La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Involvement of the human pedunculopontine nucleus region in voluntary movements(e–Pub ahead of print)

Identifieur interne : 000A37 ( Pmc/Checkpoint ); précédent : 000A36; suivant : 000A38

Involvement of the human pedunculopontine nucleus region in voluntary movements(e–Pub ahead of print)

Auteurs : E. W. Tsang ; C. Hamani ; E. Moro ; F. Mazzella ; Y. Y. Poon ; A. M. Lozano ; R. Chen

Source :

RBID : PMC:2942031

Abstract

Objective:

The pedunculopontine nucleus region (PPNR) is being investigated as a target for deep brain stimulation (DBS) in Parkinson disease (PD), particularly for gait and postural impairment. A greater understanding of how PPNR activities and oscillations are modulated with voluntary movements is crucial to the development of neuromodulation strategies.

Methods:

We studied 7 patients with PD who underwent DBS electrode implantations in the PPNR. PPNR local field potential and EEG were recorded while patients performed self-paced wrist and ankle movements.

Results:

Back-averaging of the PPNR recording showed movement-related potentials before electromyography onset. Frequency analysis showed 2 discrete movement-related frequency bands in the theta (6- to 10-Hz) and beta (14- to 30-Hz) ranges. The PPNR theta band showed greater event-related desynchronization with movements in the ON than in the OFF medication state and was coupled with the sensorimotor cortices in the ON state only. Beta event-related desynchronization was observed in the PPNR during the premovement and movement execution phases in the OFF state. In contrast, premovement PPNR beta event-related synchronization occurred in the ON state. Moreover, beta band coherence between the PPNR and the midline prefrontal region was observed during movement preparation in the ON but not the OFF state.

Conclusions:

Activities of PPNR change during movement preparation and execution in patients with PD. Dopaminergic medications modulate PPNR activities and promote the interactions between the cortex and PPNR. Beta oscillations may have different functions in the basal ganglia and PPNR, and may be prokinetic rather than antikinetic in the PPNR.

GLOSSARYAC

= anterior commissure;

BG

= basal ganglia;

cusum

= cumulative sum amplitude;

BP

= Bereitschaftspotential;

DBS

= deep brain stimulation;

ERD

= event-related desynchronization;

ERS

= event-related synchronization;

GPi

= globus pallidus internus;

LFP

= local field potential;

MRP

= movement-related potential;

PC

= posterior commissure;

PD

= Parkinson disease;

PPN

= pedunculopontine nucleus;

PPNR

= pedunculopontine nucleus region;

SMA

= supplementary motor area;

STN

= subthalamic nucleus;

VT

= ventral thalamus.


