La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heterozygous carriers of a Parkin or PINK1 mutation share a common functional endophenotype

Identifieur interne : 000B23 ( Pmc/Checkpoint ); précédent : 000B22; suivant : 000B24

Heterozygous carriers of a Parkin or PINK1 mutation share a common functional endophenotype

Auteurs : B F. L. Van Nuenen ; M M. Weiss ; B R. Bloem ; K. Reetz ; T. Van Eimeren ; K. Lohmann ; J. Hagenah ; P P. Pramstaller ; F. Binkofski ; C. Klein ; H R. Siebner

Source :

RBID : PMC:2821837

Abstract

Objective:

To use a combined neurogenetic-neuroimaging approach to examine the functional consequences of preclinical dopaminergic nigrostriatal dysfunction in the human motor system. Specifically, we examined how a single heterozygous mutation in different genes associated with recessively inherited Parkinson disease alters the cortical control of sequential finger movements.

Methods:

Nonmanifesting individuals carrying a single heterozygous Parkin (n = 13) or PINK1 (n = 9) mutation and 23 healthy controls without these mutations were studied with functional MRI (fMRI). During fMRI, participants performed simple sequences of three thumb-to-finger opposition movements with their right dominant hand. Since heterozygous Parkin and PINK1 mutations cause a latent dopaminergic nigrostriatal dysfunction, we predicted a compensatory recruitment of those rostral premotor areas that are normally implicated in the control of complex motor sequences. We expected this overactivity to be independent of the underlying genotype.

Results:

Task performance was comparable for all groups. The performance of a simple motor sequence task consistently activated the rostral supplementary motor area and right rostral dorsal premotor cortex in mutation carriers but not in controls. Task-related activation of these premotor areas was similar in carriers of a Parkin or PINK1 mutation.

Conclusion:

Mutations in different genes linked to recessively inherited Parkinson disease are associated with an additional recruitment of rostral supplementary motor area and rostral dorsal premotor cortex during a simple motor sequence task. These premotor areas were recruited independently of the underlying genotype. The observed activation most likely reflects a “generic” compensatory mechanism to maintain motor function in the context of a mild dopaminergic deficit.

GLOSSARYBOLD

= blood oxygen level–dependent;

CMA

= cingulate motor area;

FDR

= false discovery rate;

fMRI

= functional MRI;

HRF

= hemodynamic response function;

IPS

= intraparietal sulcus;

M1HAND

= primary motor hand area;

PD

= Parkinson disease;

PMd

= dorsal premotor cortex;

SMA

= supplementary motor area;

SPM

= statistical parametric mapping;

SVC

= small volume correction;

TE

= echo time;

TMS

= transcranial magnetic stimulation;

TR

= repetition time;

VOI

= volumes of interest.


Url:
DOI: 10.1212/01.wnl.0000338699.56379.11
PubMed: 19038850
PubMed Central: 2821837


