La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000251 ( Pmc/Corpus ); précédent : 0002509; suivant : 0002520 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Loss of
<italic>porin</italic>
function in dopaminergic neurons of Drosophila is suppressed by
<italic>Buffy</italic>
</title>
<author>
<name sortKey="M Ngale, P Githure" sort="M Ngale, P Githure" uniqKey="M Ngale P" first="P. Githure" last="M Ngale">P. Githure M Ngale</name>
<affiliation>
<nlm:aff id="Aff1">Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland & Labrador A1B 3X9 Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Staveley, Brian E" sort="Staveley, Brian E" uniqKey="Staveley B" first="Brian E." last="Staveley">Brian E. Staveley</name>
<affiliation>
<nlm:aff id="Aff1">Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland & Labrador A1B 3X9 Canada</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27881168</idno>
<idno type="pmc">5122015</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122015</idno>
<idno type="RBID">PMC:5122015</idno>
<idno type="doi">10.1186/s12929-016-0300-1</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000251</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000251</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Loss of
<italic>porin</italic>
function in dopaminergic neurons of Drosophila is suppressed by
<italic>Buffy</italic>
</title>
<author>
<name sortKey="M Ngale, P Githure" sort="M Ngale, P Githure" uniqKey="M Ngale P" first="P. Githure" last="M Ngale">P. Githure M Ngale</name>
<affiliation>
<nlm:aff id="Aff1">Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland & Labrador A1B 3X9 Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Staveley, Brian E" sort="Staveley, Brian E" uniqKey="Staveley B" first="Brian E." last="Staveley">Brian E. Staveley</name>
<affiliation>
<nlm:aff id="Aff1">Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland & Labrador A1B 3X9 Canada</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Biomedical Science</title>
<idno type="ISSN">1021-7770</idno>
<idno type="eISSN">1423-0127</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Mitochondrial porin, also known as the voltage-dependent anion channel (VDAC), is a multi-functional channel protein that shuttles metabolites between the mitochondria and the cytosol and implicated in cellular life and death decisions. The inhibition of
<italic>porin</italic>
under the control of neuronal
<italic>Ddc-Gal4</italic>
result in short lifespan and in an age-dependent loss in locomotor function, phenotypes that are strongly associated with Drosophila models of Parkinson disease.</p>
</sec>
<sec>
<title>Methods</title>
<p>Loss of
<italic>porin</italic>
function was achieved through exploitation of RNA interference while derivative lines were generated by homologous recombination and tested by PCR. The
<italic>UAS/Gal4</italic>
expression system was exploited with directed expression in neurons achieved with the use of the
<italic>Dopa decarboxylase</italic>
and in the developing eye with the
<italic>Glass multiple reporter</italic>
transgenes. Statistical analyses for ageing assay employed Log rank (Mantel-Cox) test, climbing indices were fitted with a non-linear curve and confidence intervals compared at 95%. Biometric analysis of the eye phenotypes was obtained by unpaired student
<italic>T</italic>
-test.</p>
</sec>
<sec>
<title>Results</title>
<p>The expression of
<italic>α-synuclein</italic>
in neuronal populations that include dopamine producing neurons under the control of
<italic>Ddc-Gal4</italic>
produces a robust Parkinson disease model, and results in severely reduced lifespan and locomotor dysfunction. In addition, the
<italic>porin</italic>
-induced phenotypes are greatly suppressed when the pro-survival
<italic>Bcl-2</italic>
homologue
<italic>Buffy</italic>
is overexpressed in these neurons and in the developing eye adding to the cellular advantages of altered expression of this anti-apoptotic gene. When we co-expressed
<italic>α-synuclein</italic>
along with
<italic>porin</italic>
, it results in a decrease in lifespan and impaired climbing ability. This enhancement of the
<italic>α-synuclein-</italic>
induced phenotypes observed in neurons was demonstrated in the neuron rich eye, where the simultaneous co-expression of
<italic>porin-RNAi</italic>
and
<italic>α-synuclein</italic>
resulted in an enhanced eye phenotype, marked by reduced number of ommatidia and increased disarray of the ommatidia.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The inhibition of
<italic>porin</italic>
in dopaminergic neurons among others result in reduced lifespan and age-dependent loss in climbing ability, phenotypes that are suppressed by the overexpression of the sole pro-survival
<italic>Bcl-2</italic>
homologue
<italic>Buffy</italic>
. The inhibition of
<italic>porin</italic>
phenocopies Parkinson disease phenotypes in Drosophila, while the overexpression of
<italic>Buffy</italic>
can counteract these phenotypes to improve the overall “healthspan” of the organism.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Shoshan Barmatz, V" uniqKey="Shoshan Barmatz V">V Shoshan-Barmatz</name>
</author>
<author>
<name sortKey="De Pinto, V" uniqKey="De Pinto V">V De Pinto</name>
</author>
<author>
<name sortKey="Zweckstetter, M" uniqKey="Zweckstetter M">M Zweckstetter</name>
</author>
<author>
<name sortKey="Raviv, Z" uniqKey="Raviv Z">Z Raviv</name>
</author>
<author>
<name sortKey="Keinan, N" uniqKey="Keinan N">N Keinan</name>
</author>
<author>
<name sortKey="Arbel, N" uniqKey="Arbel N">N Arbel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ryerse, J" uniqKey="Ryerse J">J Ryerse</name>
</author>
<author>
<name sortKey="Blachly Dyson, E" uniqKey="Blachly Dyson E">E Blachly-Dyson</name>
</author>
<author>
<name sortKey="Forte, M" uniqKey="Forte M">M Forte</name>
</author>
<author>
<name sortKey="Nagel, B" uniqKey="Nagel B">B Nagel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shoshan Barmatz, V" uniqKey="Shoshan Barmatz V">V Shoshan-Barmatz</name>
</author>
<author>
<name sortKey="Ben Hail, D" uniqKey="Ben Hail D">D Ben-Hail</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Craigen, Wj" uniqKey="Craigen W">WJ Craigen</name>
</author>
<author>
<name sortKey="Graham, Bh" uniqKey="Graham B">BH Graham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Stefani, D" uniqKey="De Stefani D">D De Stefani</name>
</author>
<author>
<name sortKey="Bononi, A" uniqKey="Bononi A">A Bononi</name>
</author>
<author>
<name sortKey="Romagnoli, A" uniqKey="Romagnoli A">A Romagnoli</name>
</author>
<author>
<name sortKey="Messina, A" uniqKey="Messina A">A Messina</name>
</author>
<author>
<name sortKey="De Pinto, V" uniqKey="De Pinto V">V De Pinto</name>
</author>
<author>
<name sortKey="Pinton, P" uniqKey="Pinton P">P Pinton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pastorino, Jg" uniqKey="Pastorino J">JG Pastorino</name>
</author>
<author>
<name sortKey="Hoek, Jb" uniqKey="Hoek J">JB Hoek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsujimoto, Y" uniqKey="Tsujimoto Y">Y Tsujimoto</name>
</author>
<author>
<name sortKey="Shimizu, S" uniqKey="Shimizu S">S Shimizu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Eh" uniqKey="Cheng E">EH Cheng</name>
</author>
<author>
<name sortKey="Sheiko, Tv" uniqKey="Sheiko T">TV Sheiko</name>
</author>
<author>
<name sortKey="Fisher, Jk" uniqKey="Fisher J">JK Fisher</name>
</author>
<author>
<name sortKey="Craigen, Wj" uniqKey="Craigen W">WJ Craigen</name>
</author>
<author>
<name sortKey="Korsmeyer, Sj" uniqKey="Korsmeyer S">SJ Korsmeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramirez, Cm" uniqKey="Ramirez C">CM Ramírez</name>
</author>
<author>
<name sortKey="Gonzalez, M" uniqKey="Gonzalez M">M González</name>
</author>
<author>
<name sortKey="Diaz, M" uniqKey="Diaz M">M Díaz</name>
</author>
<author>
<name sortKey="Alonso, R" uniqKey="Alonso R">R Alonso</name>
</author>
<author>
<name sortKey="Ferrer, I" uniqKey="Ferrer I">I Ferrer</name>
</author>
<author>
<name sortKey="Santpere, G" uniqKey="Santpere G">G Santpere</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoo, Bc" uniqKey="Yoo B">BC Yoo</name>
</author>
<author>
<name sortKey="Fountoulakis, M" uniqKey="Fountoulakis M">M Fountoulakis</name>
</author>
<author>
<name sortKey="Cairns, N" uniqKey="Cairns N">N Cairns</name>
</author>
<author>
<name sortKey="Lubec, G" uniqKey="Lubec G">G Lubec</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Premkumar, A" uniqKey="Premkumar A">A Premkumar</name>
</author>
<author>
<name sortKey="Simantov, R" uniqKey="Simantov R">R Simantov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Vashisht, Aa" uniqKey="Vashisht A">AA Vashisht</name>
</author>
<author>
<name sortKey="Tchieu, J" uniqKey="Tchieu J">J Tchieu</name>
</author>
<author>
<name sortKey="Wohlschlegel, Ja" uniqKey="Wohlschlegel J">JA Wohlschlegel</name>
</author>
<author>
<name sortKey="Dreier, L" uniqKey="Dreier L">L Dreier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rostovtseva, Tk" uniqKey="Rostovtseva T">TK Rostovtseva</name>
</author>
<author>
<name sortKey="Gurnev, Pa" uniqKey="Gurnev P">PA Gurnev</name>
</author>
<author>
<name sortKey="Protchenko, O" uniqKey="Protchenko O">O Protchenko</name>
</author>
<author>
<name sortKey="Hoogerheide, Dp" uniqKey="Hoogerheide D">DP Hoogerheide</name>
</author>
<author>
<name sortKey="Yap, Tl" uniqKey="Yap T">TL Yap</name>
</author>
<author>
<name sortKey="Philpott, Cc" uniqKey="Philpott C">CC Philpott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, Y" uniqKey="Chu Y">Y Chu</name>
</author>
<author>
<name sortKey="Goldman, Jg" uniqKey="Goldman J">JG Goldman</name>
</author>
<author>
<name sortKey="Kelly, L" uniqKey="Kelly L">L Kelly</name>
</author>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y He</name>
</author>
<author>
<name sortKey="Waliczek, T" uniqKey="Waliczek T">T Waliczek</name>
</author>
<author>
<name sortKey="Kordower, Jh" uniqKey="Kordower J">JH Kordower</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, J" uniqKey="Shen J">J Shen</name>
</author>
<author>
<name sortKey="Du, T" uniqKey="Du T">T Du</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Duan, C" uniqKey="Duan C">C Duan</name>
</author>
<author>
<name sortKey="Gao, G" uniqKey="Gao G">G Gao</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feany, Mb" uniqKey="Feany M">MB Feany</name>
</author>
<author>
<name sortKey="Bender, Ww" uniqKey="Bender W">WW Bender</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Auluck, Pk" uniqKey="Auluck P">PK Auluck</name>
