La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dopamine Transporter Relation to Dopamine Turnover in Parkinson's Disease : A Positron Emission Tomography Study

Identifieur interne : 000681 ( PascalFrancis/Corpus ); précédent : 000680; suivant : 000682

Dopamine Transporter Relation to Dopamine Turnover in Parkinson's Disease : A Positron Emission Tomography Study

Auteurs : Vesna Sossi ; Raul De La Fuente-Fernandez ; Michael Schulzer ; Andre R. Troiano ; Thomas J. Ruth ; A. Jon Stoessl

Source :

RBID : Pascal:08-0035341

Descripteurs français

English descriptors

Abstract

Objective: To investigate the role of the dopamine transporter (DAT) in the regulation of synaptic dopamine (DA) levels in Parkinson's disease and its role in the preservation of DA in presynaptic terminals. Methods: Ten Parkinson's disease patients (age, 62.9 ± 9.5 years; Unified Parkinson's Disease Rating Scale motor score in "off" state, 28.5 ± 8.2) underwent positron emission tomography with 11C-methylphenidate (MP, a DAT marker), 11C-dihydrotetrabenazine (a vesicular monoamine transporter 2 marker), and 18F-fluorodopa, leading to the determination of the MP and 11C-dihydrotetrabenazine binding potentials (BPs) and the effective distribution volume for 18F-fluorodopa, the inverse of DA turnover. Seven patients also underwent positron emission tomography with 11C-raclopride before and 1 hour after levodopa administration to estimate levodopa-induced changes in synaptic DA concentration. Results: We found a significant positive correlation between effective distribution volume and BPMP (r = 0.93; p < 0.001) and a significant negative correlation between changes in synaptic DA concentration and BPMP (r = -0.93; p = 0.04), independent of disease severity and duration. Interpretation: These data show that in Parkinson's disease, greater DAT levels are directly associated with lower DA turnover and lower changes in synaptic DA concentration. This implies that an important functional role of DAT is to maintain relatively constant synaptic DA levels and to preserve DA in nerve terminals. A decrease in DAT, although potentially serving as a compensatory mechanism in early disease, may ultimately result in increased DA turnover and higher oscillations in synaptic DA concentration, thereby possibly predisposing toward the occurrence of motor complications as disease progresses.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0364-5134
A02 01      @0 ANNED3
A03   1    @0 Ann. neurol.
A05       @2 62
A06       @2 5
A08 01  1  ENG  @1 Dopamine Transporter Relation to Dopamine Turnover in Parkinson's Disease : A Positron Emission Tomography Study
A11 01  1    @1 SOSSI (Vesna)
A11 02  1    @1 DE LA FUENTE-FERNANDEZ (Raul)
A11 03  1    @1 SCHULZER (Michael)
A11 04  1    @1 TROIANO (Andre R.)
A11 05  1    @1 RUTH (Thomas J.)
A11 06  1    @1 STOESSL (A. Jon)
A14 01      @1 University of British Columbia @2 Vancouver, British Columbia @3 CAN @Z 1 aut. @Z 3 aut. @Z 6 aut.
A14 02      @1 Division of Neurology, Hospital Arquitecto Marcide @2 Ferrol (A Coruña) @3 ESP @Z 2 aut.
A14 03      @1 Pacific Parkinson's Research Centre @3 CAN @Z 4 aut. @Z 6 aut.
A14 04      @1 TRIUMF @2 Vancouver, British Columbia @3 CAN @Z 5 aut.
A20       @1 468-474
A21       @1 2007
A23 01      @0 ENG
A43 01      @1 INIST @2 16555 @5 354000174350000070
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 33 ref.
A47 01  1    @0 08-0035341
A60       @1 P
A61       @0 A
A64 01  1    @0 Annals of neurology