Url:
DOI: 10.1212/WNL.0b013e3181f25b35
PubMed: 20702790
PubMed Central: 2942031


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2942031

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Involvement of the human pedunculopontine nucleus region in voluntary movements
<inline-graphic xlink:href="permznlpap0000n1.jpg">
<alt-text>(e–Pub ahead of print)</alt-text>
</inline-graphic>
</title>
<author>
<name sortKey="Tsang, E W" sort="Tsang, E W" uniqKey="Tsang E" first="E. W." last="Tsang">E. W. Tsang</name>
</author>
<author>
<name sortKey="Hamani, C" sort="Hamani, C" uniqKey="Hamani C" first="C." last="Hamani">C. Hamani</name>
</author>
<author>
<name sortKey="Moro, E" sort="Moro, E" uniqKey="Moro E" first="E." last="Moro">E. Moro</name>
</author>
<author>
<name sortKey="Mazzella, F" sort="Mazzella, F" uniqKey="Mazzella F" first="F." last="Mazzella">F. Mazzella</name>
</author>
<author>
<name sortKey="Poon, Y Y" sort="Poon, Y Y" uniqKey="Poon Y" first="Y. Y." last="Poon">Y. Y. Poon</name>
</author>
<author>
<name sortKey="Lozano, A M" sort="Lozano, A M" uniqKey="Lozano A" first="A. M." last="Lozano">A. M. Lozano</name>
</author>
<author>
<name sortKey="Chen, R" sort="Chen, R" uniqKey="Chen R" first="R." last="Chen">R. Chen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20702790</idno>
<idno type="pmc">2942031</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2942031</idno>
<idno type="RBID">PMC:2942031</idno>
<idno type="doi">10.1212/WNL.0b013e3181f25b35</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">000316</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000316</idno>
<idno type="wicri:Area/Pmc/Curation">000316</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000316</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000A37</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000A37</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Involvement of the human pedunculopontine nucleus region in voluntary movements
<inline-graphic xlink:href="permznlpap0000n1.jpg">
<alt-text>(e–Pub ahead of print)</alt-text>
</inline-graphic>
</title>
<author>
<name sortKey="Tsang, E W" sort="Tsang, E W" uniqKey="Tsang E" first="E. W." last="Tsang">E. W. Tsang</name>
</author>
<author>
<name sortKey="Hamani, C" sort="Hamani, C" uniqKey="Hamani C" first="C." last="Hamani">C. Hamani</name>
</author>
<author>
<name sortKey="Moro, E" sort="Moro, E" uniqKey="Moro E" first="E." last="Moro">E. Moro</name>
</author>
<author>
<name sortKey="Mazzella, F" sort="Mazzella, F" uniqKey="Mazzella F" first="F." last="Mazzella">F. Mazzella</name>
</author>
<author>
<name sortKey="Poon, Y Y" sort="Poon, Y Y" uniqKey="Poon Y" first="Y. Y." last="Poon">Y. Y. Poon</name>
</author>
<author>
<name sortKey="Lozano, A M" sort="Lozano, A M" uniqKey="Lozano A" first="A. M." last="Lozano">A. M. Lozano</name>
</author>
<author>
<name sortKey="Chen, R" sort="Chen, R" uniqKey="Chen R" first="R." last="Chen">R. Chen</name>
</author>
</analytic>
<series>
<title level="j">Neurology</title>
<idno type="ISSN">0028-3878</idno>
<idno type="eISSN">1526-632X</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Objective:</title>
<p>The pedunculopontine nucleus region (PPNR) is being investigated as a target for deep brain stimulation (DBS) in Parkinson disease (PD), particularly for gait and postural impairment. A greater understanding of how PPNR activities and oscillations are modulated with voluntary movements is crucial to the development of neuromodulation strategies.</p>
</sec>
<sec>
<title>Methods:</title>
<p>We studied 7 patients with PD who underwent DBS electrode implantations in the PPNR. PPNR local field potential and EEG were recorded while patients performed self-paced wrist and ankle movements.</p>
</sec>
<sec>
<title>Results:</title>
<p>Back-averaging of the PPNR recording showed movement-related potentials before electromyography onset. Frequency analysis showed 2 discrete movement-related frequency bands in the theta (6- to 10-Hz) and beta (14- to 30-Hz) ranges. The PPNR theta band showed greater event-related desynchronization with movements in the ON than in the OFF medication state and was coupled with the sensorimotor cortices in the ON state only. Beta event-related desynchronization was observed in the PPNR during the premovement and movement execution phases in the OFF state. In contrast, premovement PPNR beta event-related synchronization occurred in the ON state. Moreover, beta band coherence between the PPNR and the midline prefrontal region was observed during movement preparation in the ON but not the OFF state.</p>
</sec>
<sec>
<title>Conclusions:</title>
<p>Activities of PPNR change during movement preparation and execution in patients with PD. Dopaminergic medications modulate PPNR activities and promote the interactions between the cortex and PPNR. Beta oscillations may have different functions in the basal ganglia and PPNR, and may be prokinetic rather than antikinetic in the PPNR.</p>
</sec>
<sec>
<title>GLOSSARY</title>