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2821837

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heterozygous carriers of a
<italic>Parkin</italic>
or
<italic>PINK1</italic>
mutation share a common functional endophenotype</title>
<author>
<name sortKey="Van Nuenen, B F L" sort="Van Nuenen, B F L" uniqKey="Van Nuenen B" first="B F. L." last="Van Nuenen">B F. L. Van Nuenen</name>
</author>
<author>
<name sortKey="Weiss, M M" sort="Weiss, M M" uniqKey="Weiss M" first="M M." last="Weiss">M M. Weiss</name>
</author>
<author>
<name sortKey="Bloem, B R" sort="Bloem, B R" uniqKey="Bloem B" first="B R." last="Bloem">B R. Bloem</name>
</author>
<author>
<name sortKey="Reetz, K" sort="Reetz, K" uniqKey="Reetz K" first="K" last="Reetz">K. Reetz</name>
</author>
<author>
<name sortKey="Van Eimeren, T" sort="Van Eimeren, T" uniqKey="Van Eimeren T" first="T" last="Van Eimeren">T. Van Eimeren</name>
</author>
<author>
<name sortKey="Lohmann, K" sort="Lohmann, K" uniqKey="Lohmann K" first="K" last="Lohmann">K. Lohmann</name>
</author>
<author>
<name sortKey="Hagenah, J" sort="Hagenah, J" uniqKey="Hagenah J" first="J" last="Hagenah">J. Hagenah</name>
</author>
<author>
<name sortKey="Pramstaller, P P" sort="Pramstaller, P P" uniqKey="Pramstaller P" first="P P." last="Pramstaller">P P. Pramstaller</name>
</author>
<author>
<name sortKey="Binkofski, F" sort="Binkofski, F" uniqKey="Binkofski F" first="F" last="Binkofski">F. Binkofski</name>
</author>
<author>
<name sortKey="Klein, C" sort="Klein, C" uniqKey="Klein C" first="C" last="Klein">C. Klein</name>
</author>
<author>
<name sortKey="Siebner, H R" sort="Siebner, H R" uniqKey="Siebner H" first="H R." last="Siebner">H R. Siebner</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19038850</idno>
<idno type="pmc">2821837</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821837</idno>
<idno type="RBID">PMC:2821837</idno>
<idno type="doi">10.1212/01.wnl.0000338699.56379.11</idno>
<date when="2009">2009</date>
<idno type="wicri:Area/Pmc/Corpus">000312</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000312</idno>
<idno type="wicri:Area/Pmc/Curation">000312</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000312</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000B23</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000B23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Heterozygous carriers of a
<italic>Parkin</italic>
or
<italic>PINK1</italic>
mutation share a common functional endophenotype</title>
<author>
<name sortKey="Van Nuenen, B F L" sort="Van Nuenen, B F L" uniqKey="Van Nuenen B" first="B F. L." last="Van Nuenen">B F. L. Van Nuenen</name>
</author>
<author>
<name sortKey="Weiss, M M" sort="Weiss, M M" uniqKey="Weiss M" first="M M." last="Weiss">M M. Weiss</name>
</author>
<author>
<name sortKey="Bloem, B R" sort="Bloem, B R" uniqKey="Bloem B" first="B R." last="Bloem">B R. Bloem</name>
</author>
<author>
<name sortKey="Reetz, K" sort="Reetz, K" uniqKey="Reetz K" first="K" last="Reetz">K. Reetz</name>
</author>
<author>
<name sortKey="Van Eimeren, T" sort="Van Eimeren, T" uniqKey="Van Eimeren T" first="T" last="Van Eimeren">T. Van Eimeren</name>
</author>
<author>
<name sortKey="Lohmann, K" sort="Lohmann, K" uniqKey="Lohmann K" first="K" last="Lohmann">K. Lohmann</name>
</author>
<author>
<name sortKey="Hagenah, J" sort="Hagenah, J" uniqKey="Hagenah J" first="J" last="Hagenah">J. Hagenah</name>
</author>
<author>
<name sortKey="Pramstaller, P P" sort="Pramstaller, P P" uniqKey="Pramstaller P" first="P P." last="Pramstaller">P P. Pramstaller</name>
</author>
<author>
<name sortKey="Binkofski, F" sort="Binkofski, F" uniqKey="Binkofski F" first="F" last="Binkofski">F. Binkofski</name>
</author>
<author>
<name sortKey="Klein, C" sort="Klein, C" uniqKey="Klein C" first="C" last="Klein">C. Klein</name>
</author>
<author>
<name sortKey="Siebner, H R" sort="Siebner, H R" uniqKey="Siebner H" first="H R." last="Siebner">H R. Siebner</name>
</author>
</analytic>
<series>
<title level="j">Neurology</title>
<idno type="ISSN">0028-3878</idno>
<idno type="eISSN">1526-632X</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Objective:</title>
<p>To use a combined neurogenetic-neuroimaging approach to examine the functional consequences of preclinical dopaminergic nigrostriatal dysfunction in the human motor system. Specifically, we examined how a single heterozygous mutation in different genes associated with recessively inherited Parkinson disease alters the cortical control of sequential finger movements.</p>