A66 01      @0 GBR
C01 01    ENG  @0 Objective: To investigate the role of the dopamine transporter (DAT) in the regulation of synaptic dopamine (DA) levels in Parkinson's disease and its role in the preservation of DA in presynaptic terminals. Methods: Ten Parkinson's disease patients (age, 62.9 ± 9.5 years; Unified Parkinson's Disease Rating Scale motor score in "off" state, 28.5 ± 8.2) underwent positron emission tomography with 11C-methylphenidate (MP, a DAT marker), 11C-dihydrotetrabenazine (a vesicular monoamine transporter 2 marker), and 18F-fluorodopa, leading to the determination of the MP and 11C-dihydrotetrabenazine binding potentials (BPs) and the effective distribution volume for 18F-fluorodopa, the inverse of DA turnover. Seven patients also underwent positron emission tomography with 11C-raclopride before and 1 hour after levodopa administration to estimate levodopa-induced changes in synaptic DA concentration. Results: We found a significant positive correlation between effective distribution volume and BPMP (r = 0.93; p < 0.001) and a significant negative correlation between changes in synaptic DA concentration and BPMP (r = -0.93; p = 0.04), independent of disease severity and duration. Interpretation: These data show that in Parkinson's disease, greater DAT levels are directly associated with lower DA turnover and lower changes in synaptic DA concentration. This implies that an important functional role of DAT is to maintain relatively constant synaptic DA levels and to preserve DA in nerve terminals. A decrease in DAT, although potentially serving as a compensatory mechanism in early disease, may ultimately result in increased DA turnover and higher oscillations in synaptic DA concentration, thereby possibly predisposing toward the occurrence of motor complications as disease progresses.
C02 01  X    @0 002B17
C02 02  X    @0 002B17G
C02 03  X    @0 002B24B07
C03 01  X  FRE  @0 Pathologie du système nerveux @5 01
C03 01  X  ENG  @0 Nervous system diseases @5 01
C03 01  X  SPA  @0 Sistema nervioso patología @5 01
C03 02  X  FRE  @0 Maladie de Parkinson @2 NM @5 02
C03 02  X  ENG  @0 Parkinson disease @2 NM @5 02
C03 02  X  SPA  @0 Parkinson enfermedad @2 NM @5 02
C03 03  X  FRE  @0 Dopamine @2 NK @2 FR @5 09
C03 03  X  ENG  @0 Dopamine @2 NK @2 FR @5 09
C03 03  X  SPA  @0 Dopamina @2 NK @2 FR @5 09
C03 04  X  FRE  @0 Turnover @5 10
C03 04  X  ENG  @0 Turnover @5 10
C03 04  X  SPA  @0 Turnover @5 10
C03 05  X  FRE  @0 Tomoscintigraphie @5 11
C03 05  X  ENG  @0 Emission tomography @5 11
C03 05  X  SPA  @0 Tomocentelleografía @5 11
C03 06  X  FRE  @0 Tomographie par émission de positons @5 12
C03 06  X  ENG  @0 Positron emission tomography @5 12
C03 06  X  SPA  @0 Tomografía emisión positrones @5 12
C07 01  X  FRE  @0 Catécholamine @5 37
C07 01  X  ENG  @0 Catecholamine @5 37
C07 01  X  SPA  @0 Catecolamina @5 37
C07 02  X  FRE  @0 Neurotransmetteur @5 38
C07 02  X  ENG  @0 Neurotransmitter @5 38
C07 02  X  SPA  @0 Neurotransmisor @5 38
C07 03  X  FRE  @0 Pathologie de l'encéphale @5 39
C07 03  X  ENG  @0 Cerebral disorder @5 39
C07 03  X  SPA  @0 Encéfalo patología @5 39
C07 04  X  FRE  @0 Syndrome extrapyramidal @5 40
C07 04  X  ENG  @0 Extrapyramidal syndrome @5 40
C07 04  X  SPA  @0 Extrapiramidal síndrome @5 40
C07 05  X  FRE  @0 Maladie dégénérative @5 41
C07 05  X  ENG  @0 Degenerative disease @5 41
C07 05  X  SPA  @0 Enfermedad degenerativa @5 41
C07 06  X  FRE  @0 Pathologie du système nerveux central @5 42