</author>
<author>
<name sortKey="Chan, Hy" uniqKey="Chan H">HY Chan</name>
</author>
<author>
<name sortKey="Trojanowski, Jq" uniqKey="Trojanowski J">JQ Trojanowski</name>
</author>
<author>
<name sortKey="Lee, Vm" uniqKey="Lee V">VM Lee</name>
</author>
<author>
<name sortKey="Bonini, Nm" uniqKey="Bonini N">NM Bonini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buttner, S" uniqKey="Buttner S">S Buttner</name>
</author>
<author>
<name sortKey="Broeskamp, F" uniqKey="Broeskamp F">F Broeskamp</name>
</author>
<author>
<name sortKey="Sommer, C" uniqKey="Sommer C">C Sommer</name>
</author>
<author>
<name sortKey="Markaki, M" uniqKey="Markaki M">M Markaki</name>
</author>
<author>
<name sortKey="Habernig, L" uniqKey="Habernig L">L Habernig</name>
</author>
<author>
<name sortKey="Alavian Ghavanini, A" uniqKey="Alavian Ghavanini A">A Alavian-Ghavanini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, Y" uniqKey="Kong Y">Y Kong</name>
</author>
<author>
<name sortKey="Liang, X" uniqKey="Liang X">X Liang</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D Zhang</name>
</author>
<author>
<name sortKey="Wan, C" uniqKey="Wan C">C Wan</name>
</author>
<author>
<name sortKey="Gan, Z" uniqKey="Gan Z">Z Gan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, B" uniqKey="Wang B">B Wang</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q Liu</name>
</author>
<author>
<name sortKey="Shan, H" uniqKey="Shan H">H Shan</name>
</author>
<author>
<name sortKey="Xia, C" uniqKey="Xia C">C Xia</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, Zj" uniqKey="Zhu Z">ZJ Zhu</name>
</author>
<author>
<name sortKey="Wu, Kc" uniqKey="Wu K">KC Wu</name>
</author>
<author>
<name sortKey="Yung, Wh" uniqKey="Yung W">WH Yung</name>
</author>
<author>
<name sortKey="Qian, Zm" uniqKey="Qian Z">ZM Qian</name>
</author>
<author>
<name sortKey="Ke, Y" uniqKey="Ke Y">Y Ke</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Botella, Jaa" uniqKey="Botella J">JAA Botella</name>
</author>
<author>
<name sortKey="Bayersdorfer, F" uniqKey="Bayersdorfer F">F Bayersdorfer</name>
</author>
<author>
<name sortKey="Gmeiner, F" uniqKey="Gmeiner F">F Gmeiner</name>
</author>
<author>
<name sortKey="Schneuwly, S" uniqKey="Schneuwly S">S Schneuwly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brand, Ah" uniqKey="Brand A">AH Brand</name>
</author>
<author>
<name sortKey="Perrimon, N" uniqKey="Perrimon N">N Perrimon</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graham, Bh" uniqKey="Graham B">BH Graham</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z Li</name>
</author>
<author>
<name sortKey="Alesii, Ep" uniqKey="Alesii E">EP Alesii</name>
</author>
<author>
<name sortKey="Versteken, P" uniqKey="Versteken P">P Versteken</name>
</author>
<author>
<name sortKey="Lee, C" uniqKey="Lee C">C Lee</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="M Ngale, Pg" uniqKey="M Ngale P">PG M’Angale</name>
</author>
<author>
<name sortKey="Staveley, Be" uniqKey="Staveley B">BE Staveley</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchler Bauer, A" uniqKey="Marchler Bauer A">A Marchler-Bauer</name>
</author>
<author>
<name sortKey="Derbyshire, Mk" uniqKey="Derbyshire M">MK Derbyshire</name>
</author>
<author>
<name sortKey="Gonzales, Nr" uniqKey="Gonzales N">NR Gonzales</name>
</author>
<author>
<name sortKey="Lu, S" uniqKey="Lu S">S Lu</name>
</author>
<author>
<name sortKey="Chitsaz, F" uniqKey="Chitsaz F">F Chitsaz</name>
</author>
<author>
<name sortKey="Geer, Ly" uniqKey="Geer L">LY Geer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dinkel, H" uniqKey="Dinkel H">H Dinkel</name>
</author>
<author>
<name sortKey="Van Roey, K" uniqKey="Van Roey K">K Van Roey</name>
</author>
<author>
<name sortKey="Michael, S" uniqKey="Michael S">S Michael</name>
</author>
<author>
<name sortKey="Davey, Ne" uniqKey="Davey N">NE Davey</name>
</author>
<author>
<name sortKey="Weatheritt, Rj" uniqKey="Weatheritt R">RJ Weatheritt</name>
</author>
<author>
<name sortKey="Born, D" uniqKey="Born D">D Born</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sievers, F" uniqKey="Sievers F">F Sievers</name>
</author>
<author>
<name sortKey="Wilm, A" uniqKey="Wilm A">A Wilm</name>
</author>
<author>
<name sortKey="Dineen, D" uniqKey="Dineen D">D Dineen</name>
</author>
<author>
<name sortKey="Gibson, Tj" uniqKey="Gibson T">TJ Gibson</name>
</author>
<author>
<name sortKey="Karplus, K" uniqKey="Karplus K">K Karplus</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goujon, M" uniqKey="Goujon M">M Goujon</name>
</author>
<author>
<name sortKey="Mcwilliam, H" uniqKey="Mcwilliam H">H McWilliam</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Valentin, F" uniqKey="Valentin F">F Valentin</name>
</author>
<author>
<name sortKey="Squizzato, S" uniqKey="Squizzato S">S Squizzato</name>
</author>
<author>
<name sortKey="Paern, J" uniqKey="Paern J">J Paern</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="La Cour, T" uniqKey="La Cour T">T la Cour</name>
</author>
<author>
<name sortKey="Kiemer, L" uniqKey="Kiemer L">L Kiemer</name>
</author>
<author>
<name sortKey="M Lgaard, A" uniqKey="M Lgaard A">A Mølgaard</name>
</author>
<author>
<name sortKey="Gupta, R" uniqKey="Gupta R">R Gupta</name>
</author>
<author>
<name sortKey="Skriver, K" uniqKey="Skriver K">K Skriver</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S Brunak</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oliva, M" uniqKey="Oliva M">M Oliva</name>
</author>
<author>
<name sortKey="De Pinto, V" uniqKey="De Pinto V">V De Pinto</name>
</author>
<author>
<name sortKey="Barsanti, P" uniqKey="Barsanti P">P Barsanti</name>
</author>
<author>
<name sortKey="Caggese, C" uniqKey="Caggese C">C Caggese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freeman, M" uniqKey="Freeman M">M Freeman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Chaney, S" uniqKey="Chaney S">S Chaney</name>
</author>
<author>
<name sortKey="Roberts, Ij" uniqKey="Roberts I">IJ Roberts</name>
</author>
<author>
<name sortKey="Forte, M" uniqKey="Forte M">M Forte</name>
</author>
<author>
<name sortKey="Hirsh, J" uniqKey="Hirsh J">J Hirsh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quinn, L" uniqKey="Quinn L">L Quinn</name>
</author>
<author>
<name sortKey="Coombe, M" uniqKey="Coombe M">M Coombe</name>
</author>
<author>
<name sortKey="Mills, K" uniqKey="Mills K">K Mills</name>
</author>
<author>
<name sortKey="Daish, T" uniqKey="Daish T">T Daish</name>
</author>
<author>
<name sortKey="Colussi, P" uniqKey="Colussi P">P Colussi</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brachmann, Cb" uniqKey="Brachmann C">CB Brachmann</name>
</author>
<author>
<name sortKey="Jassim, Ow" uniqKey="Jassim O">OW Jassim</name>
</author>
<author>
<name sortKey="Wachsmuth, Bd" uniqKey="Wachsmuth B">BD Wachsmuth</name>
</author>
<author>
<name sortKey="Cagan, Rl" uniqKey="Cagan R">RL Cagan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colussi, Pa" uniqKey="Colussi P">PA Colussi</name>
</author>
<author>
<name sortKey="Quinn, Lm" uniqKey="Quinn L">LM Quinn</name>
</author>
<author>
<name sortKey="Huang, Dc" uniqKey="Huang D">DC Huang</name>
</author>
<author>
<name sortKey="Coombe, M" uniqKey="Coombe M">M Coombe</name>
</author>
<author>
<name sortKey="Read, Sh" uniqKey="Read S">SH Read</name>
</author>
<author>
<name sortKey="Richardson, H" uniqKey="Richardson H">H Richardson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="M Ngale, Pg" uniqKey="M Ngale P">PG M’Angale</name>
</author>
<author>
<name sortKey="Staveley, Be" uniqKey="Staveley B">BE Staveley</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Todd, Am" uniqKey="Todd A">AM Todd</name>
</author>
<author>
<name sortKey="Staveley, Be" uniqKey="Staveley B">BE Staveley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Staveley, Be" uniqKey="Staveley B">BE Staveley</name>
</author>
<author>
<name sortKey="Phillips, Jp" uniqKey="Phillips J">JP Phillips</name>
</author>
<author>
<name sortKey="Hilliker, Aj" uniqKey="Hilliker A">AJ Hilliker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Todd, Am" uniqKey="Todd A">AM Todd</name>
</author>
<author>
<name sortKey="Staveley, Be" uniqKey="Staveley B">BE Staveley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schneider, Ca" uniqKey="Schneider C">CA Schneider</name>
</author>
<author>
<name sortKey="Rasband, Ws" uniqKey="Rasband W">WS Rasband</name>
</author>
<author>
<name sortKey="Eliceiri, Kw" uniqKey="Eliceiri K">KW Eliceiri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="M Ngale, Pg" uniqKey="M Ngale P">PG M’Angale</name>
</author>
<author>
<name sortKey="Staveley, Be" uniqKey="Staveley B">BE Staveley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dinkel, H" uniqKey="Dinkel H">H Dinkel</name>
</author>
<author>
<name sortKey="Van Roey, K" uniqKey="Van Roey K">K Van Roey</name>
</author>
<author>
<name sortKey="Michael, S" uniqKey="Michael S">S Michael</name>
</author>
<author>
<name sortKey="Kumar, M" uniqKey="Kumar M">M Kumar</name>
</author>
<author>
<name sortKey="Uyar, B" uniqKey="Uyar B">B Uyar</name>
</author>
<author>
<name sortKey="Altenberg, B" uniqKey="Altenberg B">B Altenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geisler, S" uniqKey="Geisler S">S Geisler</name>
</author>
<author>
<name sortKey="Holmstrom, Km" uniqKey="Holmstrom K">KM Holmstrom</name>
</author>
<author>
<name sortKey="Skujat, D" uniqKey="Skujat D">D Skujat</name>
</author>
<author>
<name sortKey="Fiesel, Fc" uniqKey="Fiesel F">FC Fiesel</name>
</author>
<author>
<name sortKey="Rothfuss, Oc" uniqKey="Rothfuss O">OC Rothfuss</name>
</author>
<author>
<name sortKey="Kahle, Pj" uniqKey="Kahle P">PJ Kahle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Narendra, D" uniqKey="Narendra D">D Narendra</name>
</author>
<author>
<name sortKey="Kane, La" uniqKey="Kane L">LA Kane</name>
</author>
<author>
<name sortKey="Hauser, Dn" uniqKey="Hauser D">DN Hauser</name>
</author>
<author>
<name sortKey="Fearnley, Im" uniqKey="Fearnley I">IM Fearnley</name>
</author>
<author>
<name sortKey="Youle, Rj" uniqKey="Youle R">RJ Youle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chinta, Sj" uniqKey="Chinta S">SJ Chinta</name>
</author>
<author>
<name sortKey="Mallajosyula, Jk" uniqKey="Mallajosyula J">JK Mallajosyula</name>
</author>
<author>
<name sortKey="Rane, A" uniqKey="Rane A">A Rane</name>
</author>
<author>
<name sortKey="Andersen, Jk" uniqKey="Andersen J">JK Andersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K Nakamura</name>
</author>
<author>
<name sortKey="Nemani, Vm" uniqKey="Nemani V">VM Nemani</name>
</author>
<author>