</sec>
<sec>
<title>Methods:</title>
<p>Nonmanifesting individuals carrying a single heterozygous
<italic>Parkin</italic>
(n = 13) or
<italic>PINK1</italic>
(n = 9) mutation and 23 healthy controls without these mutations were studied with functional MRI (fMRI). During fMRI, participants performed simple sequences of three thumb-to-finger opposition movements with their right dominant hand. Since heterozygous
<italic>Parkin</italic>
and
<italic>PINK1</italic>
mutations cause a latent dopaminergic nigrostriatal dysfunction, we predicted a compensatory recruitment of those rostral premotor areas that are normally implicated in the control of complex motor sequences. We expected this overactivity to be independent of the underlying genotype.</p>
</sec>
<sec>
<title>Results:</title>
<p>Task performance was comparable for all groups. The performance of a simple motor sequence task consistently activated the rostral supplementary motor area and right rostral dorsal premotor cortex in mutation carriers but not in controls. Task-related activation of these premotor areas was similar in carriers of a
<italic>Parkin</italic>
or
<italic>PINK1</italic>
mutation.</p>
</sec>
<sec>
<title>Conclusion:</title>
<p>Mutations in different genes linked to recessively inherited Parkinson disease are associated with an additional recruitment of rostral supplementary motor area and rostral dorsal premotor cortex during a simple motor sequence task. These premotor areas were recruited independently of the underlying genotype. The observed activation most likely reflects a “generic” compensatory mechanism to maintain motor function in the context of a mild dopaminergic deficit.</p>
</sec>
<sec>
<title>GLOSSARY</title>
<def-list list-type="abr">
<def-item>
<term>
<bold>BOLD</bold>
</term>
<def>
<p> = blood oxygen level–dependent; </p>
</def>
</def-item>
<def-item>
<term>
<bold>CMA</bold>
</term>
<def>
<p> = cingulate motor area; </p>
</def>
</def-item>
<def-item>
<term>
<bold>FDR</bold>
</term>
<def>
<p> = false discovery rate; </p>
</def>
</def-item>
<def-item>
<term>
<bold>fMRI</bold>
</term>
<def>
<p> = functional MRI; </p>
</def>
</def-item>
<def-item>
<term>
<bold>HRF</bold>
</term>
<def>
<p> = hemodynamic response function; </p>
</def>
</def-item>
<def-item>
<term>
<bold>IPS</bold>
</term>
<def>
<p> = intraparietal sulcus; </p>
</def>
</def-item>
<def-item>
<term>
<bold>M1
<sub>HAND</sub>
</bold>
</term>
<def>
<p> = primary motor hand area; </p>
</def>
</def-item>
<def-item>
<term>
<bold>PD</bold>
</term>
<def>
<p> = Parkinson disease; </p>
</def>
</def-item>
<def-item>
<term>
<bold>PMd</bold>
</term>
<def>
<p> = dorsal premotor cortex; </p>
</def>
</def-item>
<def-item>
<term>
<bold>SMA</bold>
</term>
<def>
<p> = supplementary motor area; </p>
</def>
</def-item>
<def-item>
<term>
<bold>SPM</bold>
</term>
<def>
<p> = statistical parametric mapping; </p>
</def>
</def-item>
<def-item>
<term>
<bold>SVC</bold>
</term>
<def>
<p> = small volume correction; </p>
</def>
</def-item>
<def-item>
<term>
<bold>TE</bold>
</term>
<def>
<p> = echo time; </p>
</def>
</def-item>
<def-item>
<term>
<bold>TMS</bold>
</term>
<def>
<p> = transcranial magnetic stimulation; </p>
</def>
</def-item>
<def-item>
<term>
<bold>TR</bold>
</term>
<def>
<p> = repetition time; </p>
</def>
</def-item>
<def-item>
<term>
<bold>VOI</bold>
</term>
<def>
<p> = volumes of interest.</p>
</def>
</def-item>
</def-list>
</sec>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Neurology</journal-id>
<journal-title>Neurology</journal-title>
<issn pub-type="ppub">0028-3878</issn>
<issn pub-type="epub">1526-632X</issn>
<publisher>
<publisher-name>American Academy of Neurology</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">19038850</article-id>
<article-id pub-id-type="pmc">2821837</article-id>
<article-id pub-id-type="publisher-id">znl01209001041</article-id>
<article-id pub-id-type="doi">10.1212/01.wnl.0000338699.56379.11</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Heterozygous carriers of a
<italic>Parkin</italic>
or
<italic>PINK1</italic>
mutation share a common functional endophenotype</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>van Nuenen</surname>
<given-names>B F.L.</given-names>
</name>
