La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simulating the effects of dopamine imbalance on cognition: From positive affect to Parkinson's disease

Identifieur interne : 000B09 ( PascalFrancis/Curation ); précédent : 000B08; suivant : 000B10

Simulating the effects of dopamine imbalance on cognition: From positive affect to Parkinson's disease

Auteurs : Sébastien Helie [États-Unis] ; Erick J. Paul [États-Unis] ; F. Gregory Ashby [États-Unis]

Source :

RBID : Pascal:13-0025376

Descripteurs français

English descriptors

Abstract

Cools (2006) suggested that prefrontal dopamine levels are related to cognitive stability whereas striatal dopamine levels are related to cognitive plasticity. With such a wide ranging role, almost all cognitive activities should be affected by dopamine levels in the brain. Not surprisingly, factors influencing brain dopamine levels have been shown to improve/worsen performance in many behavioral experiments. On the one hand, Nadler, Rabi, and Minda (2010) showed that positive affect (which is thought to increase cortical dopamine levels) improves a type of categorization that depends on explicit reasoning (rule-based) but not another type that depends on procedural learning (information-integration). On the other hand, Parkinson's disease (which is known to decrease dopamine levels in both the striatum and cortex) produces proactive interference in the odd-man-out task (Flowers & Robertson, 1985) and renders subjects insensitive to negative feedback during reversal learning (Cools, Altamirano, & D'Esposito, 2006). This article uses the COVIS model of categorization to simulate the effects of different dopamine levels in categorization, reversal learning, and the odd-man-out task. The results show a good match between the simulated and human data, which suggests that the role of dopamine in COVIS can account for several cognitive enhancements and deficits related to dopamine levels in healthy and patient populations.
pA  
A01 01  1    @0 0893-6080
A03   1    @0 Neural netw.
A05       @2 32
A08 01  1  ENG  @1 Simulating the effects of dopamine imbalance on cognition: From positive affect to Parkinson's disease
A09 01  1  ENG  @1 Selected Papers from IJCNN 2011
A11 01  1    @1 HELIE (Sébastien)
A11 02  1    @1 PAUL (Erick J.)
A11 03  1    @1 GREGORY ASHBY (F.)
A12 01  1    @1 THIVIERGE (Jean-Philippe) @9 ed.
A12 02  1    @1 MINAI (Ali) @9 ed.
A12 03  1    @1 SIEGELMANN (Hava) @9 ed.
A12 04  1    @1 ALIPPI (Cesare) @9 ed.
A12 05  1    @1 GEORGIOPOULOS (Michael) @9 ed.
A14 01      @1 University of California @2 Santa Barbara @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A15 01      @1 School of Psychology, University of Ottawa @2 Ottawa @3 CAN @Z 1 aut.
A15 02      @1 School of Electronic & Computing Systems, University of Cincinnati @2 Cincinnati, OH @3 USA @Z 2 aut.
A15 03      @1 Computer Science Department , University of Massachusetts Amherst @2 Amherst, MA @3 USA @Z 3 aut.
A15 04      @1 Information Processing Systems, Politecnico di Milano @2 Milan @3 ITA @Z 4 aut.
A15 05      @1 Department of Electrical Engineeering and Computer Science, University of Central Florida @2 Orlando, FL @3 USA @Z 5 aut.
A20       @1 74-85
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 21689 @5 354000504000850080
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 13-0025376
A60       @1 P
A61       @0 A
A64 01  1    @0 Neural networks
A66 01      @0 GBR
