>Assessing the impact of population stratification on genetic association studies</article-title>
<source>Nat Genet</source>
<year>2004</year>
<volume>36</volume>
<fpage>388</fpage>
<lpage>393</lpage>
<pub-id pub-id-type="pmid">15052270</pub-id>
</citation>
</ref>
<ref id="b25">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freudenberg-Hua</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Single nucleotide variation analysis in 65 candidate genes for CNS disorders in a representative sample of the European population</article-title>
<source>Genome Res</source>
<year>2003</year>
<volume>13</volume>
<fpage>2271</fpage>
<lpage>2276</lpage>
<pub-id pub-id-type="pmid">14525928</pub-id>
</citation>
</ref>
<ref id="b26">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fu</surname>
<given-names>YX</given-names>
</name>
</person-group>
<article-title>Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection</article-title>
<source>Genetics</source>
<year>1997</year>
<volume>147</volume>
<fpage>915</fpage>
<lpage>925</lpage>
<pub-id pub-id-type="pmid">9335623</pub-id>
</citation>
</ref>
<ref id="b27">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fu</surname>
<given-names>YX</given-names>
</name>
</person-group>
<article-title>Statistical tests of neutrality of mutations</article-title>
<source>Genetics</source>
<year>1993</year>
<volume>133</volume>
<fpage>693</fpage>
<lpage>709</lpage>
<pub-id pub-id-type="pmid">8454210</pub-id>
</citation>
</ref>
<ref id="b28">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gilbert</surname>
<given-names>SL</given-names>
</name>
</person-group>
<article-title>Genetic links between brain development and brain evolution</article-title>
<source>Nat Rev Genet</source>
<year>2005</year>
<volume>6</volume>
<fpage>581</fpage>
<lpage>590</lpage>
<pub-id pub-id-type="pmid">15951746</pub-id>
</citation>
</ref>
<ref id="b29">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glaser</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects</article-title>
<source>Nat Genet</source>
<year>1994</year>
<volume>7</volume>
<fpage>463</fpage>
<lpage>471</lpage>
<pub-id pub-id-type="pmid">7951315</pub-id>
</citation>
</ref>
<ref id="b30">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gordon</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Consed: a graphical tool for sequence finishing</article-title>
<source>Genome Res</source>
<year>1998</year>
<volume>8</volume>
<fpage>195</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="pmid">9521923</pub-id>
</citation>
</ref>
<ref id="b31">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haider</surname>
<given-names>NB</given-names>
</name>
</person-group>
<article-title>Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate</article-title>
<source>Nat Genet</source>
<year>2000</year>
<volume>24</volume>
<fpage>127</fpage>
<lpage>131</lpage>
<pub-id pub-id-type="pmid">10655056</pub-id>
</citation>
</ref>
<ref id="b32">
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Hartl</surname>
<given-names>C</given-names>
</name>
</person-group>
<source>Principles of Population Genetics</source>
<year>1997</year>
<publisher-loc>Sunderland, MA</publisher-loc>
<publisher-name>Sinauer</publisher-name>
</citation>
</ref>
<ref id="b33">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hering</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Extended mutation analysis and association studies of Nurr1 (NR4A2) in Parkinson disease</article-title>
<source>Neurology</source>
<year>2004</year>
<volume>62</volume>
<fpage>1231</fpage>
<lpage>1232</lpage>
<pub-id pub-id-type="pmid">15079038</pub-id>
</citation>
</ref>
<ref id="b34">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hopkin</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>New insights into the phenotypes of 6q deletions</article-title>
<source>Am J Med Genet</source>
<year>1997</year>
<volume>70</volume>
<fpage>377</fpage>
<lpage>386</lpage>
<pub-id pub-id-type="pmid">9182778</pub-id>
</citation>
</ref>
<ref id="b35">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iwayama-Shigeno</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Distribution of haplotypes derived from three common variants of the NR4A2 gene in Japanese patients with schizophrenia</article-title>
<source>Am J Med Genet B Neuropsychiatr Genet</source>
<year>2003</year>
<volume>118</volume>
<fpage>20</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="pmid">12627459</pub-id>
</citation>
</ref>
<ref id="b36">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jackson</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The human homologue of the Drosophila tailless gene (TLX): characterization and mapping to a region of common deletion in human lymphoid leukemia on chromosome 6q21</article-title>