<def-list list-type="abr">
<def-item>
<term>
<bold>AC</bold>
</term>
<def>
<p> = anterior commissure; </p>
</def>
</def-item>
<def-item>
<term>
<bold>BG</bold>
</term>
<def>
<p> = basal ganglia; </p>
</def>
</def-item>
<def-item>
<term>
<bold>cusum</bold>
</term>
<def>
<p> = cumulative sum amplitude; </p>
</def>
</def-item>
<def-item>
<term>
<bold>BP</bold>
</term>
<def>
<p> = Bereitschaftspotential; </p>
</def>
</def-item>
<def-item>
<term>
<bold>DBS</bold>
</term>
<def>
<p> = deep brain stimulation; </p>
</def>
</def-item>
<def-item>
<term>
<bold>ERD</bold>
</term>
<def>
<p> = event-related desynchronization; </p>
</def>
</def-item>
<def-item>
<term>
<bold>ERS</bold>
</term>
<def>
<p> = event-related synchronization; </p>
</def>
</def-item>
<def-item>
<term>
<bold>GPi</bold>
</term>
<def>
<p> = globus pallidus internus; </p>
</def>
</def-item>
<def-item>
<term>
<bold>LFP</bold>
</term>
<def>
<p> = local field potential; </p>
</def>
</def-item>
<def-item>
<term>
<bold>MRP</bold>
</term>
<def>
<p> = movement-related potential; </p>
</def>
</def-item>
<def-item>
<term>
<bold>PC</bold>
</term>
<def>
<p> = posterior commissure; </p>
</def>
</def-item>
<def-item>
<term>
<bold>PD</bold>
</term>
<def>
<p> = Parkinson disease; </p>
</def>
</def-item>
<def-item>
<term>
<bold>PPN</bold>
</term>
<def>
<p> = pedunculopontine nucleus; </p>
</def>
</def-item>
<def-item>
<term>
<bold>PPNR</bold>
</term>
<def>
<p> = pedunculopontine nucleus region; </p>
</def>
</def-item>
<def-item>
<term>
<bold>SMA</bold>
</term>
<def>
<p> = supplementary motor area; </p>
</def>
</def-item>
<def-item>
<term>
<bold>STN</bold>
</term>
<def>
<p> = subthalamic nucleus; </p>
</def>
</def-item>
<def-item>
<term>
<bold>VT</bold>
</term>
<def>
<p> = ventral thalamus.</p>
</def>
</def-item>
</def-list>
</sec>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Neurology</journal-id>
<journal-title>Neurology</journal-title>
<issn pub-type="ppub">0028-3878</issn>
<issn pub-type="epub">1526-632X</issn>
<publisher>
<publisher-name>American Academy of Neurology</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20702790</article-id>
<article-id pub-id-type="pmc">2942031</article-id>
<article-id pub-id-type="publisher-id">znl03510000950</article-id>
<article-id pub-id-type="doi">10.1212/WNL.0b013e3181f25b35</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Involvement of the human pedunculopontine nucleus region in voluntary movements
<inline-graphic xlink:href="permznlpap0000n1.jpg">
<alt-text>(e–Pub ahead of print)</alt-text>
</inline-graphic>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Tsang</surname>
<given-names>E.W.</given-names>
</name>
<degrees>MSc</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hamani</surname>
<given-names>C.</given-names>
</name>
<degrees>MD, PhD</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Moro</surname>
<given-names>E.</given-names>
</name>
<degrees>MD, PhD</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mazzella</surname>
<given-names>F.</given-names>
</name>
<degrees>RN</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Poon</surname>
<given-names>Y.Y.</given-names>
</name>
<degrees>RN</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lozano</surname>
<given-names>A.M.</given-names>
</name>
<degrees>MD, PhD, FRCSC</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>R.</given-names>
</name>
<degrees>MBBChir, MSc, FRCPC</degrees>
</contrib>
</contrib-group>
<aff id="N0x1f24f00N0x2eb2108">From the Division of Brain Imaging & Behaviour Systems-Neuroscience (E.W.T., C.H., E.M., A.M.L., R.C.), Toronto Western Research Institute, University Health Network; Division of Neurology, Department of Medicine (E.M., F.M., Y.Y.P., R.C.), Division of Neurosurgery, Department of Surgery (C.H., A.M.L.), and Institute of Medical Science (E.W.T., A.M.L., R.C.), University of Toronto, Ontario, Canada.
<break></break>
</aff>
<pub-date pub-type="ppub">
<day>14</day>
<month>9</month>
<year>2010</year>
</pub-date>
<volume>75</volume>
<issue>11</issue>
<fpage>950</fpage>
<lpage>959</lpage>
<copyright-statement>Copyright © 2010 by AAN Enterprises, Inc.</copyright-statement>
<abstract>
<sec>
<title>Objective:</title>
<p>The pedunculopontine nucleus region (PPNR) is being investigated as a target for deep brain stimulation (DBS) in Parkinson disease (PD), particularly for gait and postural impairment. A greater understanding of how PPNR activities and oscillations are modulated with voluntary movements is crucial to the development of neuromodulation strategies.</p>
</sec>
<sec>
<title>Methods:</title>
<p>We studied 7 patients with PD who underwent DBS electrode implantations in the PPNR. PPNR local field potential and EEG were recorded while patients performed self-paced wrist and ankle movements.</p>
</sec>
<sec>
<title>Results:</title>