<degrees>MD</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Weiss</surname>
<given-names>M M.</given-names>
</name>
<degrees>MD</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bloem</surname>
<given-names>B R.</given-names>
</name>
<degrees>MD, PhD</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Reetz</surname>
<given-names>K</given-names>
</name>
<degrees>MD</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>van Eimeren</surname>
<given-names>T</given-names>
</name>
<degrees>MD</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lohmann</surname>
<given-names>K</given-names>
</name>
<degrees>MD, PhD</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hagenah</surname>
<given-names>J</given-names>
</name>
<degrees>MD</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pramstaller</surname>
<given-names>P P.</given-names>
</name>
<degrees>MD</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Binkofski</surname>
<given-names>F</given-names>
</name>
<degrees>MD</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Klein</surname>
<given-names>C</given-names>
</name>
<degrees>MD, PhD</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Siebner</surname>
<given-names>H R.</given-names>
</name>
<degrees>MD</degrees>
</contrib>
</contrib-group>
<aff id="N0x3436720N0x352bc70">From the Department of Neurology (B.F.L.v.N., M.M.W., H.R.S.), Christian-Albrechts University, Kiel, Germany; Department of Neurology and Donders Centre for Neuroscience (B.F.L.v.N., B.R.B.), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Neurology (K.R., K.L., J.H., F.B., C.K.), University of Lübeck, Germany; NeuroImage-Nord (K.R., T.v.E., F.B., H.R.S.), Hamburg-Kiel-Lübeck, Germany; Toronto Western Hospital-Research Institute (T.v.E.), CAMH-PET Centre, University of Toronto, Canada; Department of Neurology (P.P.P.), Central Hospital and Institute of Genetic Medicine, Eurac-Research, Bolzano-Bozen, Italy; and Danish Research Centre for Magnetic Resonance (H.R.S.), Hvidovre University Hospital, Copenhagen, Denmark.
<break></break>
</aff>
<pub-date pub-type="ppub">
<day>24</day>
<month>3</month>
<year>2009</year>
</pub-date>
<volume>72</volume>
<issue>12</issue>
<fpage>1041</fpage>
<lpage>1047</lpage>
<copyright-statement>Copyright © 2009 by AAN Enterprises, Inc.</copyright-statement>
<abstract>
<sec>
<title>Objective:</title>
<p>To use a combined neurogenetic-neuroimaging approach to examine the functional consequences of preclinical dopaminergic nigrostriatal dysfunction in the human motor system. Specifically, we examined how a single heterozygous mutation in different genes associated with recessively inherited Parkinson disease alters the cortical control of sequential finger movements.</p>
</sec>
<sec>
<title>Methods:</title>
<p>Nonmanifesting individuals carrying a single heterozygous
<italic>Parkin</italic>
(n = 13) or
<italic>PINK1</italic>
(n = 9) mutation and 23 healthy controls without these mutations were studied with functional MRI (fMRI). During fMRI, participants performed simple sequences of three thumb-to-finger opposition movements with their right dominant hand. Since heterozygous
<italic>Parkin</italic>
and
<italic>PINK1</italic>
mutations cause a latent dopaminergic nigrostriatal dysfunction, we predicted a compensatory recruitment of those rostral premotor areas that are normally implicated in the control of complex motor sequences. We expected this overactivity to be independent of the underlying genotype.</p>
</sec>
<sec>
<title>Results:</title>
<p>Task performance was comparable for all groups. The performance of a simple motor sequence task consistently activated the rostral supplementary motor area and right rostral dorsal premotor cortex in mutation carriers but not in controls. Task-related activation of these premotor areas was similar in carriers of a
<italic>Parkin</italic>
or
<italic>PINK1</italic>
mutation.</p>
</sec>
<sec>
<title>Conclusion:</title>
<p>Mutations in different genes linked to recessively inherited Parkinson disease are associated with an additional recruitment of rostral supplementary motor area and rostral dorsal premotor cortex during a simple motor sequence task. These premotor areas were recruited independently of the underlying genotype. The observed activation most likely reflects a “generic” compensatory mechanism to maintain motor function in the context of a mild dopaminergic deficit.</p>
</sec>
<sec>