C01 01    ENG  @0 Cools (2006) suggested that prefrontal dopamine levels are related to cognitive stability whereas striatal dopamine levels are related to cognitive plasticity. With such a wide ranging role, almost all cognitive activities should be affected by dopamine levels in the brain. Not surprisingly, factors influencing brain dopamine levels have been shown to improve/worsen performance in many behavioral experiments. On the one hand, Nadler, Rabi, and Minda (2010) showed that positive affect (which is thought to increase cortical dopamine levels) improves a type of categorization that depends on explicit reasoning (rule-based) but not another type that depends on procedural learning (information-integration). On the other hand, Parkinson's disease (which is known to decrease dopamine levels in both the striatum and cortex) produces proactive interference in the odd-man-out task (Flowers & Robertson, 1985) and renders subjects insensitive to negative feedback during reversal learning (Cools, Altamirano, & D'Esposito, 2006). This article uses the COVIS model of categorization to simulate the effects of different dopamine levels in categorization, reversal learning, and the odd-man-out task. The results show a good match between the simulated and human data, which suggests that the role of dopamine in COVIS can account for several cognitive enhancements and deficits related to dopamine levels in healthy and patient populations.
C02 01  X    @0 001D02B07D
C03 01  X  FRE  @0 Cognition @5 06
C03 01  X  ENG  @0 Cognition @5 06
C03 01  X  SPA  @0 Cognición @5 06
C03 02  X  FRE  @0 Analyse comportementale @5 07
C03 02  X  ENG  @0 Behavioral analysis @5 07
C03 02  X  SPA  @0 Análisis conductual @5 07
C03 03  X  FRE  @0 Intelligence artificielle @5 08
C03 03  X  ENG  @0 Artificial intelligence @5 08
C03 03  X  SPA  @0 Inteligencia artificial @5 08
C03 04  X  FRE  @0 Système expert @5 09
C03 04  X  ENG  @0 Expert system @5 09
C03 04  X  SPA  @0 Sistema experto @5 09
C03 05  X  FRE  @0 Intégration information @5 10
C03 05  X  ENG  @0 Information integration @5 10
C03 05  X  SPA  @0 Integración información @5 10
C03 06  X  FRE  @0 Service proactif @5 11
C03 06  X  ENG  @0 Proactive service @5 11
C03 06  X  SPA  @0 Sevicio proactivo @5 11
C03 07  X  FRE  @0 Dopamine @2 NK @2 FR @5 18
C03 07  X  ENG  @0 Dopamine @2 NK @2 FR @5 18
C03 07  X  SPA  @0 Dopamina @2 NK @2 FR @5 18
C03 08  X  FRE  @0 Homme @5 19
C03 08  X  ENG  @0 Human @5 19
C03 08  X  SPA  @0 Hombre @5 19
C03 09  X  FRE  @0 Théorie cognitive @5 20
C03 09  X  ENG  @0 Cognitive theory @5 20
C03 09  X  SPA  @0 Teoría cognitiva @5 20
C03 10  X  FRE  @0 Inélasticité @5 21
C03 10  X  ENG  @0 Inelasticity @5 21
C03 10  X  SPA  @0 Inelasticidad @5 21
C03 11  X  FRE  @0 Plasticité @5 22
C03 11  X  ENG  @0 Plasticity @5 22
C03 11  X  SPA  @0 Plasticidad @5 22
C03 12  X  FRE  @0 Activité @5 23
C03 12  X  ENG  @0 Activity @5 23
C03 12  X  SPA  @0 Actividad @5 23
C03 13  X  FRE  @0 Cerveau @5 24
C03 13  X  ENG  @0 Brain @5 24
C03 13  X  SPA  @0 Cerebro @5 24
C03 14  X  FRE  @0 Encéphale @5 25
C03 14  X  ENG  @0 Encephalon @5 25
C03 14  X  SPA  @0 Encéfalo @5 25
C03 15  X  FRE  @0 Système nerveux central @5 26
C03 15  X  ENG  @0 Central nervous system @5 26
C03 15  X  SPA  @0 Sistema nervioso central @5 26
C03 16  X  FRE  @0 Catégorisation @5 27
C03 16  X  ENG  @0 Categorization @5 27
C03 16  X  SPA  @0 Categorización @5 27
C03 17  X  FRE  @0 Modélisation @5 28
C03 17  X  ENG  @0 Modeling @5 28
C03 17  X  SPA  @0 Modelización @5 28
C03 18  X  FRE  @0 Noyau gris central @5 41
C03 18  X  ENG  @0 Basal ganglion @5 41
C03 18  X  SPA  @0 Núcleo basal @5 41
C03 19  X  FRE  @0 . @4 INC @5 82
N21       @1 014
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0025376

