La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Revealing the dynamic causal interdependence between neural and muscular signals in Parkinsonian tremor

Identifieur interne : 000580 ( PascalFrancis/Curation ); précédent : 000579; suivant : 000581

Revealing the dynamic causal interdependence between neural and muscular signals in Parkinsonian tremor

Auteurs : S. Wang [Royaume-Uni] ; Y. Chen [États-Unis] ; M. Ding [États-Unis] ; J. Feng [Royaume-Uni] ; J. F. Stein [Royaume-Uni] ; T. Z. Aziz [Royaume-Uni] ; X. Liu [Royaume-Uni]

Source :

RBID : Pascal:07-0277567

Descripteurs français

English descriptors

Abstract

Functional correlation between oscillatory neural and muscular signals during tremor can be revealed by coherence estimation. The coherence value in a defined frequency range reveals the interaction strength between the two signals. However, coherence estimation does not provide directional information, preventing the further dissection of the relationship between the two interacting signals. We have therefore investigated causal correlations between the subthalamic nucleus (STN) and muscle in Parkinsonian tremor using adaptive Granger autoregressive (AR) modeling. During resting tremor we analyzed the inter-dependence of local field potentials (LFPs) recorded from the STN and surface electromyograms (EMGs) recorded from the contralateral forearm muscles using an adaptive Granger causality based on AR modeling with a running window to reveal the time-dependent causal influences between the LFP and EMG signals in comparison with coherence estimation. Our results showed that during persistent tremor, there was a directional causality predominantly from EMGs to LFPs corresponding to the significant coherence between LFPs and EMGs at the tremor frequency; and over episodes of transient resting tremor, the inter-dependence between EMGs and LFPs was bi-directional and alternatively varied with time. Further time-frequency analysis showed a significant suppression in the beta band (10-30 Hz) power of the STN LFPs preceded the onset of resting tremor which was presented as the increases in the power at the tremor frequency (3.0-4.5 Hz) in both STN LFPs and surface EMGs. We conclude that the functional correlation between the STN and muscle is dynamic, bi-directional, and dependent on the tremor status. The Granger causality and time-frequency analysis are effective to characterize the dynamic correlation of the transient or intermittent events between simultaneously recorded neural and muscular signals at the same and across different frequencies.
pA  
A01 01  1    @0 0016-0032
A02 01      @0 JFINAB
A03   1    @0 J. Franklin Inst.
A05       @2 344
A06       @2 3-4
A08 01  1  ENG  @1 Revealing the dynamic causal interdependence between neural and muscular signals in Parkinsonian tremor
A09 01  1  ENG  @1 Medical applications of signal processing, part I
A11 01  1    @1 WANG (S.)
A11 02  1    @1 CHEN (Y.)
A11 03  1    @1 DING (M.)
A11 04  1    @1 FENG (J.)
A11 05  1    @1 STEIN (J. F.)
A11 06  1    @1 AZIZ (T. Z.)
A11 07  1    @1 LIU (X.)
A12 01  1    @1 NANDI (Asoke K.) @9 ed.
A12 02  1    @1 RANGAYYAN (Rangaraj M.) @9 ed.
A14 01      @1 University Laboratory of Physiology, University of Oxford. Parks Road @2 Oxford 0X1 3PT @3 GBR @Z 1 aut. @Z 5 aut.
A14 02      @1 Department of Biomedical Engineering, University of Florida @3 USA @Z 2 aut. @Z 3 aut.
A14 03      @1 Centre for Scientific Computing, University of Warwick @3 GBR @Z 4 aut.
A14 04      @1 Oxford Functional Neurosurgery, Department of Neurosurgery, Radcliffe Infirmary, Woodstock Road @2 Oxford OX2 6HE @3 GBR @Z 6 aut.
A14 05      @1 The Movement Disorders and Neurostimulation Group, Department of Neuroscience, Charing Cross Hospital & Division of Newosciences and Mental Health, Imperial College London, Fulham Palace Road @2 London W6 8RF @3 GBR @Z 7 aut.
A15 01      @1 Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill @2 Liverpool, L69 3GJ @3 GBR @Z 1 aut.
A15 02      @1 Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW @2 Calgary, Alberta, T2N 1N4 @3 CAN @Z 2 aut.
A20       @1 180-195
A21       @1 2007
A23 01      @0 ENG
A43 01      @1 INIST @2 555 @5 354000147096050020
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 26 ref.
A47 01  1    @0 07-0277567
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of the Franklin Institute
A66 01      @0 GBR