<name sortKey="Wallender, Ek" uniqKey="Wallender E">EK Wallender</name>
</author>
<author>
<name sortKey="Kaehlcke, K" uniqKey="Kaehlcke K">K Kaehlcke</name>
</author>
<author>
<name sortKey="Ott, M" uniqKey="Ott M">M Ott</name>
</author>
<author>
<name sortKey="Edwards, Rh" uniqKey="Edwards R">RH Edwards</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Biomed Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Biomed. Sci</journal-id>
<journal-title-group>
<journal-title>Journal of Biomedical Science</journal-title>
</journal-title-group>
<issn pub-type="ppub">1021-7770</issn>
<issn pub-type="epub">1423-0127</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27881168</article-id>
<article-id pub-id-type="pmc">5122015</article-id>
<article-id pub-id-type="publisher-id">300</article-id>
<article-id pub-id-type="doi">10.1186/s12929-016-0300-1</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Loss of
<italic>porin</italic>
function in dopaminergic neurons of Drosophila is suppressed by
<italic>Buffy</italic>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>M’Angale</surname>
<given-names>P. Githure</given-names>
</name>
<address>
<email>mgithure@mun.ca</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Staveley</surname>
<given-names>Brian E.</given-names>
</name>
<address>
<email>bestave@mun.ca</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland & Labrador A1B 3X9 Canada</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>24</day>
<month>11</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>24</day>
<month>11</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>23</volume>
<elocation-id>84</elocation-id>
<history>
<date date-type="received">
<day>26</day>
<month>6</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>15</day>
<month>11</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s). 2016</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<sec>
<title>Background</title>
<p>Mitochondrial porin, also known as the voltage-dependent anion channel (VDAC), is a multi-functional channel protein that shuttles metabolites between the mitochondria and the cytosol and implicated in cellular life and death decisions. The inhibition of
<italic>porin</italic>
under the control of neuronal
<italic>Ddc-Gal4</italic>
result in short lifespan and in an age-dependent loss in locomotor function, phenotypes that are strongly associated with Drosophila models of Parkinson disease.</p>
</sec>
<sec>
<title>Methods</title>
<p>Loss of
<italic>porin</italic>
function was achieved through exploitation of RNA interference while derivative lines were generated by homologous recombination and tested by PCR. The
<italic>UAS/Gal4</italic>
expression system was exploited with directed expression in neurons achieved with the use of the
<italic>Dopa decarboxylase</italic>
and in the developing eye with the
<italic>Glass multiple reporter</italic>
transgenes. Statistical analyses for ageing assay employed Log rank (Mantel-Cox) test, climbing indices were fitted with a non-linear curve and confidence intervals compared at 95%. Biometric analysis of the eye phenotypes was obtained by unpaired student
<italic>T</italic>
-test.</p>
</sec>
<sec>
<title>Results</title>
<p>The expression of
<italic>α-synuclein</italic>
in neuronal populations that include dopamine producing neurons under the control of
<italic>Ddc-Gal4</italic>
produces a robust Parkinson disease model, and results in severely reduced lifespan and locomotor dysfunction. In addition, the
<italic>porin</italic>
-induced phenotypes are greatly suppressed when the pro-survival
<italic>Bcl-2</italic>
homologue
<italic>Buffy</italic>
is overexpressed in these neurons and in the developing eye adding to the cellular advantages of altered expression of this anti-apoptotic gene. When we co-expressed
<italic>α-synuclein</italic>
along with
<italic>porin</italic>
, it results in a decrease in lifespan and impaired climbing ability. This enhancement of the
<italic>α-synuclein-</italic>
induced phenotypes observed in neurons was demonstrated in the neuron rich eye, where the simultaneous co-expression of
<italic>porin-RNAi</italic>
and
<italic>α-synuclein</italic>
resulted in an enhanced eye phenotype, marked by reduced number of ommatidia and increased disarray of the ommatidia.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The inhibition of
<italic>porin</italic>
in dopaminergic neurons among others result in reduced lifespan and age-dependent loss in climbing ability, phenotypes that are suppressed by the overexpression of the sole pro-survival
<italic>Bcl-2</italic>
homologue
<italic>Buffy</italic>
. The inhibition of
<italic>porin</italic>
phenocopies Parkinson disease phenotypes in Drosophila, while the overexpression of
<italic>Buffy</italic>
can counteract these phenotypes to improve the overall “healthspan” of the organism.</p>
</sec>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>α-synuclein</kwd>
<kwd>Buffy</kwd>
<kwd>Dopaminergic neurons</kwd>
<kwd>Mitochondria</kwd>
<kwd>Porin</kwd>
<kwd>Parkinson disease</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<institution>Natural Sciences and Engineering Research Council of Canada (CA)</institution>
</funding-source>
</award-group>
</funding-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2016</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Background</title>
<p>The voltage-dependent anion channel (VDAC), also known as mitochondrial porin, consists of small pore-forming proteins present in the outer mitochondrial membrane that act to shuttle nucleotides, metabolites and ions between the mitochondria and the cytoplasm [
<xref ref-type="bibr" rid="CR1">1</xref>
,
<xref ref-type="bibr" rid="CR2">2</xref>
]. Porin is a multi-functional protein and is involved in the regulation of metabolism and energetic functions of the mitochondria and a constituent of the mitochondrial permeability transition pore (PTP) [
<xref ref-type="bibr" rid="CR3">3</xref>
]. Porin is involved in apoptosis, metabolite transport, calcium transport and signalling, ATP transport, reactive oxygen species transport and endoplasmic reticulum – mitochondrial crosstalk [
<xref ref-type="bibr" rid="CR3">3</xref>
<xref ref-type="bibr" rid="CR5">5</xref>
]. As thus porin appears to be a convergence point for cell death and survival signals, mediated by its association with a variety of ligands and proteins. Porin is implicated in mitochondria-mediated apoptosis and in regulation of apoptosis through interaction with pro-survival proteins [
<xref ref-type="bibr" rid="CR3">3</xref>
]. It interacts with the pro-survival hexokinase to mediate its anti-apoptotic activity [
<xref ref-type="bibr" rid="CR3">3</xref>
,
<xref ref-type="bibr" rid="CR6">6</xref>
], and the Bcl-2 family of proteins to regulate mitochondria-mediated apoptosis [
<xref ref-type="bibr" rid="CR7">7</xref>
,
<xref ref-type="bibr" rid="CR8">8</xref>
]. This association can induce cell survival or death.</p>
<p>The
<italic>porin</italic>
gene is associated with several neurodegenerative disorders including Alzheimer disease [
<xref ref-type="bibr" rid="CR9">9</xref>
], Down syndrome [
<xref ref-type="bibr" rid="CR10">10</xref>
], and dopamine-induced apoptosis [
<xref ref-type="bibr" rid="CR11">11</xref>
]. The association of porin with Parkinson disease-associated gene products has been established, where it recruits parkin to defective mitochondria to promote mitophagy [
<xref ref-type="bibr" rid="CR12">12</xref>
], and shows high affinity interaction with α-synuclein to regulate mitochondrial-induced toxicity [
<xref ref-type="bibr" rid="CR13">13</xref>
]. This study suggests that α-synuclein translocate to the mitochondria via porin to target complexes of the mitochondrial respiratory chain. The accumulation and aggregation of abnormal α-synuclein was shown to down-regulate porin [
<xref ref-type="bibr" rid="CR14">14</xref>
] and possibly regulate mitochondrial permeability [
<xref ref-type="bibr" rid="CR15">15</xref>
]. The association between the PD gene
<italic>α-synuclein</italic>
and the mitochondrial channel
<italic>porin</italic>
appears to be important in the progression of PD. The initial Drosophila PD model employed the expression of human
<italic>α-synuclein</italic>
transgene to generate the PD-like phenotypes [
<xref ref-type="bibr" rid="CR16">16</xref>
], that are commonly known as the
<italic>α-synuclein-</italic>
induced phenotypes. The success of this model anchors on its ability to phenocopy features of human PD such as the age-dependent loss in locomotor function and therefore, has found application in the study of
<italic>α-synuclein</italic>
-induced degeneration [
<xref ref-type="bibr" rid="CR16">16</xref>
<xref ref-type="bibr" rid="CR23">23</xref>
]. The use of the bipartite
<italic>UAS/GAL4</italic>
expression system [
<xref ref-type="bibr" rid="CR24">24</xref>
], and the remarkable number of promoters or enhancers available, of which
<italic>TH-Gal4</italic>
,
<italic>elav-Gal4</italic>
and
<italic>Ddc-Gal4</italic>
are utilized in modelling PD in flies [
<xref ref-type="bibr" rid="CR16">16</xref>
<xref ref-type="bibr" rid="CR23">23</xref>
], makes Drosophila a useful and albeit a powerful model organism.</p>
<p>The loss of function of Drosophila
<italic>porin/VDAC</italic>
has been shown to result in mitochondrial morphological defects [
<xref ref-type="bibr" rid="CR25">25</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
]. These mitochondrial defects were accompanied by locomotor dysfunction and male sterility. In addition,
<italic>porin</italic>
mutants displayed neurological and muscular defects, mitochondrial respiratory defects, and abnormalities in synaptic transmission and mitochondrial distribution in motor neurons. Here we suppressed
<italic>porin</italic>
by RNA interference in Drosophila neurons under the control of the
<italic>dopa decarboxylase</italic>
transgene and analysed longevity and locomotor ability. Further we co-expressed
<italic>porin-RNAi</italic>
with
<italic>α-synuclein</italic>
to investigate its effects in the well-studied Drosophila PD model. The association of porin with Bcl-2 members is well documented, we have demonstrated the benefits of overexpression of the sole anti-apoptotic
<italic>Bcl-2</italic>
member
<italic>Buffy</italic>
in conditions of stress [
<xref ref-type="bibr" rid="CR27">27</xref>
,
<xref ref-type="bibr" rid="CR28">28</xref>
], as thus, we overexpressed
<italic>Buffy</italic>
along with
<italic>porin-RNAi</italic>
. In addition, we altered the expression of
<italic>porin</italic>