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Simulating the effects of dopamine imbalance on cognition: From positive affect to Parkinson's disease</title>
<author>
<name sortKey="Helie, Sebastien" sort="Helie, Sebastien" uniqKey="Helie S" first="Sébastien" last="Helie">Sébastien Helie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of California</s1>
<s2>Santa Barbara</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Paul, Erick J" sort="Paul, Erick J" uniqKey="Paul E" first="Erick J." last="Paul">Erick J. Paul</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of California</s1>
<s2>Santa Barbara</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Gregory Ashby, F" sort="Gregory Ashby, F" uniqKey="Gregory Ashby F" first="F." last="Gregory Ashby">F. Gregory Ashby</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of California</s1>
<s2>Santa Barbara</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0025376</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0025376 INIST</idno>
<idno type="RBID">Pascal:13-0025376</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000123</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000B09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Simulating the effects of dopamine imbalance on cognition: From positive affect to Parkinson's disease</title>
<author>
<name sortKey="Helie, Sebastien" sort="Helie, Sebastien" uniqKey="Helie S" first="Sébastien" last="Helie">Sébastien Helie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of California</s1>
<s2>Santa Barbara</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Paul, Erick J" sort="Paul, Erick J" uniqKey="Paul E" first="Erick J." last="Paul">Erick J. Paul</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of California</s1>
<s2>Santa Barbara</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Gregory Ashby, F" sort="Gregory Ashby, F" uniqKey="Gregory Ashby F" first="F." last="Gregory Ashby">F. Gregory Ashby</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of California</s1>
<s2>Santa Barbara</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Neural networks</title>
<title level="j" type="abbreviated">Neural netw.</title>
<idno type="ISSN">0893-6080</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Neural networks</title>
<title level="j" type="abbreviated">Neural netw.</title>
<idno type="ISSN">0893-6080</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activity</term>
<term>Artificial intelligence</term>
<term>Basal ganglion</term>
<term>Behavioral analysis</term>
<term>Brain</term>
<term>Categorization</term>
<term>Central nervous system</term>
<term>Cognition</term>
<term>Cognitive theory</term>
<term>Dopamine</term>
<term>Encephalon</term>
<term>Expert system</term>
<term>Human</term>
<term>Inelasticity</term>
<term>Information integration</term>
<term>Modeling</term>
<term>Plasticity</term>
<term>Proactive service</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cognition</term>
<term>Analyse comportementale</term>
<term>Intelligence artificielle</term>
<term>Système expert</term>
<term>Intégration information</term>
<term>Service proactif</term>
<term>Dopamine</term>
<term>Homme</term>
<term>Théorie cognitive</term>
<term>Inélasticité</term>
<term>Plasticité</term>
<term>Activité</term>
<term>Cerveau</term>
<term>Encéphale</term>
<term>Système nerveux central</term>
<term>Catégorisation</term>
<term>Modélisation</term>
<term>Noyau gris central</term>
<term>.</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Intelligence artificielle</term>
<term>Homme</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cools (2006) suggested that prefrontal dopamine levels are related to cognitive stability whereas striatal dopamine levels are related to cognitive plasticity. With such a wide ranging role, almost all cognitive activities should be affected by dopamine levels in the brain. Not surprisingly, factors influencing brain dopamine levels have been shown to improve/worsen performance in many behavioral experiments. On the one hand, Nadler, Rabi, and Minda (2010) showed that positive affect (which is thought to increase cortical dopamine levels) improves a type of categorization that depends on explicit reasoning (rule-based) but not another type that depends on procedural learning (information-integration). On the other hand, Parkinson's disease (which is known to decrease dopamine levels in both the striatum and cortex) produces proactive interference in the odd-man-out task (Flowers & Robertson, 1985) and renders subjects insensitive to negative feedback during reversal learning (Cools, Altamirano, & D'Esposito, 2006). This article uses the COVIS model of categorization to simulate the effects of different dopamine levels in categorization, reversal learning, and the odd-man-out task. The results show a good match between the simulated and human data, which suggests that the role of dopamine in COVIS can account for several cognitive enhancements and deficits related to dopamine levels in healthy and patient populations.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0893-6080</s0>
</fA01>
<fA03 i2="1">
<s0>Neural netw.</s0>
</fA03>
<fA05>
<s2>32</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Simulating the effects of dopamine imbalance on cognition: From positive affect to Parkinson's disease</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Selected Papers from IJCNN 2011</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HELIE (Sébastien)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PAUL (Erick J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GREGORY ASHBY (F.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>THIVIERGE (Jean-Philippe)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>MINAI (Ali)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SIEGELMANN (Hava)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>ALIPPI (Cesare)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>GEORGIOPOULOS (Michael)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>University of California</s1>
<s2>Santa Barbara</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>School of Psychology, University of Ottawa</s1>