<p>Back-averaging of the PPNR recording showed movement-related potentials before electromyography onset. Frequency analysis showed 2 discrete movement-related frequency bands in the theta (6- to 10-Hz) and beta (14- to 30-Hz) ranges. The PPNR theta band showed greater event-related desynchronization with movements in the ON than in the OFF medication state and was coupled with the sensorimotor cortices in the ON state only. Beta event-related desynchronization was observed in the PPNR during the premovement and movement execution phases in the OFF state. In contrast, premovement PPNR beta event-related synchronization occurred in the ON state. Moreover, beta band coherence between the PPNR and the midline prefrontal region was observed during movement preparation in the ON but not the OFF state.</p>
</sec>
<sec>
<title>Conclusions:</title>
<p>Activities of PPNR change during movement preparation and execution in patients with PD. Dopaminergic medications modulate PPNR activities and promote the interactions between the cortex and PPNR. Beta oscillations may have different functions in the basal ganglia and PPNR, and may be prokinetic rather than antikinetic in the PPNR.</p>
</sec>
<sec>
<title>GLOSSARY</title>
<def-list list-type="abr">
<def-item>
<term>
<bold>AC</bold>
</term>
<def>
<p> = anterior commissure; </p>
</def>
</def-item>
<def-item>
<term>
<bold>BG</bold>
</term>
<def>
<p> = basal ganglia; </p>
</def>
</def-item>
<def-item>
<term>
<bold>cusum</bold>
</term>
<def>
<p> = cumulative sum amplitude; </p>
</def>
</def-item>
<def-item>
<term>
<bold>BP</bold>
</term>
<def>
<p> = Bereitschaftspotential; </p>
</def>
</def-item>
<def-item>
<term>
<bold>DBS</bold>
</term>
<def>
<p> = deep brain stimulation; </p>
</def>
</def-item>
<def-item>
<term>
<bold>ERD</bold>
</term>
<def>
<p> = event-related desynchronization; </p>
</def>
</def-item>
<def-item>
<term>
<bold>ERS</bold>
</term>
<def>
<p> = event-related synchronization; </p>
</def>
</def-item>
<def-item>
<term>
<bold>GPi</bold>
</term>
<def>
<p> = globus pallidus internus; </p>
</def>
</def-item>
<def-item>
<term>
<bold>LFP</bold>
</term>
<def>
<p> = local field potential; </p>
</def>
</def-item>
<def-item>
<term>
<bold>MRP</bold>
</term>
<def>
<p> = movement-related potential; </p>
</def>
</def-item>
<def-item>
<term>
<bold>PC</bold>
</term>
<def>
<p> = posterior commissure; </p>
</def>
</def-item>
<def-item>
<term>
<bold>PD</bold>
</term>
<def>
<p> = Parkinson disease; </p>
</def>
</def-item>
<def-item>
<term>
<bold>PPN</bold>
</term>
<def>
<p> = pedunculopontine nucleus; </p>
</def>
</def-item>
<def-item>
<term>
<bold>PPNR</bold>
</term>
<def>
<p> = pedunculopontine nucleus region; </p>
</def>
</def-item>
<def-item>
<term>
<bold>SMA</bold>
</term>
<def>
<p> = supplementary motor area; </p>
</def>
</def-item>
<def-item>
<term>
<bold>STN</bold>
</term>
<def>
<p> = subthalamic nucleus; </p>
</def>
</def-item>
<def-item>
<term>
<bold>VT</bold>
</term>
<def>
<p> = ventral thalamus.</p>
</def>
</def-item>
</def-list>
</sec>
</abstract>
</article-meta>
<notes>
<p>Address correspondence and reprint requests to Dr. Robert Chen, Toronto Western Hospital, McLaughlin Pavilion, 7th Floor, Room 411, 399 Bathurst St., Toronto, Ontario M5T 2S8, Canada
<email>robert.chen@uhn.on.ca</email>
</p>
<p>Editorial, page 944</p>
<p>Supplemental data at
<ext-link ext-link-type="uri" xlink:href="www.neurology.org">www.neurology.org</ext-link>
</p>
<p>
<italic>e-Pub ahead of print on August 11, 2010, at</italic>
<ext-link ext-link-type="uri" xlink:href="www.neurology.org">www.neurology.org</ext-link>
.</p>
<p>
<italic>Study funding:</italic>
Supported by the Canadian Institutes of Health Research (CIHR) MOP15128. Eric W. Tsang is supported by a CIHR Canada Graduate Scholarship Doctoral Award, Robert Chen is supported by a CIHR–Industry Partnered Investigator Award, and Andres M. Lozano is supported by the Canada Research Chair in Neurosciences.</p>
<p>
<italic>Disclosure:</italic>
Author disclosures are provided at the end of the article.</p>
<p>Received November 6, 2009. Accepted in final form March 9, 2010.</p>
</notes>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Chen, R" sort="Chen, R" uniqKey="Chen R" first="R." last="Chen">R. Chen</name>
<name sortKey="Hamani, C" sort="Hamani, C" uniqKey="Hamani C" first="C." last="Hamani">C. Hamani</name>
<name sortKey="Lozano, A M" sort="Lozano, A M" uniqKey="Lozano A" first="A. M." last="Lozano">A. M. Lozano</name>
<name sortKey="Mazzella, F" sort="Mazzella, F" uniqKey="Mazzella F" first="F." last="Mazzella">F. Mazzella</name>
<name sortKey="Moro, E" sort="Moro, E" uniqKey="Moro E" first="E." last="Moro">E. Moro</name>
<name sortKey="Poon, Y Y" sort="Poon, Y Y" uniqKey="Poon Y" first="Y. Y." last="Poon">Y. Y. Poon</name>
<name sortKey="Tsang, E W" sort="Tsang, E W" uniqKey="Tsang E" first="E. W." last="Tsang">E. W. Tsang</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000A37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:2942031
   |texte=   Involvement of the human pedunculopontine nucleus region in voluntary movements(e–Pub ahead of print)
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:20702790" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022