in the Drosophila developing eye and co-expressed with
<italic>α-synuclein</italic>
and
<italic>Buffy</italic>
.</p>
</sec>
<sec id="Sec2">
<title>Methods</title>
<sec id="Sec3">
<title>Bioinformatic analysis</title>
<p>The protein sequences were sourced from National Center for Biotechnology Information (NCBI;
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/protein/">http://www.ncbi.nlm.nih.gov/protein/</ext-link>
) while conserved domains were identified using the NCBI Conserved Domain Database (CDD;
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/cdd">http://www.ncbi.nlm.nih.gov/cdd</ext-link>
) [
<xref ref-type="bibr" rid="CR29">29</xref>
] and the Eukaryotic Linear Motif [
<xref ref-type="bibr" rid="CR30">30</xref>
] (
<ext-link ext-link-type="uri" xlink:href="http://elm.eu.org/">http://elm.eu.org/</ext-link>
) which focuses on annotation and detection of eukaryotic linear motifs (ELMs) or short linear motifs (SLiMs). Clustal Omega multiple sequence alignment (
<ext-link ext-link-type="uri" xlink:href="http://www.ebi.ac.uk/Tools/msa/clustalo/">http://www.ebi.ac.uk/Tools/msa/clustalo/</ext-link>
) [
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
] was used to show conservation of the porin3_VDAC domain in the selected organisms. The nuclear export signal (NES) was predicted by NetNES (
<ext-link ext-link-type="uri" xlink:href="http://www.cbs.dtu.dk/services/NetNES/">http://www.cbs.dtu.dk/services/NetNES/</ext-link>
) [
<xref ref-type="bibr" rid="CR33">33</xref>
] and TMpred, a program that predicts membrane-spanning regions and their orientation. The algorithm is based on the statistical analysis of TMbase, a database of naturally occurring transmembrane proteins (
<ext-link ext-link-type="uri" xlink:href="http://www.ch.embnet.org/software/TMPRED_form.html">http://www.ch.embnet.org/software/TMPRED_form.html</ext-link>
).</p>
</sec>
<sec id="Sec4">
<title>Drosophila media and culture</title>
<p>Stocks and crosses were maintained on standard cornmeal/molasses/yeast/agar media treated with propionic acid and methylparaben to inhibit fungal growth. Stocks were maintained on solid media for 2 to 3 weeks before transfer onto new media to re-culture. Stocks were kept at room temperature (22 °C ± 2 °C) while crosses and experiments were carried out at 25 and 29 °C.</p>
</sec>
<sec id="Sec5">
<title>Drosophila stocks</title>
<p>The
<italic>P{KK107645}VIE-260B</italic>
hereby referred to as
<italic>UAS-porin-RNAi (1)</italic>
was obtained from Vienna Drosophila Resource Center,
<italic>y[1] v[1]; P{y[+t7.7] v[+t1.8] = TRiP.JF03251}attP2/TM3, Sb[1]</italic>
hereby known as
<italic>UAS-porin-RNAi (2)</italic>
. Porin expression patterns are detailed in FlyBase
<ext-link ext-link-type="uri" xlink:href="http://flybase.org/reports/FBgn0004363.html">http://flybase.org/reports/FBgn0004363.html</ext-link>
, and in the Berkeley Drosophila Genome Project (BDGP;
<ext-link ext-link-type="uri" xlink:href="http://flybase.org/reports/FBgn0004363.html">http://flybase.org/reports/FBgn0004363.html</ext-link>
) [
<xref ref-type="bibr" rid="CR34">34</xref>
]. Similarly, a thorough expression study was performed by Olivia et al., 2002 and showed a wide range of patterns [
<xref ref-type="bibr" rid="CR35">35</xref>
].
<italic>GMR-Gal4</italic>
[
<xref ref-type="bibr" rid="CR36">36</xref>
] and
<italic>UAS-lacZ</italic>
flies were obtained from the Bloomington Drosophila Stock Center at Indiana University.
<italic>UAS-α-synuclein</italic>
[
<xref ref-type="bibr" rid="CR16">16</xref>
] was generously provided by Dr. M. Feany of Harvard Medical School,
<italic>Ddc-Gal4</italic>
[
<xref ref-type="bibr" rid="CR37">37</xref>
] by Dr. J. Hirsch of University of Virginia and
<italic>UAS-Buffy</italic>
[
<xref ref-type="bibr" rid="CR38">38</xref>
] by Dr. L. Quinn of University of Melbourne. Studies to establish the expression pattern of
<italic>Buffy</italic>
have previously been performed [
<xref ref-type="bibr" rid="CR38">38</xref>
,
<xref ref-type="bibr" rid="CR39">39</xref>
]. They detected
<italic>Buffy</italic>
mRNA via RT-PCR at all developmental stages, with the strongest expression being at the late larval/ early pupal stage [
<xref ref-type="bibr" rid="CR38">38</xref>
]. The expression patterns correlate with regions of cell death and occurs in the same pattern as the pro-cell death
<italic>Debcl</italic>
[
<xref ref-type="bibr" rid="CR38">38</xref>
,
<xref ref-type="bibr" rid="CR40">40</xref>
]. Additional expression data is found on FlyBase
<ext-link ext-link-type="uri" xlink:href="http://flybase.org/reports/FBgn0040491.html">http://flybase.org/reports/FBgn0040491.html</ext-link>
.</p>
</sec>
<sec id="Sec6">
<title>Drosophila derivative lines</title>
<p>The
<italic>UAS-α-synuclein/CyO; Ddc-Gal4/TM3, UAS-α-synuclein/CyO; GMR-Gal4, UAS-Buffy/CyO; Ddc-Gal4</italic>
and
<italic>UAS-Buffy/CyO; GMR-Gal4</italic>
derivative lines were generated using standard homologous recombination methods that we have previously described [
<xref ref-type="bibr" rid="CR41">41</xref>
,
<xref ref-type="bibr" rid="CR42">42</xref>
] and were used for the overexpression of either
<italic>α-synuclein</italic>
or
<italic>Buffy</italic>
in DA and other neurons using the
<italic>Ddc-Gal4</italic>
transgene or in the developing eye using the
<italic>GMR-Gal4</italic>
transgene. PCR reaction was used to determine the amplification of DNA products and Gel electrophoresis was used for confirmation of recombination events via presence of the PCR product.</p>
</sec>
<sec id="Sec7">
<title>Ageing assay</title>
<p>The analysis for survival was performed following a protocol that has previously been described [
<xref ref-type="bibr" rid="CR27">27</xref>
,
<xref ref-type="bibr" rid="CR43">43</xref>
]. But briefly, from each genotype crosses were made and a cohort of at least two hundred flies collected and aged. Flies were considered dead when they did not display movement upon agitation [
<xref ref-type="bibr" rid="CR44">44</xref>
]. Survival curves were compared using the log-rank (Mantel-Cox) test and significance was determined at 95%, at a
<italic>P</italic>
-value less than or equal to 0.05 with Bonferroni correction.</p>
</sec>
<sec id="Sec8">
<title>Climbing assay</title>
<p>Analysis for climbing ability was determined using a standard protocol that was described in our laboratory [
<xref ref-type="bibr" rid="CR45">45</xref>
]. This assay scores the flies ability to climb over their lifetime and analyses 50 males from every genotype. Climbing indices obtained were analysed using GraphPad Prism version 5.04 and climbing curves were fitted using non-linear regression. Comparisons were done at a 95% confidence interval with a
<italic>P</italic>
-value threshold of less than 0.05 considered significant.</p>
</sec>
<sec id="Sec9">
<title>Scanning electron microscopy of the Drosophila eye</title>
<p>The Drosophila eyes for scanning electron microscopy and analysis were prepared following a standard protocol, as previously described [
<xref ref-type="bibr" rid="CR27">27</xref>
]. At least 10 different eye images per genotype were analysed using the National Institutes of Health (NIH) ImageJ software [
<xref ref-type="bibr" rid="CR46">46</xref>
]. The proportion of the disrupted eye area was calculated as detailed in a previous publication [
<xref ref-type="bibr" rid="CR47">47</xref>
]. Statistical comparisons were evaluated using a one-way analysis of variance followed by a Dunnett’s multiple comparison tests.
<italic>P</italic>
-values less than 0.05 were considered significant.</p>
</sec>
</sec>
<sec id="Sec10">
<title>Results</title>
<sec id="Sec11">
<title>The human and Drosophila porin domain is conserved</title>
<p>There is 62% identity and 77% similarity between the human porin (VDAC) and the
<italic>Drosophila melanogaster</italic>
porin protein sequences, with very high conservation within the Porin3_VDAC domain (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). The putative dimerization interface and putative determinants of voltage-gated binding sites are well conserved as determined by an NCBI conserved domain search [
<xref ref-type="bibr" rid="CR29">29</xref>
]. A Eukaryotic linear motif (ELM) resource search for functional sites [
<xref ref-type="bibr" rid="CR48">48</xref>
] in the Drosophila transcript indicates the presence of an inhibitor of apoptosis binding motif (IBM) that function in the abrogation of caspase inhibition by inhibitors of apoptosis (IAPs) at amino acids 1 to 5, an Atg8 binding motif at amino acids 5 to 9, a nuclear export signal (NES) at amino acids 91 to 98, a PDZ domain at amino acids 277 to 282 and a transmembrane domain predicted by TMpred.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Drosophila porin has a conserved Porin3_VDAC domain. The
<italic>Drosophila melanogaster porin</italic>
gene encodes a 282 amino acids protein and the Porin domain is highly conserved when compared to the human homologue. It shows presence of a nuclear export signal (NES), a transmembrane domain, and a PDZ domain. Domains were identified using the NCBI Conserved Domain Database Search (CDD) [
<xref ref-type="bibr" rid="CR29">29</xref>
] and the Eukaryotic Linear Motif resource search [
<xref ref-type="bibr" rid="CR30">30</xref>
]. A Clustal Omega multiple sequence alignment [
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
] show conservation of the porin3_VDAC domain (Hsap is
<italic>Homo sapiens</italic>
NP_003366.2, Dmel is
<italic>Drosophila melanogaster</italic>
NP_001033899.1 and Agam is
<italic>Anopheles gambiae</italic>
XP_318947.2). “*” indicate the residues that are identical, “:” indicate the conserved substitutions, “.” indicate the semi-conserved substitutions. Colours show the chemical nature of amino acids. Red is small hydrophobic (including aromatic), Blue is acidic, Magenta is basic, and Green is basic with hydroxyl or amine groups</p>
</caption>
<graphic xlink:href="12929_2016_300_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
</sec>
<sec id="Sec12">
<title>Inhibition of
<italic>porin</italic>
in neurons decreases lifespan and severely impairs locomotor function, phenotypes that are suppressed by
<italic>Buffy</italic>
overexpression</title>
<p>The expression of
<italic>porin-RNAi</italic>
in
<italic>Ddc-Gal4</italic>
-expressing neurons results in a slightly decreased lifespan and severely impaired locomotor function as shown by the two RNAi lines that we tested. The median lifespan for these flies was 48 and 52 days when compared to 68 days for the controls as determined by Log-rank (Mantel-Cox) test with a
<italic>p</italic>
 < 0.0001 (Fig. 