<source>Genomics</source>
<year>1998</year>
<volume>50</volume>
<fpage>34</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="pmid">9628820</pub-id>
</citation>
</ref>
<ref id="b37">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Global variation of a 40-bp VNTR in the 3’-untranslated region of the dopamine transporter gene (SLC6A3)</article-title>
<source>Biol Psychiatry</source>
<year>1999</year>
<volume>46</volume>
<fpage>151</fpage>
<lpage>160</lpage>
<pub-id pub-id-type="pmid">10418689</pub-id>
</citation>
</ref>
<ref id="b38">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kornack</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>Changes in cell-cycle kinetics during the development and evolution of primate neocortex</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>1998</year>
<volume>95</volume>
<fpage>1242</fpage>
<lpage>1246</lpage>
<pub-id pub-id-type="pmid">9448316</pub-id>
</citation>
</ref>
<ref id="b39">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kreitman</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Methods to detect selection in populations with applications to the human</article-title>
<source>Annu Rev Genomics Hum Genet</source>
<year>2000</year>
<volume>1</volume>
<fpage>539</fpage>
<lpage>559</lpage>
<pub-id pub-id-type="pmid">11701640</pub-id>
</citation>
</ref>
<ref id="b40">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Genetic analysis of primary microcephaly in Indian families: novel ASPM mutations</article-title>
<source>Clin Genet</source>
<year>2004a</year>
<volume>66</volume>
<fpage>341</fpage>
<lpage>348</lpage>
<pub-id pub-id-type="pmid">15355437</pub-id>
</citation>
</ref>
<ref id="b41">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Unexpected embryonic stem (ES) cell mutations represent a concern in gene targeting: lessons from “fierce” mice</article-title>
<source>Genesis</source>
<year>2004b</year>
<volume>38</volume>
<fpage>51</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">14994267</pub-id>
</citation>
</ref>
<ref id="b42">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>A molecular timescale for vertebrate evolution</article-title>
<source>Nature</source>
<year>1998</year>
<volume>392</volume>
<fpage>917</fpage>
<lpage>920</lpage>
<pub-id pub-id-type="pmid">9582070</pub-id>
</citation>
</ref>
<ref id="b43">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment</article-title>
<source>Brief Bioinform</source>
<year>2004c</year>
<volume>5</volume>
<fpage>150</fpage>
<lpage>163</lpage>
<pub-id pub-id-type="pmid">15260895</pub-id>
</citation>
</ref>
<ref id="b44">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Land</surname>
<given-names>PW</given-names>
</name>
</person-group>
<article-title>Expression of the transcription factor, tailless, is required for formation of superficial cortical layers</article-title>
<source>Cereb Cortex</source>
<year>2003</year>
<volume>13</volume>
<fpage>921</fpage>
<lpage>931</lpage>
<pub-id pub-id-type="pmid">12902391</pub-id>
</citation>
</ref>
<ref id="b45">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Le</surname>
<given-names>WD</given-names>
</name>
</person-group>
<article-title>Mutations in NR4A2 associated with familial Parkinson disease</article-title>
<source>Nat Genet</source>
<year>2003</year>
<volume>33</volume>
<fpage>85</fpage>
<lpage>89</lpage>
<pub-id pub-id-type="pmid">12496759</pub-id>
</citation>
</ref>
<ref id="b46">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mignone</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Untranslated regions of mRNAs</article-title>
<source>Genome Biol</source>
<year>2002</year>
<volume>3</volume>
<fpage>1</fpage>
<lpage>0004</lpage>
<comment>REVIEWS0004</comment>
</citation>
</ref>
<ref id="b47">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mignone</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs</article-title>
<source>Nucleic Acids Res</source>
<year>2005</year>
<volume>33</volume>
<fpage>D141</fpage>
<lpage>D146</lpage>
<pub-id pub-id-type="pmid">15608165</pub-id>
</citation>
</ref>
<ref id="b48">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miyawaki</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Tlx, an orphan nuclear receptor, regulates cell numbers and astrocyte development in the developing retina</article-title>
<source>J Neurosci</source>
<year>2004</year>
<volume>24</volume>
<fpage>8124</fpage>
<lpage>8134</lpage>
<pub-id pub-id-type="pmid">15371513</pub-id>
</citation>
</ref>
<ref id="b49">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mochida</surname>
<given-names>GH</given-names>
</name>
</person-group>
<article-title>Molecular genetics of human microcephaly</article-title>