C01 01    ENG  @0 Functional correlation between oscillatory neural and muscular signals during tremor can be revealed by coherence estimation. The coherence value in a defined frequency range reveals the interaction strength between the two signals. However, coherence estimation does not provide directional information, preventing the further dissection of the relationship between the two interacting signals. We have therefore investigated causal correlations between the subthalamic nucleus (STN) and muscle in Parkinsonian tremor using adaptive Granger autoregressive (AR) modeling. During resting tremor we analyzed the inter-dependence of local field potentials (LFPs) recorded from the STN and surface electromyograms (EMGs) recorded from the contralateral forearm muscles using an adaptive Granger causality based on AR modeling with a running window to reveal the time-dependent causal influences between the LFP and EMG signals in comparison with coherence estimation. Our results showed that during persistent tremor, there was a directional causality predominantly from EMGs to LFPs corresponding to the significant coherence between LFPs and EMGs at the tremor frequency; and over episodes of transient resting tremor, the inter-dependence between EMGs and LFPs was bi-directional and alternatively varied with time. Further time-frequency analysis showed a significant suppression in the beta band (10-30 Hz) power of the STN LFPs preceded the onset of resting tremor which was presented as the increases in the power at the tremor frequency (3.0-4.5 Hz) in both STN LFPs and surface EMGs. We conclude that the functional correlation between the STN and muscle is dynamic, bi-directional, and dependent on the tremor status. The Granger causality and time-frequency analysis are effective to characterize the dynamic correlation of the transient or intermittent events between simultaneously recorded neural and muscular signals at the same and across different frequencies.
C02 01  X    @0 002B24D
C02 02  X    @0 001D04A05
C03 01  X  FRE  @0 Traitement signal @5 01
C03 01  X  ENG  @0 Signal processing @5 01
C03 01  X  SPA  @0 Procesamiento señal @5 01
C03 02  X  FRE  @0 Application médicale @5 02
C03 02  X  ENG  @0 Medical application @5 02
C03 02  X  SPA  @0 Aplicación medical @5 02
C03 03  X  FRE  @0 Electromyographie @5 06
C03 03  X  ENG  @0 Electromyography @5 06
C03 03  X  SPA  @0 Electromiografía @5 06
C03 04  X  FRE  @0 Parkinson maladie @5 20
C03 04  X  ENG  @0 Parkinson disease @5 20
C03 04  X  SPA  @0 Parkinson enfermedad @5 20
C03 05  X  FRE  @0 Tremblement @5 21
C03 05  X  ENG  @0 Tremor @5 21
C03 05  X  SPA  @0 Temblor @5 21
C03 06  X  FRE  @0 Système nerveux pathologie @5 22
C03 06  X  ENG  @0 Nervous system diseases @5 22
C03 06  X  SPA  @0 Sistema nervioso patología @5 22
C03 07  X  FRE  @0 Corrélation @5 23
C03 07  X  ENG  @0 Correlation @5 23
C03 07  X  SPA  @0 Correlación @5 23
C03 08  X  FRE  @0 Cohérence @5 24
C03 08  X  ENG  @0 Coherence @5 24
C03 08  X  SPA  @0 Coherencia @5 24
C03 09  X  FRE  @0 Résistance mécanique @5 25
C03 09  X  ENG  @0 Strength @5 25
C03 09  X  SPA  @0 Resistencia mecánica @5 25
C03 10  X  FRE  @0 Dépendance du temps @5 26
C03 10  X  ENG  @0 Time dependence @5 26
C03 10  X  SPA  @0 Dependencia del tiempo @5 26
C03 11  X  FRE  @0 Phénomène transitoire @5 27
C03 11  X  ENG  @0 Transients @5 27
C03 11  X  SPA  @0 Fenómeno transitorio @5 27
C03 12  X  FRE  @0 Réponse transitoire @5 28
C03 12  X  ENG  @0 Transient response @5 28
C03 12  X  SPA  @0 Respuesta transitoria @5 28
C03 13  X  FRE  @0 Intermittence @5 29
C03 13  X  ENG  @0 Intermittency @5 29
C03 13  X  SPA  @0 Intermitencia @5 29
C03 14  X  FRE  @0 Causalité @5 30
C03 14  X  ENG  @0 Causality @5 30
C03 14  X  SPA  @0 Causalidad @5 30
C03 15  X  FRE  @0 Méthode adaptative @5 31
C03 15  X  ENG  @0 Adaptive method @5 31
C03 15  X  SPA  @0 Método adaptativo @5 31
C03 16  X  FRE  @0 Modèle autorégressif @5 32
C03 16  X  ENG  @0 Autoregressive model @5 32
C03 16  X  SPA  @0 Modelo autorregresivo @5 32
C03 17  X  FRE  @0 Analyse régression @5 33
C03 17  X  ENG  @0 Regression analysis @5 33
C03 17  X  SPA  @0 Análisis regresión @5 33
C03 18  X  FRE  @0 Modélisation @5 34
C03 18  X  ENG  @0 Modeling @5 34
C03 18  X  SPA  @0 Modelización @5 34
C03 19  X  FRE  @0 Fonction cohérence @5 35
C03 19  X  ENG  @0 Coherence function @5 35
C03 19  X  SPA  @0 Función coherencia @5 35
C03 20  X  FRE  @0 Méthode domaine temps fréquence @5 36
C03 20  X  ENG  @0 Time frequency domain method @5 36
C03 20  X  SPA  @0 Método dominio tiempo frecuencia @5 36
N21       @1 183
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0277567