<xref rid="Fig2" ref-type="fig">2a</xref>
). When
<italic>porin</italic>
is suppressed in these neurons, the flies have impaired locomotor ability as determined by comparison of CI after the nonlinear fit of the climbing curves (Fig. 
<xref rid="Fig2" ref-type="fig">2b</xref>
). These results suggest a role for
<italic>porin</italic>
in the normal function of neurons in Drosophila since its reduced activity shortens lifespan and prematurely retards climbing ability.
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Loss of porin activity decreases survival and impairs climbing ability.
<bold>a</bold>
The inhibition of
<italic>porin</italic>
in neurons using the
<italic>Ddc-Gal4</italic>
transgene results in decreased median lifespan of 48 and 52 days when compared to 68 days for control flies that expresses
<italic>UAS-lacZ</italic>
. The genotypes are
<italic>Ddc-Gal4/ UAS-lacZ</italic>
,
<italic>Ddc-Gal4/ UAS-porin-RNAi (1)</italic>
and
<italic>Ddc-Gal4/ UAS-porin-RNAi (2).</italic>
Longevity is shown as percent survival (
<italic>P</italic>
 < 0.05, determined by the log-rank (Mantel-Cox) test and
<italic>n</italic>
 ≥ 200).
<bold>b</bold>
The inhibition of
<italic>porin</italic>
in the
<italic>Ddc-Gal4</italic>
-expressing neurons resulted in a significant decrease in climbing ability as determined by nonlinear fitting of the climbing curves and comparing 95% CI. The genotypes are
<italic>Ddc-Gal4/ UAS-lacZ</italic>
,
<italic>Ddc-Gal4/ UAS-porin-RNAi (1)</italic>
and
<italic>Ddc-Gal4/ UAS-porin-RNAi (2).</italic>
Error bars indicate SEM and
<italic>n</italic>
 = 50.
<bold>c</bold>
The co-expression of
<italic>Buffy</italic>
with
<italic>porin-RNAi</italic>
result in the rescue of the observed phenotype of decreased survival, with a median survival of 70 and 69 days when compared to 72 days for controls. Genotypes are
<italic>Ddc-Gal4 UAS-Buffy/ UAS-lacZ</italic>
,
<italic>Ddc-Gal4 UAS-Buffy/ UAS-porin-RNAi (1)</italic>
and
<italic>Ddc-Gal4 UAS-Buffy/ UAS-porin-RNAi (2).</italic>
Longevity is shown as percent survival (
<italic>P</italic>
 < 0.05, determined by log-rank (Mantel-Cox) test with
<italic>n</italic>
 ≤ 200).
<bold>d</bold>
The inhibition of
<italic>porin</italic>
along with the overexpression of
<italic>Buffy</italic>
in the DA neurons results in the suppression of the age-dependent loss in climbing ability. The genotypes are
<italic>Ddc-Gal4 UAS-Buffy/ UAS-lacZ</italic>
,
<italic>Ddc-Gal4 UAS-Buffy/ UAS-porin-RNAi (1)</italic>
and
<italic>Ddc-Gal4 UAS-Buffy/ UAS-porin-RNAi (2).</italic>
Analysis was done by nonlinear fitting of the climbing curves and significance was determined by comparing the 95% CI. Error bars indicate SEM and
<italic>n</italic>
 = 50</p>
</caption>
<graphic xlink:href="12929_2016_300_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
<p>The directed overexpression of the pro-survival
<italic>Bcl-2</italic>
homologue
<italic>Buffy</italic>
in these neurons resulted in increased lifespan and improved climbing ability. When
<italic>Buffy</italic>
is co-expressed with the
<italic>porin-RNAi</italic>
lines, the results indicate a median lifespan of 70 and 69 days when compared to 72 days for
<italic>Buffy</italic>
co-expression with
<italic>lacZ</italic>
control flies as determined by Log-rank test (Fig. 
<xref rid="Fig2" ref-type="fig">2c</xref>
). The climbing ability of the
<italic>porin-RNAi</italic>
flies was significantly improved as determined by comparison of climbing curves of
<italic>porin-RNAi</italic>
flies at 95% CI (Fig. 
<xref rid="Fig2" ref-type="fig">2b</xref>
) with the flies that express
<italic>porin-RNAi</italic>
along with
<italic>Buffy</italic>
and with the control flies that co-expressed
<italic>Buffy</italic>
along with
<italic>lacZ</italic>
(Fig. 
<xref rid="Fig2" ref-type="fig">2d</xref>
). Taken together these results suggest a pro-survival role for
<italic>Buffy</italic>
as observed by significant increases in the “healthspan” of
<italic>porin</italic>
-deficient flies.</p>
</sec>
<sec id="Sec13">
<title>Inhibition of
<italic>porin</italic>
enhances
<italic>α-synuclein-</italic>
dependent phenotypes</title>
<p>The expression of
<italic>α-synuclein</italic>
in
<italic>Ddc-Gal4</italic>
-expressing neurons results in impaired locomotor function that has been attributed to cellular toxicity due to the accumulation of this protein. The co-expression of the
<italic>porin-RNAi</italic>
lines along with
<italic>α-synuclein</italic>
, decreased survival and impaired climbing ability over time (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). The median lifespan was 50 and 56 days for flies that expressed
<italic>porin-RNAi</italic>
along with
<italic>α-synuclein,</italic>
compared to 60 days for control flies that co-expressed
<italic>α-synuclein</italic>
along with
<italic>lacZ</italic>
, a significant decrease in survival for both RNAi lines (Fig. 
<xref rid="Fig3" ref-type="fig">3a</xref>
) as determined by Log-rank (Mantel-Cox) test (
<italic>p</italic>
 < 0.0001). A comparison of the climbing curves by nonlinear fitting at 95% CI revealed they were significantly different (Fig. 
<xref rid="Fig3" ref-type="fig">3b</xref>
), with CI of 0.04691 to 0.06795 and 0.030 to 0.050 for flies that expressed
<italic>porin-RNAi</italic>
along with
<italic>α-synuclein,</italic>
compared to 0.06842 to 0.08366 for control flies that co-expressed
<italic>α-synuclein</italic>
along with
<italic>lacZ</italic>
. This suggests that the inhibition of
<italic>porin</italic>
together with the expression of
<italic>α-synuclein</italic>
in these neurons confers a significant health disadvantage, with marked decreases in survival and premature loss of climbing ability.
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>Loss of
<italic>porin</italic>
function enhances the
<italic>α-synuclein-</italic>
induced reduction in lifespan and age-dependent loss of climbing ability.
<bold>a</bold>
The directed inhibition of
<italic>porin</italic>
along with
<italic>α-synuclein</italic>
expression in the neurons decreased lifespan with a median survival of 50 and 56 days when compared to 60 days for the control flies that express
<italic>α-synuclein</italic>
along with the
<italic>lacZ</italic>
transgene. Genotypes are
<italic>UAS-α-synuclein; Ddc-Gal4/ UAS-lacZ</italic>
,
<italic>UAS-α-synuclein; Ddc-Gal4/UAS-porin-RNAi (1)</italic>
and
<italic>UAS-α-synuclein; Ddc-Gal4/ UAS-porin-RNAi (2).</italic>
Longevity is shown as percent survival (
<italic>P</italic>
 < 0.05, determined by log-rank (Mantel-Cox) test with
<italic>n</italic>
 ≤ 200).
<bold>b</bold>
The co-expression of
<italic>porin-RNAi</italic>
with
<italic>α-synuclein</italic>
resulted in reduction of climbing ability over time when compared to the controls. The genotypes are
<italic>UAS-α-synuclein; Ddc-Gal4/UAS-lacZ</italic>
,
<italic>UAS-α-synuclein; Ddc-Gal4/UAS-porin-RNAi (1)</italic>
and
<italic>UAS-α-synuclein; Ddc-Gal4/UAS-porin-RNAi (2).</italic>
Analysis was done by nonlinear fitting of the climbing curves and significance was determined by comparing the 95% CI. Error bars indicate SEM and
<italic>n</italic>
 = 50</p>
</caption>
<graphic xlink:href="12929_2016_300_Fig3_HTML" id="MO3"></graphic>
</fig>
</p>
</sec>
<sec id="Sec14">
<title>Inhibition of
<italic>porin</italic>
in the eye decreases ommatidia number and increases ommatidial disarray, phenotypes that are rescued by
<italic>Buffy</italic>
overexpression</title>
<p>When
<italic>porin-RNAi</italic>
is directed in the developing eye using the
<italic>GMR-Gal4</italic>
transgene, it results in eyes with decreased number of ommatidia and higher disruption of the ommatidial array (Fig. 
<xref rid="Fig4" ref-type="fig">4ii, iii and x</xref>
) as determined by a one-way analysis of variance followed by a Dunnett’s multiple comparison test
<italic>p</italic>
 < 0.0001. Co-expression of
<italic>porin</italic>
with
<italic>Buffy</italic>
restored the mean number of ommatidia and the percentage disruption to control levels as determined by a one-way analysis of variance followed by a Dunnett’s multiple comparison test
<italic>p</italic>
 > 0.05 (Fig. 
<xref rid="Fig4" ref-type="fig">4v, vi and xi</xref>
). Taken together, these results suggest that
<italic>porin</italic>
may play a role in the development of the Drosophila eye and that
<italic>Buffy</italic>
suppresses the developmental eye defects that result from the inhibition of
<italic>porin</italic>
. The inhibition of
<italic>porin</italic>
along with
<italic>α-synuclein</italic>
overexpression resulted in a significant decrease in the number of ommatidia due to fusion of ommatidia and an increase in the percentage disruption of the eye (Fig. 
<xref rid="Fig4" ref-type="fig">4 viii, ix and xii</xref>
) as determined by a one-way analysis of variance followed by a Dunnett’s multiple comparison test
<italic>p</italic>
 < 0.0001. This suggests an enhancement of the neurotoxic effects of the
<italic>α-synuclein-</italic>
induced developmental eye defects in the presence of reduced
<italic>porin</italic>
activity.
