La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of Piece-Wise Linear, Linear, and Nonlinear Atlas-to-Patient Warping Techniques: Analysis of the Labeling of Subcortical Nuclei for Functional Neurosurgical Applications

Identifieur interne : 000785 ( PascalFrancis/Curation ); précédent : 000784; suivant : 000786

Comparison of Piece-Wise Linear, Linear, and Nonlinear Atlas-to-Patient Warping Techniques: Analysis of the Labeling of Subcortical Nuclei for Functional Neurosurgical Applications

Auteurs : M. Mallar Chakravarty [Canada] ; Abbas F. Sadikot [Canada] ; Jürgen Germany [Canada] ; Pierre Hellier [France] ; Gilles Bertrand [Canada] ; D. Louis Collins [Canada]

Source :

RBID : Pascal:09-0447014

Descripteurs français

English descriptors

Abstract

Digital atlases are commonly used in pre-operative planning in functional neurosurgical procedures performed to minimize the symptoms of Parkinson's disease. These atlases can be customized to fit an individual patient's anatomy through atlas-to-patient warping procedures. Once fitted to pre-operative magnetic resonance imaging (MRI) data, the customized atlas can be used to plan and navigate surgical procedures. Linear, piece-wise linear and nonlinear registration methods have been used to customize different digital atlases with varying accuracies. Our goal was to evaluate eight different registration methods for atlas-to-patient customization of a new digital atlas of the basal ganglia and thalamus to demonstrate the value of nonlinear registration for automated atlas-based subcortical target identification in functional neurosurgery. In this work, we evaluate the accuracy of two automated linear techniques, two piece-wise linear techniques (requiring the identification of manually placed anatomical landmarks), and four different automated nonlinear atlas-to-patient warping techniques (where two of the four nonlinear techniques are variants of the ANIMAL algorithm). Since a gold standard of the subcortical anatomy is not available, manual segmentations of the striatum, globus pallidus, and thalamus are used to derive a silver standard for evaluation. Four different metrics, including the kappa statistic, the mean distance between the surfaces, the maximum distance between surfaces, and the total structure volume are used to compare the warping techniques. The results show that nonlinear techniques perform statistically better than linear and piece-wise linear techniques. In addition, the results demonstrate statistically significant differences between the nonlinear techniques, with the ANIMAL algorithm yielding better results.
pA  
A01 01  1    @0 1065-9471
A03   1    @0 Hum. brain mapp.
A05       @2 30
A06       @2 11
A08 01  1  ENG  @1 Comparison of Piece-Wise Linear, Linear, and Nonlinear Atlas-to-Patient Warping Techniques: Analysis of the Labeling of Subcortical Nuclei for Functional Neurosurgical Applications
A11 01  1    @1 MALLAR CHAKRAVARTY (M.)
A11 02  1    @1 SADIKOT (Abbas F.)
A11 03  1    @1 GERMANY (Jürgen)
A11 04  1    @1 HELLIER (Pierre)
A11 05  1    @1 BERTRAND (Gilles)
A11 06  1    @1 COLLINS (D. Louis)
A14 01      @1 McConnell Brain Imaging Center, Montréal Neurological Institute, McGill University @2 Montréal, Quebec @3 CAN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 5 aut. @Z 6 aut.
A14 02      @1 Division of Neurosurgery, McGill University @2 Montréal, Quebec @3 CAN @Z 2 aut. @Z 5 aut.
A14 03      @1 INRIA, IRISA Visages team, Campus de Beaulieu @2 Rennes @3 FRA @Z 4 aut.
A14 04      @1 INSERM, Visages-U746, IRISA, Campus de Beaulieu @2 Rennes @3 FRA @Z 4 aut.
A20       @1 3574-3595
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 26079 @5 354000171239110100
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 2 p.1/4
A47 01  1    @0 09-0447014
A60       @1 P
A61       @0 A
A64 01  1    @0 Human brain mapping
A66 01      @0 USA