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Revealing the dynamic causal interdependence between neural and muscular signals in Parkinsonian tremor</title>
<author>
<name sortKey="Wang, S" sort="Wang, S" uniqKey="Wang S" first="S." last="Wang">S. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University Laboratory of Physiology, University of Oxford. Parks Road</s1>
<s2>Oxford 0X1 3PT</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Chen, Y" sort="Chen, Y" uniqKey="Chen Y" first="Y." last="Chen">Y. Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biomedical Engineering, University of Florida</s1>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Ding, M" sort="Ding, M" uniqKey="Ding M" first="M." last="Ding">M. Ding</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biomedical Engineering, University of Florida</s1>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Feng, J" sort="Feng, J" uniqKey="Feng J" first="J." last="Feng">J. Feng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre for Scientific Computing, University of Warwick</s1>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Stein, J F" sort="Stein, J F" uniqKey="Stein J" first="J. F." last="Stein">J. F. Stein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University Laboratory of Physiology, University of Oxford. Parks Road</s1>
<s2>Oxford 0X1 3PT</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Aziz, T Z" sort="Aziz, T Z" uniqKey="Aziz T" first="T. Z." last="Aziz">T. Z. Aziz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Oxford Functional Neurosurgery, Department of Neurosurgery, Radcliffe Infirmary, Woodstock Road</s1>
<s2>Oxford OX2 6HE</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Liu, X" sort="Liu, X" uniqKey="Liu X" first="X." last="Liu">X. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>The Movement Disorders and Neurostimulation Group, Department of Neuroscience, Charing Cross Hospital & Division of Newosciences and Mental Health, Imperial College London, Fulham Palace Road</s1>
<s2>London W6 8RF</s2>
<s3>GBR</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0277567</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0277567 INIST</idno>
<idno type="RBID">Pascal:07-0277567</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000740</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000580</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Revealing the dynamic causal interdependence between neural and muscular signals in Parkinsonian tremor</title>
<author>
<name sortKey="Wang, S" sort="Wang, S" uniqKey="Wang S" first="S." last="Wang">S. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University Laboratory of Physiology, University of Oxford. Parks Road</s1>
<s2>Oxford 0X1 3PT</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Chen, Y" sort="Chen, Y" uniqKey="Chen Y" first="Y." last="Chen">Y. Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biomedical Engineering, University of Florida</s1>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Ding, M" sort="Ding, M" uniqKey="Ding M" first="M." last="Ding">M. Ding</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biomedical Engineering, University of Florida</s1>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Feng, J" sort="Feng, J" uniqKey="Feng J" first="J." last="Feng">J. Feng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre for Scientific Computing, University of Warwick</s1>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Stein, J F" sort="Stein, J F" uniqKey="Stein J" first="J. F." last="Stein">J. F. Stein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University Laboratory of Physiology, University of Oxford. Parks Road</s1>
<s2>Oxford 0X1 3PT</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Aziz, T Z" sort="Aziz, T Z" uniqKey="Aziz T" first="T. Z." last="Aziz">T. Z. Aziz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Oxford Functional Neurosurgery, Department of Neurosurgery, Radcliffe Infirmary, Woodstock Road</s1>
<s2>Oxford OX2 6HE</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Liu, X" sort="Liu, X" uniqKey="Liu X" first="X." last="Liu">X. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>The Movement Disorders and Neurostimulation Group, Department of Neuroscience, Charing Cross Hospital & Division of Newosciences and Mental Health, Imperial College London, Fulham Palace Road</s1>
<s2>London W6 8RF</s2>
<s3>GBR</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of the Franklin Institute</title>
<title level="j" type="abbreviated">J. Franklin Inst.</title>
<idno type="ISSN">0016-0032</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of the Franklin Institute</title>
<title level="j" type="abbreviated">J. Franklin Inst.</title>
<idno type="ISSN">0016-0032</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptive method</term>
<term>Autoregressive model</term>
<term>Causality</term>
<term>Coherence</term>
<term>Coherence function</term>
<term>Correlation</term>
<term>Electromyography</term>
<term>Intermittency</term>
<term>Medical application</term>
<term>Modeling</term>
<term>Nervous system diseases</term>
<term>Parkinson disease</term>
<term>Regression analysis</term>
<term>Signal processing</term>
<term>Strength</term>
<term>Time dependence</term>
<term>Time frequency domain method</term>
<term>Transient response</term>
<term>Transients</term>
<term>Tremor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Traitement signal</term>
<term>Application médicale</term>
<term>Electromyographie</term>
<term>Parkinson maladie</term>
<term>Tremblement</term>
<term>Système nerveux pathologie</term>
<term>Corrélation</term>
<term>Cohérence</term>
<term>Résistance mécanique</term>
<term>Dépendance du temps</term>
<term>Phénomène transitoire</term>
<term>Réponse transitoire</term>