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Inhibition of
<italic>porin</italic>
in the developing eye results in phenotypes that may be suppressed by
<italic>Buffy</italic>
and enhanced by
<italic>α-synuclein.</italic>
Scanning electron micrographs when
<italic>porin</italic>
is inhibited in the developing eye and co-expressed along with either
<italic>Buffy</italic>
or
<italic>α-synuclein.</italic>
The genotypes are (
<bold>i</bold>
)
<italic>GMR-Gal4/ UAS-lacZ,</italic>
(
<bold>ii</bold>
)
<italic>GMR-Gal4/ UAS-porin-RNAi (1),</italic>
(
<bold>iii</bold>
)
<italic>GMR-Gal4/ UAS-porin-RNAi (2),</italic>
(
<bold>iv</bold>
)
<italic>UAS-Buffy; GMR-Gal4/ UAS-lacZ,</italic>
(
<bold>v</bold>
)
<italic>UAS-Buffy; GMR-Gal4/ UAS-porin-RNAi (1),</italic>
(
<bold>vi</bold>
)
<italic>UAS-Buffy; GMR-Gal4/UAS-porin-RNAi (2),</italic>
(
<bold>vii</bold>
)
<italic>UAS-α-synuclein; GMR-Gal4/UAS-lacZ,</italic>
(
<bold>viii</bold>
)
<italic>UAS-α-synuclein; GMR-Gal4/ UAS-porin-RNAi (1),</italic>
and (
<bold>ix</bold>
)
<italic>UAS-α-synuclein; GMR-Gal4/UAS-porin-RNAi (2)</italic>
. Biometric analysis when (
<bold>x</bold>
)
<italic>porin</italic>
is inhibited in the eye indicated decreased ommatidia number and higher percentage of ommatidial disruption when compared to the control. (
<bold>xi</bold>
) The overexpression of
<italic>Buffy</italic>
with
<italic>porin-RNAi</italic>
results in restoration of the number of ommatidia and the degree of ommatidial disruption to below the control levels. (
<bold>xii</bold>
) The inhibition of
<italic>porin</italic>
along with
<italic>α-synuclein</italic>
expression resulted in the enhancement of the eye phenotypes when compared to controls as displayed by the low number of ommatidia coupled by the high degree of disruption of the ommatidial array. All comparisons were determined by a one-way analysis of variance followed by a Dunnett’s multiple comparison test (
<italic>P</italic>
 < 0.05), error bars are SEM, asterisks (*) represent statistical significance and
<italic>n</italic>
 = 10</p>
</caption>
<graphic xlink:href="12929_2016_300_Fig4_HTML" id="MO4"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="Sec15">
<title>Discussion</title>
<p>The multitude of functions attributed to mitochondrial porin or VDAC and its control of the entry and exit of mitochondrial metabolites makes it a key player in the cellular decisions that lead to either survival or death [
<xref ref-type="bibr" rid="CR1">1</xref>
]. The expression of
<italic>porin-RNAi</italic>
in neurons under the direction of the
<italic>Ddc-Gal4</italic>
transgene results in shortened lifespan and a premature loss in locomotor ability, results that were consistent in both RNAi lines tested and that corroborate previous studies [
<xref ref-type="bibr" rid="CR25">25</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
]. This gene product is involved in maintaining mitochondrial morphology, and its disruption leads to a host of phenotypes among them locomotor defects. In our study, we disrupted this protein in DA and other neurons, the results obtained signifies a close connection between
<italic>porin</italic>
and the progression of the PD-like phenotypes of shortened lifespan and an age-dependent loss in locomotor function. The comparison of climbing indices of flies at 40 days when most of them are alive to the control lines indicate a significant change in the phenotypes, these appears to be a strong indication of possible neurodegeneration.</p>
<p>The relationship between mitochondrial porin and PD susceptibility gene products has been investigated in other organisms [
<xref ref-type="bibr" rid="CR12">12</xref>
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR49">49</xref>
,
<xref ref-type="bibr" rid="CR50">50</xref>
]. The inhibition of
<italic>porin</italic>
along with the expression of
<italic>α-synuclein</italic>
in
<italic>Ddc-Gal4</italic>
-expressing neurons of
<italic>Drosophila melanogaster</italic>
results in the enhancement of the loss of
<italic>α-synuclein</italic>
-induced phenotypes, with a decrease in lifespan and an impairment in climbing ability. Some studies have attributed the neurotoxicity of
<italic>α-synuclein</italic>
to its interaction with electron transport chain components among them Complex I [
<xref ref-type="bibr" rid="CR51">51</xref>
]. It has been suggested that α-synuclein blocks the activity of porin and uses this channel to translocate into the inner mitochondria [
<xref ref-type="bibr" rid="CR13">13</xref>
] and that it preferentially interacts with mitochondrial membranes compared to other organelle membranes [
<xref ref-type="bibr" rid="CR52">52</xref>
]. This association inhibits mitochondrial function and promotes reactive oxygen stress. Our study firstly inhibited the mitochondria
<italic>porin</italic>
and secondly expressed
<italic>α-synuclein</italic>
in the same neurons, this resulted in the enhancement of the observed phenotypes, with shortened lifespan and severe reduction in climbing ability over time. It seems therefore that the combination effect of the directed inhibition of
<italic>porin</italic>
, and expression of
<italic>α-synuclein</italic>
confers a greater disadvantage to “healthspan”, albeit when altered in neurons. When altered individually,
<italic>α-synuclein-</italic>
induced PD model, a well-studied and robust disease model in Drosophila [
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR22">22</xref>
] result in shortened lifespan and impaired climbing ability. Inhibition of
<italic>porin</italic>
in the developing eye results in extensive ommatidial disruption and fewer ommatidia number, because of intensive fusion of the ommatidia with no distinct ommatidia detectable in most of the eyes analysed. We suggest that though α-synuclein interacts with the mitochondria to result in disruption of mitochondria homeostasis, loss of
<italic>porin</italic>
in neurons seem to be independent of
<italic>α-synuclein-</italic>
induced phenotypes and this highlights the complexity of mechanisms involved in the pathogenesis of PD.</p>
<p>The association of porin with members of the Bcl-2 family is well documented [
<xref ref-type="bibr" rid="CR7">7</xref>
], and has been suggested to be a point of convergence for cell survival and death signals [
<xref ref-type="bibr" rid="CR3">3</xref>
]. When we overexpressed
<italic>Buffy</italic>
, the sole pro-survival
<italic>Bcl-2</italic>
homologue, in Drosophila neurons, along with inhibition of
<italic>porin</italic>
via RNAi, the phenotypes associated with the loss-of-function of
<italic>porin</italic>
, shortened lifespan and impaired climbing ability, were suppressed. The survival-induced advantages of Buffy especially under conditions of stress are well documented [
<xref ref-type="bibr" rid="CR27">27</xref>
,
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR38">38</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
,
<xref ref-type="bibr" rid="CR42">42</xref>
], and so is the regulation of porin by Bcl-2 proteins that underscores the importance of Bcl-2 protein in life and death decisions. The overexpression of
<italic>Buffy</italic>
along with the inhibition of
<italic>porin</italic>
in
<italic>Ddc-Gal4</italic>
-expressing neurons and in the developing eye resulted in a suppression of the phenotypes. The excess Buffy product must therefore confer cellular advantages to the target cells and counteracts the toxic effects of
<italic>porin</italic>
inhibition, and demonstrates a wider role for the Drosophila pro-survival homologue, with potential involvement in the mitochondria-mediated cell death. The developmental expression patterns of
<italic>Buffy</italic>
and
<italic>porin</italic>
can shed light on the resulting phenotypes and possibly on the counteraction of the
<italic>porin</italic>
-induced phenotypes by overexpression of
<italic>Buffy</italic>
. One study has suggested that
<italic>porin</italic>
was not involved in
<italic>debcl</italic>
-induced cell death [
<xref ref-type="bibr" rid="CR25">25</xref>
] and found that apoptosis induced by
<italic>debcl</italic>
overexpression was not inhibited by
<italic>porin</italic>
loss of function. As such it seems that the rescue of
<italic>porin</italic>
-induced phenotypes by
<italic>Buffy</italic>
are consistent with its action on the mitochondria directly or through other proteins in a dedicated pro-survival signalling pathway.</p>
</sec>
<sec id="Sec16">
<title>Conclusions</title>
<p>The inhibition of
<italic>porin</italic>
in the
<italic>Ddc-Gal4</italic>
-expressing neurons and the developing eye is rescued upon the overexpression of
<italic>Buffy</italic>
, a pro-survival
<italic>Bcl-2</italic>
homologue. The co-expression of
<italic>porin-RNAi</italic>
along with
<italic>α-synuclein</italic>
results in enhanced phenotypes, this highlights the complexity of
<italic>α-synuclein-</italic>
induced mechanisms in the pathogenesis of PD, and in deed demonstrates the multi-faceted mechanisms involved in the aetiology of PD.</p>
</sec>
</body>
<back>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-item>
<term>Bcl-2</term>
<def>
<p>B cell lymphoma 2</p>
</def>
</def-item>
<def-item>
<term>CI</term>
<def>
<p>Confidence interval</p>
</def>
</def-item>
<def-item>
<term>DA</term>
<def>
<p>Dopaminergic</p>
</def>
</def-item>
<def-item>
<term>Ddc</term>
<def>
<p>DOPA decarboxylase</p>
</def>
</def-item>
<def-item>
<term>GMR</term>
<def>
<p>Glass Multimer Reporter</p>
</def>
</def-item>
<def-item>
<term>RNAi</term>
<def>
<p>Ribonucleic acid interference</p>
</def>
</def-item>
<def-item>
<term>SEM</term>
<def>
<p>Standard error of the mean</p>
</def>
</def-item>
<def-item>
<term>VDAC</term>
<def>
<p>Voltage-dependent anion channel</p>
</def>
</def-item>
</def-list>
</glossary>
<ack>
<title>Acknowledgements</title>
<p>Not applicable.</p>
<sec id="FPar1">
<title>Funding</title>
<p>PGM was been partially funded by Department of Biology Teaching Assistantships and a School of Graduate Studies Fellowship from Memorial University of Newfoundland. The research program of BES has been funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant. The funding bodies were not involved in the design of the study and in the collection, analysis, and interpretation of the data and writing the manuscript.</p>
</sec>
<sec id="FPar2">
<title>Availability of data and material</title>
<p>The datasets supporting the conclusions of this article are included within the article.</p>
</sec>
<sec id="FPar3">
<title>Authors’ contributions</title>
<p>PGM performed the bioinformatic, survival, climbing/locomotion, biometric and statistical analyses. BES conceived and participated in the design, supervision of the study and revisions to the final draft of the manuscript. Both authors have read and approved the final manuscript.</p>
</sec>
<sec id="FPar4">
<title>Competing interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
<sec id="FPar5">
<title>Consent for publication</title>
<p>Not applicable.</p>
</sec>
<sec id="FPar6">
<title>Ethics approval</title>
<p>This study has been conducted under the approval of the Animal Care Committee of Memorial University of Newfoundland as a Category of Invasiveness Level A protocol under the project title of “Genetic, biochemical and molecular analysis of cell survival and cell death in
<italic>Drosophila melanogaster</italic>
” (protocol number: 16-09-BS). Consent was not applicable for this study.</p>
</sec>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shoshan-Barmatz</surname>
<given-names>V</given-names>
</name>
<name>
<surname>De Pinto</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Zweckstetter</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Raviv</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Keinan</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Arbel</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>VDAC, a multi-functional mitochondrial protein regulating cell life and death</article-title>
<source>Mol Aspects Med</source>
<year>2010</year>
<volume>31</volume>
<fpage>227</fpage>
<lpage>285</lpage>
<pub-id pub-id-type="doi">10.1016/j.mam.2010.03.002</pub-id>
<pub-id pub-id-type="pmid">20346371</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ryerse</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Blachly-Dyson</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Forte</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nagel</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Cloning and molecular characterization of a voltage-dependent anion-selective channel (VDAC) from Drosophila melanogaster</article-title>
<source>Biochim Biophys Acta</source>
<year>1997</year>
<volume>1327</volume>
<fpage>204</fpage>
<lpage>212</lpage>
<pub-id pub-id-type="doi">10.1016/S0005-2736(97)00059-X</pub-id>
<pub-id pub-id-type="pmid">9271262</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shoshan-Barmatz</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Ben-Hail</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>VDAC, a multi-functional mitochondrial protein as a pharmacological target</article-title>