C01 01    ENG  @0 Digital atlases are commonly used in pre-operative planning in functional neurosurgical procedures performed to minimize the symptoms of Parkinson's disease. These atlases can be customized to fit an individual patient's anatomy through atlas-to-patient warping procedures. Once fitted to pre-operative magnetic resonance imaging (MRI) data, the customized atlas can be used to plan and navigate surgical procedures. Linear, piece-wise linear and nonlinear registration methods have been used to customize different digital atlases with varying accuracies. Our goal was to evaluate eight different registration methods for atlas-to-patient customization of a new digital atlas of the basal ganglia and thalamus to demonstrate the value of nonlinear registration for automated atlas-based subcortical target identification in functional neurosurgery. In this work, we evaluate the accuracy of two automated linear techniques, two piece-wise linear techniques (requiring the identification of manually placed anatomical landmarks), and four different automated nonlinear atlas-to-patient warping techniques (where two of the four nonlinear techniques are variants of the ANIMAL algorithm). Since a gold standard of the subcortical anatomy is not available, manual segmentations of the striatum, globus pallidus, and thalamus are used to derive a silver standard for evaluation. Four different metrics, including the kappa statistic, the mean distance between the surfaces, the maximum distance between surfaces, and the total structure volume are used to compare the warping techniques. The results show that nonlinear techniques perform statistically better than linear and piece-wise linear techniques. In addition, the results demonstrate statistically significant differences between the nonlinear techniques, with the ANIMAL algorithm yielding better results.
C02 01  X    @0 002B24A06
C02 02  X    @0 002B24D02
C03 01  X  FRE  @0 Maladie de Parkinson @2 NM @5 01
C03 01  X  ENG  @0 Parkinson disease @2 NM @5 01
C03 01  X  SPA  @0 Parkinson enfermedad @2 NM @5 01
C03 02  X  FRE  @0 Pathologie du système nerveux @5 02
C03 02  X  ENG  @0 Nervous system diseases @5 02
C03 02  X  SPA  @0 Sistema nervioso patología @5 02
C03 03  X  FRE  @0 Etude comparative @5 09
C03 03  X  ENG  @0 Comparative study @5 09
C03 03  X  SPA  @0 Estudio comparativo @5 09
C03 04  X  FRE  @0 Non linéarité @5 10
C03 04  X  ENG  @0 Nonlinearity @5 10
C03 04  X  SPA  @0 No linealidad @5 10
C03 05  X  FRE  @0 Atlas @5 11
C03 05  X  ENG  @0 Atlas @5 11
C03 05  X  SPA  @0 Atlas @5 11
C03 06  X  FRE  @0 Homme @5 12
C03 06  X  ENG  @0 Human @5 12
C03 06  X  SPA  @0 Hombre @5 12
C03 07  X  FRE  @0 Technique @5 13
C03 07  X  ENG  @0 Technique @5 13
C03 07  X  SPA  @0 Técnica @5 13
C03 08  X  FRE  @0 Souscortex @5 14
C03 08  X  ENG  @0 Subcortex @5 14
C03 08  X  SPA  @0 Subcorteza @5 14
C03 09  X  FRE  @0 Chirurgie @5 15
C03 09  X  ENG  @0 Surgery @5 15
C03 09  X  SPA  @0 Cirugía @5 15
C03 10  X  FRE  @0 Planification @5 17
C03 10  X  ENG  @0 Planning @5 17
C03 10  X  SPA  @0 Planificación @5 17
C03 11  X  FRE  @0 Thalamotomie @5 18
C03 11  X  ENG  @0 Thalamotomy @5 18
C03 11  X  SPA  @0 Talamotomía @5 18
C03 12  X  FRE  @0 Radiodiagnostic @5 19
C03 12  X  ENG  @0 Radiodiagnosis @5 19
C03 12  X  SPA  @0 Radiodiagnóstico @5 19
C03 13  X  FRE  @0 Stimulation cérébrale profonde @4 CD @5 96
C03 13  X  ENG  @0 Deep brain stimulation @4 CD @5 96
C07 01  X  FRE  @0 Pathologie de l'encéphale @5 37
C07 01  X  ENG  @0 Cerebral disorder @5 37
C07 01  X  SPA  @0 Encéfalo patología @5 37
C07 02  X  FRE  @0 Syndrome extrapyramidal @5 38
C07 02  X  ENG  @0 Extrapyramidal syndrome @5 38
C07 02  X  SPA  @0 Extrapiramidal síndrome @5 38
C07 03  X  FRE  @0 Maladie dégénérative @5 39
C07 03  X  ENG  @0 Degenerative disease @5 39
C07 03  X  SPA  @0 Enfermedad degenerativa @5 39
C07 04  X  FRE  @0 Pathologie du système nerveux central @5 40
C07 04  X  ENG  @0 Central nervous system disease @5 40
C07 04  X  SPA  @0 Sistema nervosio central patología @5 40
N21       @1 327
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0447014