<source>Curr Opin Neurol</source>
<year>2001</year>
<volume>14</volume>
<fpage>151</fpage>
<lpage>156</lpage>
<pub-id pub-id-type="pmid">11262728</pub-id>
</citation>
</ref>
<ref id="b50">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Monaghan</surname>
<given-names>AP</given-names>
</name>
</person-group>
<article-title>The mouse homolog of the orphan nuclear receptor tailless is expressed in the developing forebrain</article-title>
<source>Development</source>
<year>1995</year>
<volume>121</volume>
<fpage>839</fpage>
<lpage>853</lpage>
<pub-id pub-id-type="pmid">7720587</pub-id>
</citation>
</ref>
<ref id="b51">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Przeworski</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Adjusting the focus on human variation</article-title>
<source>Trends Genet</source>
<year>2000</year>
<volume>16</volume>
<fpage>296</fpage>
<lpage>302</lpage>
<pub-id pub-id-type="pmid">10858659</pub-id>
</citation>
</ref>
<ref id="b52">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qiang</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Neuron-restrictive silencer factor regulates the N-methyl-D-aspartate receptor 2B subunit gene in basal and ethanol-induced gene expression in fetal cortical neurons</article-title>
<source>Mol Pharmacol</source>
<year>2005</year>
<volume>67</volume>
<fpage>2115</fpage>
<lpage>2125</lpage>
<pub-id pub-id-type="pmid">15755907</pub-id>
</citation>
</ref>
<ref id="b53">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Quandt</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data</article-title>
<source>Nucleic Acids Res</source>
<year>1995</year>
<volume>23</volume>
<fpage>4878</fpage>
<lpage>4884</lpage>
<pub-id pub-id-type="pmid">8532532</pub-id>
</citation>
</ref>
<ref id="b54">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rakic</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution</article-title>
<source>Trends Neurosci</source>
<year>1995</year>
<volume>18</volume>
<fpage>383</fpage>
<lpage>388</lpage>
<pub-id pub-id-type="pmid">7482803</pub-id>
</citation>
</ref>
<ref id="b55">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roy</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>The Tlx gene regulates the timing of neurogenesis in the cortex</article-title>
<source>J Neurosci</source>
<year>2004</year>
<volume>24</volume>
<fpage>8333</fpage>
<lpage>8345</lpage>
<pub-id pub-id-type="pmid">15385616</pub-id>
</citation>
</ref>
<ref id="b56">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roy</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Loss of the tailless gene affects forebrain development and emotional behavior</article-title>
<source>Physiol Behav</source>
<year>2002</year>
<volume>77</volume>
<fpage>595</fpage>
<lpage>600</lpage>
<pub-id pub-id-type="pmid">12527005</pub-id>
</citation>
</ref>
<ref id="b57">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rozas</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis</article-title>
<source>Bioinformatics</source>
<year>1999</year>
<volume>15</volume>
<fpage>174</fpage>
<lpage>175</lpage>
<pub-id pub-id-type="pmid">10089204</pub-id>
</citation>
</ref>
<ref id="b58">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Expression and function of orphan nuclear receptor TLX in adult neural stem cells</article-title>
<source>Nature</source>
<year>2004</year>
<volume>427</volume>
<fpage>78</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="pmid">14702088</pub-id>
</citation>
</ref>
<ref id="b59">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sisodiya</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans</article-title>
<source>Nat Genet</source>
<year>2001</year>
<volume>28</volume>
<fpage>214</fpage>
<lpage>216</lpage>
<pub-id pub-id-type="pmid">11431688</pub-id>
</citation>
</ref>
<ref id="b60">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>KM</given-names>
</name>
</person-group>
<article-title>Identification and characterization of human NR4A2 polymorphisms in attention deficit hyperactivity disorder</article-title>
<source>Am J Med Genet B Neuropsychiatr Genet</source>
<year>2005</year>
<volume>133</volume>
<fpage>57</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">15635701</pub-id>
</citation>
</ref>
<ref id="b61">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stenman</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Tlx and Pax6 co-operate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon</article-title>
<source>Development</source>
<year>2003</year>
<volume>130</volume>
<fpage>1113</fpage>
<lpage>1122</lpage>
<pub-id pub-id-type="pmid">12571103</pub-id>
</citation>
</ref>
<ref id="b62">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stephens</surname>