<source>Mitochondrion</source>
<year>2012</year>
<volume>12</volume>
<fpage>24</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.1016/j.mito.2011.04.001</pub-id>
<pub-id pub-id-type="pmid">21530686</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Craigen</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>BH</given-names>
</name>
</person-group>
<article-title>Genetic strategies for dissecting mammalian and Drosophila voltage-dependent anion channel functions</article-title>
<source>J Bioenerg Biomembr</source>
<year>2008</year>
<volume>40</volume>
<fpage>207</fpage>
<lpage>212</lpage>
<pub-id pub-id-type="doi">10.1007/s10863-008-9146-x</pub-id>
<pub-id pub-id-type="pmid">18622693</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Stefani</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bononi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Romagnoli</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Messina</surname>
<given-names>A</given-names>
</name>
<name>
<surname>De Pinto</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Pinton</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria</article-title>
<source>Cell Death Differ</source>
<year>2012</year>
<volume>19</volume>
<fpage>267</fpage>
<lpage>273</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2011.92</pub-id>
<pub-id pub-id-type="pmid">21720385</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pastorino</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Hoek</surname>
<given-names>JB</given-names>
</name>
</person-group>
<article-title>Regulation of hexokinase binding to VDAC</article-title>
<source>J Bioenerg Biomembr</source>
<year>2008</year>
<volume>40</volume>
<fpage>171</fpage>
<lpage>182</lpage>
<pub-id pub-id-type="doi">10.1007/s10863-008-9148-8</pub-id>
<pub-id pub-id-type="pmid">18683036</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsujimoto</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>VDAC regulation by the Bcl-2 family of proteins</article-title>
<source>Cell Death Differ</source>
<year>2000</year>
<volume>7</volume>
<fpage>1174</fpage>
<lpage>1181</lpage>
<pub-id pub-id-type="doi">10.1038/sj.cdd.4400780</pub-id>
<pub-id pub-id-type="pmid">11175254</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Sheiko</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Fisher</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Craigen</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Korsmeyer</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>VDAC2 inhibits BAK activation and mitochondrial apoptosis</article-title>
<source>Science (New York, NY)</source>
<year>2003</year>
<volume>301</volume>
<fpage>513</fpage>
<lpage>517</lpage>
<pub-id pub-id-type="doi">10.1126/science.1083995</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramírez</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>González</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Díaz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Alonso</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ferrer</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Santpere</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VDAC and ER interaction in caveolae from human cortex is altered in Alzheimer’s disease</article-title>
<source>Mol Cell Neurosci</source>
<year>2009</year>
<volume>42</volume>
<fpage>172</fpage>
<lpage>183</lpage>
<pub-id pub-id-type="doi">10.1016/j.mcn.2009.07.001</pub-id>
<pub-id pub-id-type="pmid">19595769</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoo</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Fountoulakis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cairns</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Lubec</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Changes of voltage dependent anion selective channel proteins VDAC1 and VDAC2 brain levels in patients with Alzheimer’s disease and Down Syndrome</article-title>
<source>Electrophoresis</source>
<year>2001</year>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Premkumar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Simantov</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Mitochondrial voltage-dependent anion channel is involved in dopamine-induced apoptosis</article-title>
<source>J Neurochem</source>
<year>2002</year>
<volume>82</volume>
<fpage>345</fpage>
<lpage>352</lpage>
<pub-id pub-id-type="doi">10.1046/j.1471-4159.2002.00966.x</pub-id>
<pub-id pub-id-type="pmid">12124435</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Vashisht</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Tchieu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wohlschlegel</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Dreier</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy</article-title>
<source>J Biol Chem</source>
<year>2012</year>
<volume>287</volume>
<fpage>40652</fpage>
<lpage>40660</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M112.419721</pub-id>
<pub-id pub-id-type="pmid">23060438</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rostovtseva</surname>
<given-names>TK</given-names>
</name>
<name>
<surname>Gurnev</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Protchenko</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Hoogerheide</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Yap</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Philpott</surname>
<given-names>CC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>α-Synuclein Shows High Affinity Interaction with Voltage-dependent Anion Channel, Suggesting Mechanisms of Mitochondrial Regulation and Toxicity in Parkinson Disease</article-title>
<source>J Biol Chem</source>
<year>2015</year>
<volume>290</volume>
<fpage>18467</fpage>
<lpage>18477</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M115.641746</pub-id>
<pub-id pub-id-type="pmid">26055708</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Goldman</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>L</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Waliczek</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kordower</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>Abnormal alpha-synuclein reduces nigral voltage-dependent anion channel 1 in sporadic and experimental Parkinson’s disease</article-title>
<source>Neurobiol Dis</source>
<year>2014</year>
<volume>69</volume>
<fpage>1</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1016/j.nbd.2014.05.003</pub-id>
<pub-id pub-id-type="pmid">24825319</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>α-Synuclein amino terminus regulates mitochondrial membrane permeability</article-title>
<source>Brain Res</source>
<year>2014</year>
<volume>1591</volume>
<fpage>14</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="doi">10.1016/j.brainres.2014.09.046</pub-id>
<pub-id pub-id-type="pmid">25446002</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feany</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Bender</surname>
<given-names>WW</given-names>
</name>
</person-group>
<article-title>A Drosophila model of Parkinson’s disease</article-title>
<source>Nature</source>
<year>2000</year>
<volume>404</volume>
<fpage>394</fpage>
<lpage>398</lpage>
<pub-id pub-id-type="doi">10.1038/35006074</pub-id>
<pub-id pub-id-type="pmid">10746727</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Auluck</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Trojanowski</surname>
<given-names>JQ</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Bonini</surname>
<given-names>NM</given-names>
</name>
</person-group>
<article-title>Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease</article-title>
<source>Science</source>
<year>2002</year>
<volume>295</volume>
<fpage>865</fpage>
<lpage>868</lpage>
<pub-id pub-id-type="doi">10.1126/science.1067389</pub-id>
<pub-id pub-id-type="pmid">11823645</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buttner</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Broeskamp</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Sommer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Markaki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Habernig</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Alavian-Ghavanini</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Spermidine protects against alpha-synuclein neurotoxicity</article-title>
<source>Cell Cycle (Georgetown, Tex)</source>
<year>2014</year>
<volume>13</volume>
<fpage>3903</fpage>
<lpage>3908</lpage>
<pub-id pub-id-type="doi">10.4161/15384101.2014.973309</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gan</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>High Throughput Sequencing Identifies MicroRNAs Mediating alpha-Synuclein Toxicity by Targeting Neuroactive-Ligand Receptor Interaction Pathway in Early Stage of Drosophila Parkinson’s Disease Model</article-title>
<source>PLoS One</source>
<year>2015</year>
<volume>10</volume>
<fpage>e0137432</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0137432</pub-id>
<pub-id pub-id-type="pmid">26361355</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Shan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Nrf2 inducer and cncC overexpression attenuates neurodegeneration due to alpha-synuclein in Drosophila</article-title>
<source>Biochem Cell Biol</source>
<year>2015</year>
<volume>93</volume>
<fpage>351</fpage>
<lpage>358</lpage>
<pub-id pub-id-type="doi">10.1139/bcb-2015-0015</pub-id>
<pub-id pub-id-type="pmid">26008822</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>ZJ</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Yung</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>ZM</given-names>
</name>
<name>
<surname>Ke</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Differential interaction between iron and mutant alpha-synuclein causes distinctive Parkinsonian phenotypes in Drosophila</article-title>
<source>Biochim Biophys Acta</source>
<year>1862</year>
<volume>2016</volume>
<fpage>518</fpage>
<lpage>525</lpage>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<mixed-citation publication-type="other">Staveley BE. Drosophila Models of Parkinson Disease. In: Movement Disorders: Genetics and Models. Second edn. Edited by LeDoux MS. London: Elsevier Science; 2015. 345–354.</mixed-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Botella</surname>
<given-names>JAA</given-names>
</name>
<name>
<surname>Bayersdorfer</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Gmeiner</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Schneuwly</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Modelling Parkinson’s disease in Drosophila</article-title>
<source>Neuromolecular Med</source>
<year>2009</year>
<volume>11</volume>
<fpage>268</fpage>
<lpage>280</lpage>
<pub-id pub-id-type="doi">10.1007/s12017-009-8098-6</pub-id>
<pub-id pub-id-type="pmid">19855946</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brand</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Perrimon</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Targeted gene expression as a means of altering cell fates and generating dominant phenotypes</article-title>
<source>Development</source>
<year>1993</year>
<volume>118</volume>
<fpage>401</fpage>
<lpage>415</lpage>
<pub-id pub-id-type="pmid">8223268</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<mixed-citation publication-type="other">Park J, Kim Y, Choi S, Koh H, Lee S-HH, Kim J-MM et al. Drosophila Porin/VDAC affects mitochondrial morphology. PloS ONE. 2010;5(10):e13151.</mixed-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graham</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Alesii</surname>
<given-names>EP</given-names>
</name>
<name>
<surname>Versteken</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neurologic dysfunction and male infertility in Drosophila porin mutants: a new model for mitochondrial dysfunction and disease</article-title>
<source>J Biol Chem</source>
<year>2010</year>
<volume>285</volume>
<fpage>11143</fpage>
<lpage>11153</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M109.080317</pub-id>
<pub-id pub-id-type="pmid">20110367</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>M’Angale</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Staveley</surname>
<given-names>BE</given-names>
</name>
</person-group>
<article-title>The Bcl-2 homologue Buffy rescues alpha-synuclein-induced Parkinson disease-like phenotypes in Drosophila</article-title>
<source>BMC Neurosci</source>
<year>2016</year>
<volume>17</volume>
<fpage>24</fpage>
<pub-id pub-id-type="doi">10.1186/s12868-016-0261-z</pub-id>
<pub-id pub-id-type="pmid">27192974</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<mixed-citation publication-type="other">M’Angale PG, Staveley BE. The
<italic>HtrA2</italic>
Drosophila model of Parkinson Disease is suppressed by the pro-survival
<italic>Bcl-2 Buffy</italic>
. Genome 2016; In Press.</mixed-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marchler-Bauer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Derbyshire</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Gonzales</surname>