<term>Intermittence</term>
<term>Causalité</term>
<term>Méthode adaptative</term>
<term>Modèle autorégressif</term>
<term>Analyse régression</term>
<term>Modélisation</term>
<term>Fonction cohérence</term>
<term>Méthode domaine temps fréquence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Functional correlation between oscillatory neural and muscular signals during tremor can be revealed by coherence estimation. The coherence value in a defined frequency range reveals the interaction strength between the two signals. However, coherence estimation does not provide directional information, preventing the further dissection of the relationship between the two interacting signals. We have therefore investigated causal correlations between the subthalamic nucleus (STN) and muscle in Parkinsonian tremor using adaptive Granger autoregressive (AR) modeling. During resting tremor we analyzed the inter-dependence of local field potentials (LFPs) recorded from the STN and surface electromyograms (EMGs) recorded from the contralateral forearm muscles using an adaptive Granger causality based on AR modeling with a running window to reveal the time-dependent causal influences between the LFP and EMG signals in comparison with coherence estimation. Our results showed that during persistent tremor, there was a directional causality predominantly from EMGs to LFPs corresponding to the significant coherence between LFPs and EMGs at the tremor frequency; and over episodes of transient resting tremor, the inter-dependence between EMGs and LFPs was bi-directional and alternatively varied with time. Further time-frequency analysis showed a significant suppression in the beta band (10-30 Hz) power of the STN LFPs preceded the onset of resting tremor which was presented as the increases in the power at the tremor frequency (3.0-4.5 Hz) in both STN LFPs and surface EMGs. We conclude that the functional correlation between the STN and muscle is dynamic, bi-directional, and dependent on the tremor status. The Granger causality and time-frequency analysis are effective to characterize the dynamic correlation of the transient or intermittent events between simultaneously recorded neural and muscular signals at the same and across different frequencies.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0016-0032</s0>
</fA01>
<fA02 i1="01">
<s0>JFINAB</s0>
</fA02>
<fA03 i2="1">
<s0>J. Franklin Inst.</s0>
</fA03>
<fA05>
<s2>344</s2>
</fA05>
<fA06>
<s2>3-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Revealing the dynamic causal interdependence between neural and muscular signals in Parkinsonian tremor</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Medical applications of signal processing, part I</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>WANG (S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHEN (Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DING (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FENG (J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>STEIN (J. F.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>AZIZ (T. Z.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LIU (X.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>NANDI (Asoke K.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>RANGAYYAN (Rangaraj M.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>University Laboratory of Physiology, University of Oxford. Parks Road</s1>
<s2>Oxford 0X1 3PT</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Biomedical Engineering, University of Florida</s1>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Centre for Scientific Computing, University of Warwick</s1>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Oxford Functional Neurosurgery, Department of Neurosurgery, Radcliffe Infirmary, Woodstock Road</s1>
<s2>Oxford OX2 6HE</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>The Movement Disorders and Neurostimulation Group, Department of Neuroscience, Charing Cross Hospital & Division of Newosciences and Mental Health, Imperial College London, Fulham Palace Road</s1>
<s2>London W6 8RF</s2>
<s3>GBR</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill</s1>
<s2>Liverpool, L69 3GJ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW</s1>
<s2>Calgary, Alberta, T2N 1N4</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>180-195</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>555</s2>
<s5>354000147096050020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0277567</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of the Franklin Institute</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Functional correlation between oscillatory neural and muscular signals during tremor can be revealed by coherence estimation. The coherence value in a defined frequency range reveals the interaction strength between the two signals. However, coherence estimation does not provide directional information, preventing the further dissection of the relationship between the two interacting signals. We have therefore investigated causal correlations between the subthalamic nucleus (STN) and muscle in Parkinsonian tremor using adaptive Granger autoregressive (AR) modeling. During resting tremor we analyzed the inter-dependence of local field potentials (LFPs) recorded from the STN and surface electromyograms (EMGs) recorded from the contralateral forearm muscles using an adaptive Granger causality based on AR modeling with a running window to reveal the time-dependent causal influences between the LFP and EMG signals in comparison with coherence estimation. Our results showed that during persistent tremor, there was a directional causality predominantly from EMGs to LFPs corresponding to the significant coherence between LFPs and EMGs at the tremor frequency; and over episodes of transient resting tremor, the inter-dependence between EMGs and LFPs was bi-directional and alternatively varied with time. Further time-frequency analysis showed a significant suppression in the beta band (10-30 Hz) power of the STN LFPs preceded the onset of resting tremor which was presented as the increases in the power at the tremor frequency (3.0-4.5 Hz) in both STN LFPs and surface EMGs. We conclude that the functional correlation between the STN and muscle is dynamic, bi-directional, and dependent on the tremor status. The Granger causality and time-frequency analysis are effective to characterize the dynamic correlation of the transient or intermittent events between simultaneously recorded neural and muscular signals at the same and across different frequencies.