C07 06  X  ENG  @0 Central nervous system disease @5 42
C07 06  X  SPA  @0 Sistema nervosio central patología @5 42
N21       @1 052
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 08-0035341 INIST
ET : Dopamine Transporter Relation to Dopamine Turnover in Parkinson's Disease : A Positron Emission Tomography Study
AU : SOSSI (Vesna); DE LA FUENTE-FERNANDEZ (Raul); SCHULZER (Michael); TROIANO (Andre R.); RUTH (Thomas J.); STOESSL (A. Jon)
AF : University of British Columbia/Vancouver, British Columbia/Canada (1 aut., 3 aut., 6 aut.); Division of Neurology, Hospital Arquitecto Marcide/Ferrol (A Coruña)/Espagne (2 aut.); Pacific Parkinson's Research Centre/Canada (4 aut., 6 aut.); TRIUMF/Vancouver, British Columbia/Canada (5 aut.)
DT : Publication en série; Niveau analytique
SO : Annals of neurology; ISSN 0364-5134; Coden ANNED3; Royaume-Uni; Da. 2007; Vol. 62; No. 5; Pp. 468-474; Bibl. 33 ref.
LA : Anglais
EA : Objective: To investigate the role of the dopamine transporter (DAT) in the regulation of synaptic dopamine (DA) levels in Parkinson's disease and its role in the preservation of DA in presynaptic terminals. Methods: Ten Parkinson's disease patients (age, 62.9 ± 9.5 years; Unified Parkinson's Disease Rating Scale motor score in "off" state, 28.5 ± 8.2) underwent positron emission tomography with 11C-methylphenidate (MP, a DAT marker), 11C-dihydrotetrabenazine (a vesicular monoamine transporter 2 marker), and 18F-fluorodopa, leading to the determination of the MP and 11C-dihydrotetrabenazine binding potentials (BPs) and the effective distribution volume for 18F-fluorodopa, the inverse of DA turnover. Seven patients also underwent positron emission tomography with 11C-raclopride before and 1 hour after levodopa administration to estimate levodopa-induced changes in synaptic DA concentration. Results: We found a significant positive correlation between effective distribution volume and BPMP (r = 0.93; p < 0.001) and a significant negative correlation between changes in synaptic DA concentration and BPMP (r = -0.93; p = 0.04), independent of disease severity and duration. Interpretation: These data show that in Parkinson's disease, greater DAT levels are directly associated with lower DA turnover and lower changes in synaptic DA concentration. This implies that an important functional role of DAT is to maintain relatively constant synaptic DA levels and to preserve DA in nerve terminals. A decrease in DAT, although potentially serving as a compensatory mechanism in early disease, may ultimately result in increased DA turnover and higher oscillations in synaptic DA concentration, thereby possibly predisposing toward the occurrence of motor complications as disease progresses.
CC : 002B17; 002B17G; 002B24B07
FD : Pathologie du système nerveux; Maladie de Parkinson; Dopamine; Turnover; Tomoscintigraphie; Tomographie par émission de positons
FG : Catécholamine; Neurotransmetteur; Pathologie de l'encéphale; Syndrome extrapyramidal; Maladie dégénérative; Pathologie du système nerveux central
ED : Nervous system diseases; Parkinson disease; Dopamine; Turnover; Emission tomography; Positron emission tomography
EG : Catecholamine; Neurotransmitter; Cerebral disorder; Extrapyramidal syndrome; Degenerative disease; Central nervous system disease
SD : Sistema nervioso patología; Parkinson enfermedad; Dopamina; Turnover; Tomocentelleografía; Tomografía emisión positrones
LO : INIST-16555.354000174350000070
ID : 08-0035341