<given-names>NR</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chitsaz</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Geer</surname>
<given-names>LY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CDD: NCBI’s conserved domain database</article-title>
<source>Nucleic Acids Res</source>
<year>2015</year>
<volume>43</volume>
<fpage>D222</fpage>
<lpage>D226</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gku1221</pub-id>
<pub-id pub-id-type="pmid">25414356</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dinkel</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Van Roey</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Michael</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Davey</surname>
<given-names>NE</given-names>
</name>
<name>
<surname>Weatheritt</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Born</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The eukaryotic linear motif resource ELM: 10 years and counting</article-title>
<source>Nucleic Acids Res</source>
<year>2013</year>
<pub-id pub-id-type="pmid">24214962</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sievers</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wilm</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dineen</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gibson</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Karplus</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega</article-title>
<source>Mol Syst Biol</source>
<year>2011</year>
<volume>7</volume>
<fpage>539</fpage>
<pub-id pub-id-type="doi">10.1038/msb.2011.75</pub-id>
<pub-id pub-id-type="pmid">21988835</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goujon</surname>
<given-names>M</given-names>
</name>
<name>
<surname>McWilliam</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Valentin</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Squizzato</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Paern</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A new bioinformatics analysis tools framework at EMBL–EBI</article-title>
<source>Nucleic Acids Res</source>
<year>2010</year>
<volume>38</volume>
<fpage>W695</fpage>
<lpage>W699</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkq313</pub-id>
<pub-id pub-id-type="pmid">20439314</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>la Cour</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kiemer</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Mølgaard</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Skriver</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Analysis and prediction of leucine-rich nuclear export signals</article-title>
<source>Protein Eng Des Sel</source>
<year>2004</year>
<volume>17</volume>
<fpage>527</fpage>
<lpage>536</lpage>
<pub-id pub-id-type="doi">10.1093/protein/gzh062</pub-id>
<pub-id pub-id-type="pmid">15314210</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<mixed-citation publication-type="other">Fisher B, Weiszmann R, Frise E, Hammonds A, Tomancak P, Beaton A et al. BDGP insitu homepage. In
<italic>.</italic>
; 2012.</mixed-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oliva</surname>
<given-names>M</given-names>
</name>
<name>
<surname>De Pinto</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Barsanti</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Caggese</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>A genetic analysis of the porin gene encoding a voltage-dependent anion channel protein in Drosophila melanogaster</article-title>
<source>Mol Genet Genomics</source>
<year>2002</year>
<volume>267</volume>
<fpage>746</fpage>
<lpage>756</lpage>
<pub-id pub-id-type="doi">10.1007/s00438-002-0714-1</pub-id>
<pub-id pub-id-type="pmid">12207222</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freeman</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye</article-title>
<source>Cell</source>
<year>1996</year>
<volume>87</volume>
<fpage>651</fpage>
<lpage>660</lpage>
<pub-id pub-id-type="doi">10.1016/S0092-8674(00)81385-9</pub-id>
<pub-id pub-id-type="pmid">8929534</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Chaney</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>IJ</given-names>
</name>
<name>
<surname>Forte</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hirsh</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster</article-title>
<source>Curr Biol</source>
<year>2000</year>
<volume>10</volume>
<fpage>211</fpage>
<lpage>214</lpage>
<pub-id pub-id-type="doi">10.1016/S0960-9822(00)00340-7</pub-id>
<pub-id pub-id-type="pmid">10704417</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Quinn</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Coombe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mills</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Daish</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Colussi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions</article-title>
<source>EMBO J</source>
<year>2003</year>
<volume>22</volume>
<fpage>3568</fpage>
<lpage>3579</lpage>
<pub-id pub-id-type="doi">10.1093/emboj/cdg355</pub-id>
<pub-id pub-id-type="pmid">12853472</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brachmann</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Jassim</surname>
<given-names>OW</given-names>
</name>
<name>
<surname>Wachsmuth</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Cagan</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>The Drosophila bcl-2 family member dBorg-1 functions in the apoptotic response to UV-irradiation</article-title>
<source>Curr Biol</source>
<year>2000</year>
<volume>10</volume>
<fpage>547</fpage>
<lpage>550</lpage>
<pub-id pub-id-type="doi">10.1016/S0960-9822(00)00474-7</pub-id>
<pub-id pub-id-type="pmid">10801447</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colussi</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Quinn</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Coombe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Read</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Debcl, a proapoptotic Bcl-2 homologue, is a component of the Drosophila melanogaster cell death machinery</article-title>
<source>J Cell Biol</source>
<year>2000</year>
<volume>148</volume>
<fpage>703</fpage>
<lpage>714</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.148.4.703</pub-id>
<pub-id pub-id-type="pmid">10684252</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>M’Angale</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Staveley</surname>
<given-names>BE</given-names>
</name>
</person-group>
<article-title>
<italic>Bcl-2</italic>
homologue
<italic>Debcl</italic>
enhances
<italic>α-synuclein</italic>
-induced phenotypes in Drosophila</article-title>
<source>Peer J</source>
<year>2016</year>
<volume>4</volume>
<fpage>e2461</fpage>
<pub-id pub-id-type="doi">10.7717/peerj.2461</pub-id>
<pub-id pub-id-type="pmid">27672511</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<mixed-citation publication-type="other">M’Angale PG, Staveley BE. Inhibition of
<italic>Atg6</italic>
and
<italic>Pi3K59F</italic>
autophagy genes in neurons decreases lifespan and locomotor ability in
<italic>Drosophila melanogaster</italic>
. Gen Mol Res. 2016; 15:gmr15048953.</mixed-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Todd</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Staveley</surname>
<given-names>BE</given-names>
</name>
</person-group>
<article-title>Expression of Pink1 with alpha-synuclein in the dopaminergic neurons of Drosophila leads to increases in both lifespan and healthspan</article-title>
<source>Genet Mol Res</source>
<year>2012</year>
<volume>11</volume>
<fpage>1497</fpage>
<lpage>1502</lpage>
<pub-id pub-id-type="doi">10.4238/2012.May.21.6</pub-id>
<pub-id pub-id-type="pmid">22653599</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Staveley</surname>
<given-names>BE</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Hilliker</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Phenotypic consequences of copper-zinc superoxide dismutase overexpression in Drosophila melanogaster</article-title>
<source>Genome</source>
<year>1990</year>
<volume>33</volume>
<fpage>867</fpage>
<lpage>872</lpage>
<pub-id pub-id-type="doi">10.1139/g90-130</pub-id>
<pub-id pub-id-type="pmid">1964925</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Todd</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Staveley</surname>
<given-names>BE</given-names>
</name>
</person-group>
<article-title>Novel assay and analysis for measuring climbing ability in
<italic>Drosophila</italic>
</article-title>
<source>Dros Info Serv</source>
<year>2004</year>
<volume>87</volume>
<fpage>101</fpage>
<lpage>107</lpage>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schneider</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Rasband</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Eliceiri</surname>
<given-names>KW</given-names>
</name>
</person-group>
<article-title>NIH Image to ImageJ: 25 years of image analysis</article-title>
<source>Nat Methods</source>
<year>2012</year>
<volume>9</volume>
<fpage>671</fpage>
<lpage>675</lpage>
<pub-id pub-id-type="doi">10.1038/nmeth.2089</pub-id>
<pub-id pub-id-type="pmid">22930834</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>M’Angale</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Staveley</surname>
<given-names>BE</given-names>
</name>
</person-group>
<article-title>Effects of α-synuclein expression in the developing Drosophila eye</article-title>
<source>Dros Info Serv</source>
<year>2012</year>
<volume>95</volume>
<fpage>85</fpage>
<lpage>89</lpage>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dinkel</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Van Roey</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Michael</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Uyar</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Altenberg</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ELM 2016-data update and new functionality of the eukaryotic linear motif resource</article-title>
<source>Nucleic Acids Res</source>
<year>2016</year>
<volume>44</volume>
<fpage>D294</fpage>
<lpage>D300</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkv1291</pub-id>
<pub-id pub-id-type="pmid">26615199</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geisler</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Holmstrom</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Skujat</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Fiesel</surname>
<given-names>FC</given-names>
</name>
<name>
<surname>Rothfuss</surname>
<given-names>OC</given-names>
</name>
<name>
<surname>Kahle</surname>
<given-names>PJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1</article-title>
<source>Nat Cell Biol</source>
<year>2010</year>
<volume>12</volume>
<fpage>119</fpage>
<lpage>131</lpage>
<pub-id pub-id-type="doi">10.1038/ncb2012</pub-id>
<pub-id pub-id-type="pmid">20098416</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Narendra</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kane</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Hauser</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>Fearnley</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Youle</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both</article-title>
<source>Autophagy</source>
<year>2010</year>
<volume>6</volume>
<fpage>1090</fpage>
<lpage>1106</lpage>
<pub-id pub-id-type="doi">10.4161/auto.6.8.13426</pub-id>
<pub-id pub-id-type="pmid">20890124</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chinta</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Mallajosyula</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Rane</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Andersen</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo</article-title>
<source>Neurosci Lett</source>
<year>2010</year>
<volume>486</volume>
<fpage>235</fpage>
<lpage>239</lpage>
<pub-id pub-id-type="doi">10.1016/j.neulet.2010.09.061</pub-id>
<pub-id pub-id-type="pmid">20887775</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakamura</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nemani</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Wallender</surname>
<given-names>EK</given-names>
</name>
<name>
<surname>Kaehlcke</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ott</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>Optical reporters for the conformation of alpha-synuclein reveal a specific interaction with mitochondria</article-title>
<source>J Neurosci</source>
<year>2008</year>
<volume>28</volume>
<fpage>12305</fpage>
<lpage>12317</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.3088-08.2008</pub-id>
<pub-id pub-id-type="pmid">19020024</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000251  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000251  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022