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Comparison of Piece-Wise Linear, Linear, and Nonlinear Atlas-to-Patient Warping Techniques: Analysis of the Labeling of Subcortical Nuclei for Functional Neurosurgical Applications</title>
<author>
<name sortKey="Mallar Chakravarty, M" sort="Mallar Chakravarty, M" uniqKey="Mallar Chakravarty M" first="M." last="Mallar Chakravarty">M. Mallar Chakravarty</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>McConnell Brain Imaging Center, Montréal Neurological Institute, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Sadikot, Abbas F" sort="Sadikot, Abbas F" uniqKey="Sadikot A" first="Abbas F." last="Sadikot">Abbas F. Sadikot</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>McConnell Brain Imaging Center, Montréal Neurological Institute, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Division of Neurosurgery, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Germany, Jurgen" sort="Germany, Jurgen" uniqKey="Germany J" first="Jürgen" last="Germany">Jürgen Germany</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>McConnell Brain Imaging Center, Montréal Neurological Institute, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Hellier, Pierre" sort="Hellier, Pierre" uniqKey="Hellier P" first="Pierre" last="Hellier">Pierre Hellier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>INRIA, IRISA Visages team, Campus de Beaulieu</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>INSERM, Visages-U746, IRISA, Campus de Beaulieu</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Bertrand, Gilles" sort="Bertrand, Gilles" uniqKey="Bertrand G" first="Gilles" last="Bertrand">Gilles Bertrand</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>McConnell Brain Imaging Center, Montréal Neurological Institute, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Division of Neurosurgery, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Collins, D Louis" sort="Collins, D Louis" uniqKey="Collins D" first="D. Louis" last="Collins">D. Louis Collins</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>McConnell Brain Imaging Center, Montréal Neurological Institute, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0447014</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0447014 INIST</idno>
<idno type="RBID">Pascal:09-0447014</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000507</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000785</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Comparison of Piece-Wise Linear, Linear, and Nonlinear Atlas-to-Patient Warping Techniques: Analysis of the Labeling of Subcortical Nuclei for Functional Neurosurgical Applications</title>
<author>
<name sortKey="Mallar Chakravarty, M" sort="Mallar Chakravarty, M" uniqKey="Mallar Chakravarty M" first="M." last="Mallar Chakravarty">M. Mallar Chakravarty</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>McConnell Brain Imaging Center, Montréal Neurological Institute, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Sadikot, Abbas F" sort="Sadikot, Abbas F" uniqKey="Sadikot A" first="Abbas F." last="Sadikot">Abbas F. Sadikot</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>McConnell Brain Imaging Center, Montréal Neurological Institute, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Division of Neurosurgery, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Germany, Jurgen" sort="Germany, Jurgen" uniqKey="Germany J" first="Jürgen" last="Germany">Jürgen Germany</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>McConnell Brain Imaging Center, Montréal Neurological Institute, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Hellier, Pierre" sort="Hellier, Pierre" uniqKey="Hellier P" first="Pierre" last="Hellier">Pierre Hellier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>INRIA, IRISA Visages team, Campus de Beaulieu</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>INSERM, Visages-U746, IRISA, Campus de Beaulieu</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Bertrand, Gilles" sort="Bertrand, Gilles" uniqKey="Bertrand G" first="Gilles" last="Bertrand">Gilles Bertrand</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>McConnell Brain Imaging Center, Montréal Neurological Institute, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Division of Neurosurgery, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Collins, D Louis" sort="Collins, D Louis" uniqKey="Collins D" first="D. Louis" last="Collins">D. Louis Collins</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>McConnell Brain Imaging Center, Montréal Neurological Institute, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Human brain mapping</title>
<title level="j" type="abbreviated">Hum. brain mapp.</title>
<idno type="ISSN">1065-9471</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Human brain mapping</title>
<title level="j" type="abbreviated">Hum. brain mapp.</title>
<idno type="ISSN">1065-9471</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atlas</term>
<term>Comparative study</term>