<given-names>JC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Haplotype variation and linkage disequilibrium in 313 human genes</article-title>
<source>Science</source>
<year>2001</year>
<volume>293</volume>
<fpage>489</fpage>
<lpage>493</lpage>
<pub-id pub-id-type="pmid">11452081</pub-id>
</citation>
</ref>
<ref id="b63">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Strausberg</surname>
<given-names>RL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2002</year>
<volume>99</volume>
<fpage>16899</fpage>
<lpage>16903</lpage>
<pub-id pub-id-type="pmid">12477932</pub-id>
</citation>
</ref>
<ref id="b64">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tajima</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Statistical method for testing the neutral mutation hypothesis by DNA polymorphism</article-title>
<source>Genetics</source>
<year>1989</year>
<volume>123</volume>
<fpage>585</fpage>
<lpage>595</lpage>
<pub-id pub-id-type="pmid">2513255</pub-id>
</citation>
</ref>
<ref id="b65">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Westberg</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Association between a dinucleotide repeat polymorphism of the estrogen receptor alpha gene and personality traits in women</article-title>
<source>Mol Psychiatry</source>
<year>2003</year>
<volume>8</volume>
<fpage>118</fpage>
<lpage>122</lpage>
<pub-id pub-id-type="pmid">12556917</pub-id>
</citation>
</ref>
<ref id="b66">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woods</surname>
<given-names>CG</given-names>
</name>
</person-group>
<article-title>Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings</article-title>
<source>Am J Hum Genet</source>
<year>2005</year>
<volume>76</volume>
<fpage>717</fpage>
<lpage>728</lpage>
<pub-id pub-id-type="pmid">15806441</pub-id>
</citation>
</ref>
<ref id="b67">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wray</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>The evolution of transcriptional regulation in eukaryotes</article-title>
<source>Mol Biol Evol</source>
<year>2003</year>
<volume>20</volume>
<fpage>1377</fpage>
<lpage>1419</lpage>
<pub-id pub-id-type="pmid">12777501</pub-id>
</citation>
</ref>
<ref id="b68">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals</article-title>
<source>Nature</source>
<year>2005</year>
<volume>434</volume>
<fpage>338</fpage>
<lpage>345</lpage>
<pub-id pub-id-type="pmid">15735639</pub-id>
</citation>
</ref>
<ref id="b69">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Young</surname>
<given-names>KA</given-names>
</name>
</person-group>
<article-title>Fierce: a new mouse deletion of Nr2e1; violent behaviour and ocular abnormalities are background-dependent</article-title>
<source>Behav Brain Res</source>
<year>2002</year>
<volume>132</volume>
<fpage>145</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="pmid">11997145</pub-id>
</citation>
</ref>
<ref id="b70">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>RT</given-names>
</name>
</person-group>
<article-title>The orphan nuclear receptor Tlx regulates Pax2 and is essential for vision</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2000</year>
<volume>97</volume>
<fpage>2621</fpage>
<lpage>2625</lpage>
<pub-id pub-id-type="pmid">10706625</pub-id>
</citation>
</ref>
</ref-list>
<ack>
<p>We thank Evan Eichler and Sean McGrath (University of Washington, USA) for providing us with non-human primate DNA samples. The authors are grateful to Dr Sylvie Langlois (University of British Columbia, Canada) for critical discussions about patient recruitment criteria and to Kathleen G. Banks (University of British Columbia, Canada) for assistance in typing the microsatellite repeat. We also thank Tracey D. Weir and Nichole Sturwold (Centre for Molecular Medicine and Therapeutics, Canada) and Sarah Otto (University of British Columbia, Canada) for helpful comments on the manuscript. This work was supported by grants from the Jack and Doris Brown Foundation and British Columbia Institute for Children‘s & Women’s Health (to R. A. K.); Harry Frank Guggenheim Foundation (to B. S. A.); South Carolina Department of Disabilities and Special Needs (SCDDSN) (to C. E. S.) and Canadian Institutes for Health Research (CIHR) and Canada Research Chair in Genetics and Behaviour (to E. M. S.).</p>
</ack>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000458 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000458 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:2040186
   |texte=   Mutation and evolutionary analyses identify NR2E1-candidate-regulatory mutations in humans with severe cortical malformations
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:17054721" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022