<s2>Ottawa</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>School of Electronic & Computing Systems, University of Cincinnati</s1>
<s2>Cincinnati, OH</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Computer Science Department , University of Massachusetts Amherst</s1>
<s2>Amherst, MA</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Information Processing Systems, Politecnico di Milano</s1>
<s2>Milan</s2>
<s3>ITA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>Department of Electrical Engineeering and Computer Science, University of Central Florida</s1>
<s2>Orlando, FL</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA20>
<s1>74-85</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21689</s2>
<s5>354000504000850080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0025376</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Neural networks</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Cools (2006) suggested that prefrontal dopamine levels are related to cognitive stability whereas striatal dopamine levels are related to cognitive plasticity. With such a wide ranging role, almost all cognitive activities should be affected by dopamine levels in the brain. Not surprisingly, factors influencing brain dopamine levels have been shown to improve/worsen performance in many behavioral experiments. On the one hand, Nadler, Rabi, and Minda (2010) showed that positive affect (which is thought to increase cortical dopamine levels) improves a type of categorization that depends on explicit reasoning (rule-based) but not another type that depends on procedural learning (information-integration). On the other hand, Parkinson's disease (which is known to decrease dopamine levels in both the striatum and cortex) produces proactive interference in the odd-man-out task (Flowers & Robertson, 1985) and renders subjects insensitive to negative feedback during reversal learning (Cools, Altamirano, & D'Esposito, 2006). This article uses the COVIS model of categorization to simulate the effects of different dopamine levels in categorization, reversal learning, and the odd-man-out task. The results show a good match between the simulated and human data, which suggests that the role of dopamine in COVIS can account for several cognitive enhancements and deficits related to dopamine levels in healthy and patient populations.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02B07D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Cognition</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Cognition</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Cognición</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Analyse comportementale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Behavioral analysis</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Análisis conductual</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Intelligence artificielle</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Artificial intelligence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Inteligencia artificial</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Système expert</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Expert system</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Sistema experto</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Intégration information</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Information integration</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Integración información</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Service proactif</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Proactive service</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Sevicio proactivo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dopamine</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Dopamine</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Dopamina</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Homme</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Human</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Théorie cognitive</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Cognitive theory</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Teoría cognitiva</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Inélasticité</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Inelasticity</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Inelasticidad</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Plasticité</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Plasticity</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Plasticidad</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Activité</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Activity</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Actividad</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Cerveau</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Brain</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Cerebro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Encéphale</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Encephalon</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Encéfalo</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Système nerveux central</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Central nervous system</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Sistema nervioso central</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Catégorisation</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Categorization</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Categorización</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Noyau gris central</s0>
<s5>41</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Basal ganglion</s0>
<s5>41</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Núcleo basal</s0>
<s5>41</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>014</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000B09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:13-0025376
   |texte=   Simulating the effects of dopamine imbalance on cognition: From positive affect to Parkinson's disease
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022