<term>Deep brain stimulation</term>
<term>Human</term>
<term>Nervous system diseases</term>
<term>Nonlinearity</term>
<term>Parkinson disease</term>
<term>Planning</term>
<term>Radiodiagnosis</term>
<term>Subcortex</term>
<term>Surgery</term>
<term>Technique</term>
<term>Thalamotomy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Maladie de Parkinson</term>
<term>Pathologie du système nerveux</term>
<term>Etude comparative</term>
<term>Non linéarité</term>
<term>Atlas</term>
<term>Homme</term>
<term>Technique</term>
<term>Souscortex</term>
<term>Chirurgie</term>
<term>Planification</term>
<term>Thalamotomie</term>
<term>Radiodiagnostic</term>
<term>Stimulation cérébrale profonde</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Atlas</term>
<term>Homme</term>
<term>Chirurgie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Digital atlases are commonly used in pre-operative planning in functional neurosurgical procedures performed to minimize the symptoms of Parkinson's disease. These atlases can be customized to fit an individual patient's anatomy through atlas-to-patient warping procedures. Once fitted to pre-operative magnetic resonance imaging (MRI) data, the customized atlas can be used to plan and navigate surgical procedures. Linear, piece-wise linear and nonlinear registration methods have been used to customize different digital atlases with varying accuracies. Our goal was to evaluate eight different registration methods for atlas-to-patient customization of a new digital atlas of the basal ganglia and thalamus to demonstrate the value of nonlinear registration for automated atlas-based subcortical target identification in functional neurosurgery. In this work, we evaluate the accuracy of two automated linear techniques, two piece-wise linear techniques (requiring the identification of manually placed anatomical landmarks), and four different automated nonlinear atlas-to-patient warping techniques (where two of the four nonlinear techniques are variants of the ANIMAL algorithm). Since a gold standard of the subcortical anatomy is not available, manual segmentations of the striatum, globus pallidus, and thalamus are used to derive a silver standard for evaluation. Four different metrics, including the kappa statistic, the mean distance between the surfaces, the maximum distance between surfaces, and the total structure volume are used to compare the warping techniques. The results show that nonlinear techniques perform statistically better than linear and piece-wise linear techniques. In addition, the results demonstrate statistically significant differences between the nonlinear techniques, with the ANIMAL algorithm yielding better results.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1065-9471</s0>
</fA01>
<fA03 i2="1">
<s0>Hum. brain mapp.</s0>
</fA03>
<fA05>
<s2>30</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Comparison of Piece-Wise Linear, Linear, and Nonlinear Atlas-to-Patient Warping Techniques: Analysis of the Labeling of Subcortical Nuclei for Functional Neurosurgical Applications</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MALLAR CHAKRAVARTY (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SADIKOT (Abbas F.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GERMANY (Jürgen)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HELLIER (Pierre)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BERTRAND (Gilles)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>COLLINS (D. Louis)</s1>
</fA11>
<fA14 i1="01">
<s1>McConnell Brain Imaging Center, Montréal Neurological Institute, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Division of Neurosurgery, McGill University</s1>
<s2>Montréal, Quebec</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>INRIA, IRISA Visages team, Campus de Beaulieu</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>INSERM, Visages-U746, IRISA, Campus de Beaulieu</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>3574-3595</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26079</s2>
<s5>354000171239110100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>2 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0447014</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Human brain mapping</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Digital atlases are commonly used in pre-operative planning in functional neurosurgical procedures performed to minimize the symptoms of Parkinson's disease. These atlases can be customized to fit an individual patient's anatomy through atlas-to-patient warping procedures. Once fitted to pre-operative magnetic resonance imaging (MRI) data, the customized atlas can be used to plan and navigate surgical procedures. Linear, piece-wise linear and nonlinear registration methods have been used to customize different digital atlases with varying accuracies. Our goal was to evaluate eight different registration methods for atlas-to-patient customization of a new digital atlas of the basal ganglia and thalamus to demonstrate the value of nonlinear