<title>GLOSSARY</title>
<def-list list-type="abr">
<def-item>
<term>
<bold>BOLD</bold>
</term>
<def>
<p> = blood oxygen level–dependent; </p>
</def>
</def-item>
<def-item>
<term>
<bold>CMA</bold>
</term>
<def>
<p> = cingulate motor area; </p>
</def>
</def-item>
<def-item>
<term>
<bold>FDR</bold>
</term>
<def>
<p> = false discovery rate; </p>
</def>
</def-item>
<def-item>
<term>
<bold>fMRI</bold>
</term>
<def>
<p> = functional MRI; </p>
</def>
</def-item>
<def-item>
<term>
<bold>HRF</bold>
</term>
<def>
<p> = hemodynamic response function; </p>
</def>
</def-item>
<def-item>
<term>
<bold>IPS</bold>
</term>
<def>
<p> = intraparietal sulcus; </p>
</def>
</def-item>
<def-item>
<term>
<bold>M1
<sub>HAND</sub>
</bold>
</term>
<def>
<p> = primary motor hand area; </p>
</def>
</def-item>
<def-item>
<term>
<bold>PD</bold>
</term>
<def>
<p> = Parkinson disease; </p>
</def>
</def-item>
<def-item>
<term>
<bold>PMd</bold>
</term>
<def>
<p> = dorsal premotor cortex; </p>
</def>
</def-item>
<def-item>
<term>
<bold>SMA</bold>
</term>
<def>
<p> = supplementary motor area; </p>
</def>
</def-item>
<def-item>
<term>
<bold>SPM</bold>
</term>
<def>
<p> = statistical parametric mapping; </p>
</def>
</def-item>
<def-item>
<term>
<bold>SVC</bold>
</term>
<def>
<p> = small volume correction; </p>
</def>
</def-item>
<def-item>
<term>
<bold>TE</bold>
</term>
<def>
<p> = echo time; </p>
</def>
</def-item>
<def-item>
<term>
<bold>TMS</bold>
</term>
<def>
<p> = transcranial magnetic stimulation; </p>
</def>
</def-item>
<def-item>
<term>
<bold>TR</bold>
</term>
<def>
<p> = repetition time; </p>
</def>
</def-item>
<def-item>
<term>
<bold>VOI</bold>
</term>
<def>
<p> = volumes of interest.</p>
</def>
</def-item>
</def-list>
</sec>
</abstract>
</article-meta>
<notes>
<p>Address correspondence and reprint requests to Dr. Hartwig Siebner, Danish Research Centre for Magnetic Resonance, Hvidovre University Hospital, Kettegaard Allé 30, DK-2650 Hvidovre, Denmark
<email>hartwig.siebner@drcmr.dk</email>
</p>
<p>Supplemental data at
<ext-link ext-link-type="uri" xlink:href="www.neurology.org">www.neurology.org</ext-link>
</p>
<p>Editorial, page 1036</p>
<p>
<italic>e-Pub ahead of print on November 26, 2008, at</italic>
<ext-link ext-link-type="uri" xlink:href="www.neurology.org">www.neurology.org</ext-link>
.</p>
<p>Supported by a BMBF grant to H.R.S. (01 GO 0511) and F.B. (01 GO 0512) (NeuroImage-Nord) and by the 6th European Framework (EU-LSHB-CT-2006-037544-GENEPARK). C.K., F.B., and H.S. have been supported by the Volkswagenstiftung. B.F.L.v.N. and B.R.B. were supported by a NWO VIDI research grant (number: 917.76.352).</p>
<p>
<italic>Disclosure:</italic>
The authors report no disclosures.</p>
<p>Received May 2, 2008. Accepted in final form September 26, 2008.</p>
</notes>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Binkofski, F" sort="Binkofski, F" uniqKey="Binkofski F" first="F" last="Binkofski">F. Binkofski</name>
<name sortKey="Bloem, B R" sort="Bloem, B R" uniqKey="Bloem B" first="B R." last="Bloem">B R. Bloem</name>
<name sortKey="Hagenah, J" sort="Hagenah, J" uniqKey="Hagenah J" first="J" last="Hagenah">J. Hagenah</name>
<name sortKey="Klein, C" sort="Klein, C" uniqKey="Klein C" first="C" last="Klein">C. Klein</name>
<name sortKey="Lohmann, K" sort="Lohmann, K" uniqKey="Lohmann K" first="K" last="Lohmann">K. Lohmann</name>
<name sortKey="Pramstaller, P P" sort="Pramstaller, P P" uniqKey="Pramstaller P" first="P P." last="Pramstaller">P P. Pramstaller</name>
<name sortKey="Reetz, K" sort="Reetz, K" uniqKey="Reetz K" first="K" last="Reetz">K. Reetz</name>
<name sortKey="Siebner, H R" sort="Siebner, H R" uniqKey="Siebner H" first="H R." last="Siebner">H R. Siebner</name>
<name sortKey="Van Eimeren, T" sort="Van Eimeren, T" uniqKey="Van Eimeren T" first="T" last="Van Eimeren">T. Van Eimeren</name>
<name sortKey="Van Nuenen, B F L" sort="Van Nuenen, B F L" uniqKey="Van Nuenen B" first="B F. L." last="Van Nuenen">B F. L. Van Nuenen</name>
<name sortKey="Weiss, M M" sort="Weiss, M M" uniqKey="Weiss M" first="M M." last="Weiss">M M. Weiss</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000B23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:2821837
   |texte=   Heterozygous carriers of a Parkin or PINK1 mutation share a common functional endophenotype
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:19038850" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022