Links to Exploration step

Pascal:08-0035341

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Dopamine Transporter Relation to Dopamine Turnover in Parkinson's Disease : A Positron Emission Tomography Study</title>
<author>
<name sortKey="Sossi, Vesna" sort="Sossi, Vesna" uniqKey="Sossi V" first="Vesna" last="Sossi">Vesna Sossi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of British Columbia</s1>
<s2>Vancouver, British Columbia</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="De La Fuente Fernandez, Raul" sort="De La Fuente Fernandez, Raul" uniqKey="De La Fuente Fernandez R" first="Raul" last="De La Fuente-Fernandez">Raul De La Fuente-Fernandez</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Neurology, Hospital Arquitecto Marcide</s1>
<s2>Ferrol (A Coruña)</s2>
<s3>ESP</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schulzer, Michael" sort="Schulzer, Michael" uniqKey="Schulzer M" first="Michael" last="Schulzer">Michael Schulzer</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of British Columbia</s1>
<s2>Vancouver, British Columbia</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Troiano, Andre R" sort="Troiano, Andre R" uniqKey="Troiano A" first="Andre R." last="Troiano">Andre R. Troiano</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Pacific Parkinson's Research Centre</s1>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ruth, Thomas J" sort="Ruth, Thomas J" uniqKey="Ruth T" first="Thomas J." last="Ruth">Thomas J. Ruth</name>
<affiliation>
<inist:fA14 i1="04">
<s1>TRIUMF</s1>
<s2>Vancouver, British Columbia</s2>
<s3>CAN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stoessl, A Jon" sort="Stoessl, A Jon" uniqKey="Stoessl A" first="A. Jon" last="Stoessl">A. Jon Stoessl</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of British Columbia</s1>
<s2>Vancouver, British Columbia</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Pacific Parkinson's Research Centre</s1>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0035341</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 08-0035341 INIST</idno>
<idno type="RBID">Pascal:08-0035341</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000681</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Dopamine Transporter Relation to Dopamine Turnover in Parkinson's Disease : A Positron Emission Tomography Study</title>
<author>
<name sortKey="Sossi, Vesna" sort="Sossi, Vesna" uniqKey="Sossi V" first="Vesna" last="Sossi">Vesna Sossi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of British Columbia</s1>
<s2>Vancouver, British Columbia</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="De La Fuente Fernandez, Raul" sort="De La Fuente Fernandez, Raul" uniqKey="De La Fuente Fernandez R" first="Raul" last="De La Fuente-Fernandez">Raul De La Fuente-Fernandez</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Neurology, Hospital Arquitecto Marcide</s1>
<s2>Ferrol (A Coruña)</s2>
<s3>ESP</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schulzer, Michael" sort="Schulzer, Michael" uniqKey="Schulzer M" first="Michael" last="Schulzer">Michael Schulzer</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of British Columbia</s1>
<s2>Vancouver, British Columbia</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Troiano, Andre R" sort="Troiano, Andre R" uniqKey="Troiano A" first="Andre R." last="Troiano">Andre R. Troiano</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Pacific Parkinson's Research Centre</s1>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ruth, Thomas J" sort="Ruth, Thomas J" uniqKey="Ruth T" first="Thomas J." last="Ruth">Thomas J. Ruth</name>
<affiliation>
<inist:fA14 i1="04">
<s1>TRIUMF</s1>
<s2>Vancouver, British Columbia</s2>
<s3>CAN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stoessl, A Jon" sort="Stoessl, A Jon" uniqKey="Stoessl A" first="A. Jon" last="Stoessl">A. Jon Stoessl</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of British Columbia</s1>
<s2>Vancouver, British Columbia</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Pacific Parkinson's Research Centre</s1>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Annals of neurology</title>
<title level="j" type="abbreviated">Ann. neurol.</title>
<idno type="ISSN">0364-5134</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Annals of neurology</title>
<title level="j" type="abbreviated">Ann. neurol.</title>
<idno type="ISSN">0364-5134</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dopamine</term>
<term>Emission tomography</term>
<term>Nervous system diseases</term>
<term>Parkinson disease</term>
<term>Positron emission tomography</term>
<term>Turnover</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Pathologie du système nerveux</term>
<term>Maladie de Parkinson</term>
<term>Dopamine</term>
<term>Turnover</term>
<term>Tomoscintigraphie</term>
<term>Tomographie par émission de positons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Objective: To investigate the role of the dopamine transporter (DAT) in the regulation of synaptic dopamine (DA) levels in Parkinson's disease and its role in the preservation of DA in presynaptic terminals. Methods: Ten Parkinson's disease patients (age, 62.9 ± 9.5 years; Unified Parkinson's Disease Rating Scale motor score in "off" state, 28.5 ± 8.2) underwent positron emission tomography with
<sup>11</sup>
C-methylphenidate (MP, a DAT marker),
<sup>11</sup>
C-dihydrotetrabenazine (a vesicular monoamine transporter 2 marker), and
<sup>18</sup>
F-fluorodopa, leading to the determination of the MP and
<sup>11</sup>
C-dihydrotetrabenazine binding potentials (BPs) and the effective distribution volume for
<sup>18</sup>
F-fluorodopa, the inverse of DA turnover. Seven patients also underwent positron emission tomography with