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B24D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D04A05</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Traitement signal</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Signal processing</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Procesamiento señal</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Application médicale</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Medical application</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Aplicación medical</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Electromyographie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Electromyography</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Electromiografía</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Parkinson maladie</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Parkinson disease</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Parkinson enfermedad</s0>
<s5>20</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Tremblement</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Tremor</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Temblor</s0>
<s5>21</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Système nerveux pathologie</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Nervous system diseases</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Sistema nervioso patología</s0>
<s5>22</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Corrélation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Correlation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Correlación</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Cohérence</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Coherence</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Coherencia</s0>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Résistance mécanique</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Strength</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Resistencia mecánica</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Dépendance du temps</s0>
<s5>26</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Time dependence</s0>
<s5>26</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Dependencia del tiempo</s0>
<s5>26</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Phénomène transitoire</s0>
<s5>27</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Transients</s0>
<s5>27</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Fenómeno transitorio</s0>
<s5>27</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Réponse transitoire</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Transient response</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Respuesta transitoria</s0>
<s5>28</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Intermittence</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Intermittency</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Intermitencia</s0>
<s5>29</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Causalité</s0>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Causality</s0>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Causalidad</s0>
<s5>30</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Méthode adaptative</s0>
<s5>31</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Adaptive method</s0>
<s5>31</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Método adaptativo</s0>
<s5>31</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Modèle autorégressif</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Autoregressive model</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Modelo autorregresivo</s0>
<s5>32</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Analyse régression</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Regression analysis</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Análisis regresión</s0>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>34</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>34</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>34</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Fonction cohérence</s0>
<s5>35</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Coherence function</s0>
<s5>35</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Función coherencia</s0>
<s5>35</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Méthode domaine temps fréquence</s0>
<s5>36</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Time frequency domain method</s0>
<s5>36</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Método dominio tiempo frecuencia</s0>
<s5>36</s5>
</fC03>
<fN21>
<s1>183</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000580 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000580 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:07-0277567
   |texte=   Revealing the dynamic causal interdependence between neural and muscular signals in Parkinsonian tremor
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022