registration for automated atlas-based subcortical target identification in functional neurosurgery. In this work, we evaluate the accuracy of two automated linear techniques, two piece-wise linear techniques (requiring the identification of manually placed anatomical landmarks), and four different automated nonlinear atlas-to-patient warping techniques (where two of the four nonlinear techniques are variants of the ANIMAL algorithm). Since a gold standard of the subcortical anatomy is not available, manual segmentations of the striatum, globus pallidus, and thalamus are used to derive a silver standard for evaluation. Four different metrics, including the kappa statistic, the mean distance between the surfaces, the maximum distance between surfaces, and the total structure volume are used to compare the warping techniques. The results show that nonlinear techniques perform statistically better than linear and piece-wise linear techniques. In addition, the results demonstrate statistically significant differences between the nonlinear techniques, with the ANIMAL algorithm yielding better results.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B24A06</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B24D02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Maladie de Parkinson</s0>
<s2>NM</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Parkinson disease</s0>
<s2>NM</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Parkinson enfermedad</s0>
<s2>NM</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Pathologie du système nerveux</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Nervous system diseases</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Sistema nervioso patología</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Non linéarité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Nonlinearity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>No linealidad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Atlas</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Atlas</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Atlas</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Homme</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Human</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Technique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Technique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Técnica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Souscortex</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Subcortex</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Subcorteza</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Chirurgie</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Surgery</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Cirugía</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Planification</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Planning</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Planificación</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Thalamotomie</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Thalamotomy</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Talamotomía</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Radiodiagnostic</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Radiodiagnosis</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Radiodiagnóstico</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Stimulation cérébrale profonde</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Deep brain stimulation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Pathologie de l'encéphale</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Cerebral disorder</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Encéfalo patología</s0>
<s5>37</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Syndrome extrapyramidal</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Extrapyramidal syndrome</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Extrapiramidal síndrome</s0>
<s5>38</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Maladie dégénérative</s0>
<s5>39</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Degenerative disease</s0>
<s5>39</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Enfermedad degenerativa</s0>
<s5>39</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Pathologie du système nerveux central</s0>
<s5>40</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Central nervous system disease</s0>
<s5>40</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Sistema nervosio central patología</s0>
<s5>40</s5>
</fC07>
<fN21>
<s1>327</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000785 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000785 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:09-0447014
   |texte=   Comparison of Piece-Wise Linear, Linear, and Nonlinear Atlas-to-Patient Warping Techniques: Analysis of the Labeling of Subcortical Nuclei for Functional Neurosurgical Applications
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022