<sup>11</sup>
C-raclopride before and 1 hour after levodopa administration to estimate levodopa-induced changes in synaptic DA concentration. Results: We found a significant positive correlation between effective distribution volume and BP
<sub>MP</sub>
(r = 0.93; p < 0.001) and a significant negative correlation between changes in synaptic DA concentration and BP
<sub>MP</sub>
(r = -0.93; p = 0.04), independent of disease severity and duration. Interpretation: These data show that in Parkinson's disease, greater DAT levels are directly associated with lower DA turnover and lower changes in synaptic DA concentration. This implies that an important functional role of DAT is to maintain relatively constant synaptic DA levels and to preserve DA in nerve terminals. A decrease in DAT, although potentially serving as a compensatory mechanism in early disease, may ultimately result in increased DA turnover and higher oscillations in synaptic DA concentration, thereby possibly predisposing toward the occurrence of motor complications as disease progresses.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0364-5134</s0>
</fA01>
<fA02 i1="01">
<s0>ANNED3</s0>
</fA02>
<fA03 i2="1">
<s0>Ann. neurol.</s0>
</fA03>
<fA05>
<s2>62</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Dopamine Transporter Relation to Dopamine Turnover in Parkinson's Disease : A Positron Emission Tomography Study</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SOSSI (Vesna)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DE LA FUENTE-FERNANDEZ (Raul)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHULZER (Michael)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TROIANO (Andre R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>RUTH (Thomas J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>STOESSL (A. Jon)</s1>
</fA11>
<fA14 i1="01">
<s1>University of British Columbia</s1>
<s2>Vancouver, British Columbia</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Division of Neurology, Hospital Arquitecto Marcide</s1>
<s2>Ferrol (A Coruña)</s2>
<s3>ESP</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Pacific Parkinson's Research Centre</s1>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>TRIUMF</s1>
<s2>Vancouver, British Columbia</s2>
<s3>CAN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>468-474</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16555</s2>
<s5>354000174350000070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0035341</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Annals of neurology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Objective: To investigate the role of the dopamine transporter (DAT) in the regulation of synaptic dopamine (DA) levels in Parkinson's disease and its role in the preservation of DA in presynaptic terminals. Methods: Ten Parkinson's disease patients (age, 62.9 ± 9.5 years; Unified Parkinson's Disease Rating Scale motor score in "off" state, 28.5 ± 8.2) underwent positron emission tomography with
<sup>11</sup>
C-methylphenidate (MP, a DAT marker),
<sup>11</sup>
C-dihydrotetrabenazine (a vesicular monoamine transporter 2 marker), and
<sup>18</sup>
F-fluorodopa, leading to the determination of the MP and
<sup>11</sup>
C-dihydrotetrabenazine binding potentials (BPs) and the effective distribution volume for
<sup>18</sup>
F-fluorodopa, the inverse of DA turnover. Seven patients also underwent positron emission tomography with
<sup>11</sup>
C-raclopride before and 1 hour after levodopa administration to estimate levodopa-induced changes in synaptic DA concentration. Results: We found a significant positive correlation between effective distribution volume and BP
<sub>MP</sub>
(r = 0.93; p < 0.001) and a significant negative correlation between changes in synaptic DA concentration and BP
<sub>MP</sub>
(r = -0.93; p = 0.04), independent of disease severity and duration. Interpretation: These data show that in Parkinson's disease, greater DAT levels are directly associated with lower DA turnover and lower changes in synaptic DA concentration. This implies that an important functional role of DAT is to maintain relatively constant synaptic DA levels and to preserve DA in nerve terminals. A decrease in DAT, although potentially serving as a compensatory mechanism in early disease, may ultimately result in increased DA turnover and higher oscillations in synaptic DA concentration, thereby possibly predisposing toward the occurrence of motor complications as disease progresses.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B17</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B17G</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002B24B07</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Pathologie du système nerveux</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Nervous system diseases</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sistema nervioso patología</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Maladie de Parkinson</s0>
<s2>NM</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Parkinson disease</s0>
<s2>NM</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Parkinson enfermedad</s0>
<s2>NM</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dopamine</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Dopamine</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Dopamina</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Turnover</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Turnover</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Turnover</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Tomoscintigraphie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Emission tomography</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Tomocentelleografía</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Tomographie par émission de positons</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Positron emission tomography</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Tomografía emisión positrones</s0>
<s5>12</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Catécholamine</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Catecholamine</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Catecolamina</s0>
<s5>37</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Neurotransmetteur</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Neurotransmitter</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Neurotransmisor</s0>
<s5>38</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Pathologie de l'encéphale</s0>
<s5>39</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Cerebral disorder</s0>
<s5>39</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Encéfalo patología</s0>
<s5>39</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Syndrome extrapyramidal</s0>
<s5>40</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Extrapyramidal syndrome</s0>
<s5>40</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Extrapiramidal síndrome</s0>
<s5>40</s5>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Maladie dégénérative</s0>
<s5>41</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Degenerative disease</s0>
<s5>41</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Enfermedad degenerativa</s0>
<s5>41</s5>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Pathologie du système nerveux central</s0>
<s5>42</s5>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Central nervous system disease</s0>
<s5>42</s5>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Sistema nervosio central patología</s0>
<s5>42</s5>
</fC07>
<fN21>
<s1>052</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 08-0035341 INIST</NO>
<ET>Dopamine Transporter Relation to Dopamine Turnover in Parkinson's Disease : A Positron Emission Tomography Study</ET>
<AU>SOSSI (Vesna); DE LA FUENTE-FERNANDEZ (Raul); SCHULZER (Michael); TROIANO (Andre R.); RUTH (Thomas J.); STOESSL (A. Jon)</AU>
<AF>University of British Columbia/Vancouver, British Columbia/Canada (1 aut., 3 aut., 6 aut.); Division of Neurology, Hospital Arquitecto Marcide/Ferrol (A Coruña)/Espagne (2 aut.); Pacific Parkinson's Research Centre/Canada (4 aut., 6 aut.); TRIUMF/Vancouver, British Columbia/Canada (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Annals of neurology; ISSN 0364-5134; Coden ANNED3; Royaume-Uni; Da. 2007; Vol. 62; No. 5; Pp. 468-474; Bibl. 33 ref.</SO>
<LA>Anglais</LA>
<EA>Objective: To investigate the role of the dopamine transporter (DAT) in the regulation of synaptic dopamine (DA) levels in Parkinson's disease and its role in the preservation of DA in presynaptic terminals. Methods: Ten Parkinson's disease patients (age, 62.9 ± 9.5 years; Unified Parkinson's Disease Rating Scale motor score in "off" state, 28.5 ± 8.2) underwent positron emission tomography with
<sup>11</sup>
C-methylphenidate (MP, a DAT marker),
<sup>11</sup>
C-dihydrotetrabenazine (a vesicular monoamine transporter 2 marker), and
<sup>18</sup>
F-fluorodopa, leading to the determination of the MP and
<sup>11</sup>
C-dihydrotetrabenazine binding potentials (BPs) and the effective distribution volume for
<sup>18</sup>
F-fluorodopa, the inverse of DA turnover. Seven patients also underwent positron emission tomography with
<sup>11</sup>
C-raclopride before and 1 hour after levodopa administration to estimate levodopa-induced changes in synaptic DA concentration. Results: We found a significant positive correlation between effective distribution volume and BP
<sub>MP</sub>
(r = 0.93; p < 0.001) and a significant negative correlation between changes in synaptic DA concentration and BP
<sub>MP</sub>
(r = -0.93; p = 0.04), independent of disease severity and duration. Interpretation: These data show that in Parkinson's disease, greater DAT levels are directly associated with lower DA turnover and lower changes in synaptic DA concentration. This implies that an important functional role of DAT is to maintain relatively constant synaptic DA levels and to preserve DA in nerve terminals. A decrease in DAT, although potentially serving as a compensatory mechanism in early disease, may ultimately result in increased DA turnover and higher oscillations in synaptic DA concentration, thereby possibly predisposing toward the occurrence of motor complications as disease progresses.</EA>
<CC>002B17; 002B17G; 002B24B07</CC>
<FD>Pathologie du système nerveux; Maladie de Parkinson; Dopamine; Turnover; Tomoscintigraphie; Tomographie par émission de positons</FD>
<FG>Catécholamine; Neurotransmetteur; Pathologie de l'encéphale; Syndrome extrapyramidal; Maladie dégénérative; Pathologie du système nerveux central</FG>
<ED>Nervous system diseases; Parkinson disease; Dopamine; Turnover; Emission tomography; Positron emission tomography</ED>
<EG>Catecholamine; Neurotransmitter; Cerebral disorder; Extrapyramidal syndrome; Degenerative disease; Central nervous system disease</EG>
<SD>Sistema nervioso patología; Parkinson enfermedad; Dopamina; Turnover; Tomocentelleografía; Tomografía emisión positrones</SD>
<LO>INIST-16555.354000174350000070</LO>
<ID>08-0035341</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000681 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000681 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0035341
   |texte=   Dopamine Transporter Relation to Dopamine Turnover in Parkinson's Disease : A Positron Emission Tomography Study
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022